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Outline of the talk

@ Searching for billiards with arbitrarily slow mixing rates — a
family of billiards with flat points;

@ Stable law (with Paul Jung);

@ Levy jump-diffusion (with Paul Jung, Francoise Pene)

@ Hong-Kun Zhang, Decay of correlations for billiards with flat points Il: cusps effect.
Contemporary Mathematics, 2017.

@ Paul Jung and Hong-Kun Zhang, Stable laws for chaotic billiards with cusps at flat points,
Annales de I'Institute Henri Poincare, 2018.

@ Paul Jung, Francoise Pene, Hong-Kun Zhang, Convergence to a-stable Lévy motion for chaotic

billiards with several cusps at flat points, submitted.
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Statistical properties of chaotic billiards

@ F: M — M is the billiard map that preserves .

o Let f : M — R be a nice observable, say f = A being the
displacement function in the configuration space, then

Xy =foF"

defines a stationary process on (M, p), which are dependent.

@ Question: Will the limiting theorems for i.i.d. random variables
hold for this stationary process {X,}?

@ What is Cov(X,, Xp)? How fast will X,, forget its initial state
Xo?

o CLT: M — N(0,1) converges in distribution, as

NG
n — oo, provided

0’2: Z COV(Xk,Xo)

k=—0o0
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Diffusion of Lorentz gas with dispersing scatterers

AN

-1
ot q{n-1)

q(n) = g o F" — position vector;
A(n) = Ao F" — displacement;

q(n) —q(0) = A(1) +--- A(n);
Ergodicity

= AL+ HAM) |, pyp)
@ Isotropic = E(A) = 0;
a(n)—a(0) _ .

o CLT/WIP = the diffusion
{q(n)} is driven by Brownian
motion:

a(n) = q(0) +oB(n) +o(n"/?)

@ Question: What if
Cov(Xp, Xo) = O(n™?) with
ae(0,1)7

e © o ¢

0 J:=limps
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Various types of diffusion

Investigate the diffusion for systems with slow decay rates of

correlations Cov(X,, Xp) = O(1/n?). And find the diffusion

constant o.

(1) a>1case, CLT = g, dist qo + oN(0, n) + o(n%);

(2) a=1case, CLT = g, dist qo + o(lIn n)%N(O, n) + o(n%);

(3) a€(0,1), CLT = g, dist qo + on*/*Z 4 o(n'/*), where Z
has a a-stable law.
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History work on billiards: a =1 case

o P. Balint and S. Gouezel, Limit theorems in the Bunimovich
Stadia, Comm. Math. Phys., 263 (2006), 451-512.

@ D. Szasz, T. Varju, Laws and Recurrence for the Planar
Lorentz Process with Infinite Horizon. Journal of Statistical
Physics, 2007, Volume 129, 59-80.

@ N. Chernov and D. Dolgopyat, Anomalous current in periodic
Lorentz gases with infinite horizon, Russian Mathematical
Surveys, 64 (2009), 651-699.

@ P. Balint, N. Chernov, and D. Dolgopyat, Limit theorems for
dispersing billiards with cusps, Comm. Math. Phys. 308
(2011), 479-510.

@ Luke Mohr and Hongkun Zhang, Diffusion constants for

nonuniformly hyperbolic systems with singularities, (2017)
submitted.
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A long journey to search for billiards with arbitrarily slow

mixing rates

@ Can one construct a physically meaningful billiard system, with
arbitrarily slow decay rates of correlations, of order O(n~2),

with a € (0,1)? and what is the diffusion behavior? (as now
CLT fails);

@ Main idea: we would like to add some flat points on the
boundary of the billiard table, to change the decay rates of
correlations.
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Dispersing billiards with flat points

y=Ix"+1 y=xf+1
Q
X
Q
y=—(x"+1)

Fig.: Dispersing billiards with walls where the curvature vanishes, g8 > 2.
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Dispersing billiards with finite horizon Semi-dispersing (infinite horizon in unfolding sp:

Remark: We add symmetric flat points for both tables.
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Theorem

For the dispersing billiards with flat points, the correlations for the
billiard map F : M — M and piecewise Hélder continuous
functions f, g on M decay as

(1) (Finite horizon case - Chernov & Zhang (2005))

|Cn(f, g, F, )| < const - n_l_ﬁ’ g>2

(2) (Semi-diserpsing case - Zhang (2017))

ICn(f, g, F,p)| < const-n"t, f>2

o If 5 =2, then this is strictly dispersing billiards, which has
EDC: |Cn(f, g, F, )| < Crg - 9", for some ¥ € (0,1).

@ When 8 — oo, this is a semi-dispersing billiards, with
Cn(fagw’rhu) = O(n_l)'
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Semi-dispersing billiards with flat points on a rectangle

(a). Billiards on a rectangle with 4 flat points, for Qg, the
boundaries have zero derivatives up to 8 — 1 order at flat points;
(b). The limiting table as 8 — oc.

@ As 3 — oo, (b) is integrable;

@ For B = 2, the semidispersing billiard has correlation rates
O(n71);

@ We guessed that as § € (2, 00), the decay rates should be
O(n™?), with a € (0,1)?
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Billiards with flat points and infinite horizon.

We fix the scatterer B and label all other copies of the scatterer in
the channel as B’, By,--- , B, etc. Since the r-coordinate of p is
0, we have xg = (0,7/2) € M.

v ww
Y Y Y W

Figure.: Periodic trajectories with collisions only on flat points.
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Billiard maps with cusps at flat points

Jeg > 0, 8 > 2, the eg—neighborhood of the cusp P satisfies:

z21(s) = B7IsP,  z(s) = B 1P, Vs e [0,e] (1)

Fig.: A table with 1 cusp at the flat point for 5 € (2, )
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Theorem (Zhang, 2017)

Consider the family of billiards with cusps at flat points on Qg
defined above, with 3 > 2. Then for any v € (0,1], any observables
f,g € H(v) on M, there exists C¢ o = C(f,g) > 0, such that

_1 —(a—
|u(f o F" - g) — u(Fiu(g)] < Crgn 71 = Crgn™ 71,

forn > 1.

@ For the case when 8 = 2, the system corresponds to the
dispersing billiards with cusps and enjoys mixing rates of order
O(n~1) (by Chernov, Markarian, 2005)

@ Note here ﬁ € (0 1), which covers all rates slower than

O(n71). Let a = ﬁ € (1,2).
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Billiard maps with cusps at a flat point

We define M containing all collisions on the opposite side of the

cusp, R : M — N as the first return time, and F : M — M as the
induced map.
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Right: Singularity curves of F near xp (east wall midpoint)
Left: Same curves under F near the cusp in M (cosp = +Cx¥)
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Power law return times via strip estimates

Let M, .= {x € M : R(x) =n}

@ M, has width ~ n_azcj—flﬂ, length ~ n_a%l, density ~ 1.

o u(M,) ~n1t-@

o u(xeM:R>n)~n"*

o p(xeM : R>n)~n(@1) = p751,

@ We assume f € H. is Holder continuous on M, and there
exists a neighborhood of U (resp. U”) containing the cusp
r=r" (resp. r =r"), such that f has the same sign on
v uu.

o f(x):=f(x)+ f(Fx)+---+ F(FRO-1x), xe M.
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Right: Singularity curves of F near xp (east wall midpoint)
Left: Same curves under F near the cusp in M (cosp = +Cx¥)
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Inducing scheme:

For {f o F"} in (M, 1), we consider {f o F"} in (M, jupy), with

F(x) = f(x) + F(Fx) + -+ F(FROIx) xeMm.
Let Spf =f+-++foF" L Syf =f 4.+ FfoF L,
Theorem

If {f o F"} satisfies a stable law, then {f o F"} satisfies a stable
law too:

Y}

Sn Snf d

= Sy o

d
— Saﬁf =

@

D
D

with 6¢ (M) = of.

Here S, is a stable random variable with characteristic function

E (eiusQ*") = exp <—|ua|a (1 — isign(u) tan %)) . (2
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Stable law for f [Jung & Zhang (2017)]

1 s
lr = Z/ (F(F', @) + F(r", ) cosa o dip
0

w/2 .
h = / cosa p dp.
0

where r’, r" are r coordinates of the cusp point on both boundary.

Suppose Is > 0. Then OfF = ;—i -0R, and for n — oo,

%))
it

n

d
— 5,175,; (3)

N
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Diffusion constant 6 and 67.

u(xEl\/I:R>n)~n_“<:>u(xel\/l:R>né)~n_1

1
S nu(xeM: R>na)~1

Theorem

The diffusion constant satisfies

~o Lt . > — L 2I1a
oHim Jim v (x € M3 R0 > 1%) = s i
» 12 I
0 = N 72190l < 7

where . .
fle = %fow(f(r', ©)+ f(r",¢))cose pdp, h = fow/2 cose @ dop.

Hong-Kun Zhang Levy diffusion of dispersing billiards with flat points



Fig.: A table with 3 identical cusps at flat points for 8 € (2, 00)

1 /2

i 1
b= [ (o) F(7 o) cost pdp. b= |

0

where r/, r/" are r coordinates of the cusp point P; on both

boundary, i =1,2,3.

cosa pdp.
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Theorem (3 identical cusps case — Jung, Pene & Zhang (2018))

Suppose Ir. # 0. Then 6 ; = I;—;’&R, and for n — oo,

SnR — nMM(R)
g/ﬁ

d
- Sav&R; % S 757‘7f

>5>”f ’ Z Sa £is0f i

is the sum of independent stable var|ab|es with
E (e™Saes) = exp (—|us|® (1 — i¢sign(u)tan Z2)) , u€ER.

1 2 I¢';

5% . 1= 2+ —————u - — and i =sign(/r ;).

75T 3 u(M)oQ] B & = sign(lr.)
& 1

6F = 6%, £= =5 (Q5F, +&5F, +65Y,)

atie)

i=1
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Skorohod topologies

@ The Skorokhod space D = D([0, 1] : R) consists of all catlag
functions x : [0,1] — R that has a left limit x(t—) and right
continuous. Remark: Skorohod space consists of path of Levy
processes.

@ (D] - |lc) is nonseparable space;

@ J; and My norms can make DD into separable space. J;
topology is the finest one, which is close to the uniform norm.

@ x, — x in (D, J;) topology, if there exists a sequence of
increasing homeomorphisms A, : [0,1] — [0, 1], such that

sup |An(t)—t| = 0= sup |x(An(t))—x(t)] = 0, as n — o0
t€[0,1] te[0,1]

dy(x,y) = inf | sup |\(t) —t|+ sup |x(A\(t)) — x(t)]
AN tel0,1] te[0,1]
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M, topology makes the space D to be complete linear
normalized space.

A complete graph of x is obtained by connecting x(t—) and
x(t) using the line segment along the path. Let

M« ={(u,t) :ueR,t€[0,1]} be a parametrization of its
complete graph. Let Ny = {I'k} be all parametrization of the
complete graph of x.

inf max(|[uy — wal], [[t1 — t2))

dM X1,X2) = |
(. x2) (ui,t7)€M(x;),i=1,2

Then dp, satisfies the triangle inequality.

Let the graph of x, — x, such that x = Tj; 5 1} and x, = x on
[0,1/2 — n1]U[1/2,1], and is linear continuous in between.
Then x, — x in My but not J.
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J Jq

dy=Ln | dy=n | d,=1/n dy,=1/4

1 —

1-(1/n — — —

1/2
1/n ”
0 > > >
0 1/2 1

1/2-(1/n)
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nt]f
Wn)n = —5— — W(t)

na

converges in distribution, in the Skorokhod J;-topology, where
W(t) is an - stab/e Lévy motion with jumps, and

W(1) =32 Sae. 57, Such that So.¢ 5., are independent stable
random var/ables with characteristic function

E (eiusa,g,s) = exp <—|us|a (]_ — igsign(u) tan %)) , u€eR.

1 21¢;
5. = o —— i := sign(lf ;).
oy 3 Ba(M)[3Q] and & = sign(lf;)
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3 ) . -
) ) fO o FJ Snt fo
fo = (R — (R)) Z Is ilpir, Zng = Tplja Zn(t) = r[11/]a

@ Define the family of point processes (/N,), on

(0,00) > (R\ {0})

|If i
= 0 3 1 - >0
" ,; (+3472) Z Bu(M)IoQ| =%

@ N is a Poisson point process with intensity measure 7 having
density dn(x, t) = a|x|"*"1o%dxdt w.r.p.t. Lebesgue measure
on (0,00) x (R\ {0}).

°

(Np)n 9N, asn— oo
—- we provided two proofs for this arguments. One follows
from Francoise Pene and Benoit Saussol. Spatio-temporal
Poisson processes for visits to small sets, 2018.
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Theorem (Marta Tyran-Kaminska, 2010)
Assume the following two conditions.

Condition 1. (Point process convergence). (Np), 4N
Condition 1l (Vanishing small values). For alln >0

x

—il
lim limsup fi | max (ZnJ Nz, i1<e — B (Z,,71 - I\Zn,1|<6)> >

e—0 n—oo 0<k<n |4
J

I
)

Then #Snf converges in distribution (in the Ji-metric) to an
a-stable Lévy motion (W(t)) such that W(1) has the same
distribution as S, ¢ » with

3 |Ifl‘

3
Z 3|If/ and €= Z/ 1 Slgn(lf ’) ﬁ,u,(M)\aQ\
M)|0Q| ' o .
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Condition Il

@ Condition Il <
Kolmogorov’'s maximal inequality + EDC of related processes.

o Let X1,---,X,, -+ bei.i.d with zero mean, and finite variance
o2. Then

1
> < —=
P(lgka%(n ISkl > A) < )\2Var(5,,)
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In R\{0}, we fix a subset / = /.~ with ¢,c’ > 0. Our correlation
bounds will depend on sets of the form

1

D”J::{XEM:Q—\/E

(R(x) — ji(R)) o F/ € I}.

Lemma (Exponential decay of correlations for g-point marginals)

For every , there is a constant C > 0 and 6 € (0,1) such that

(D1 NN Dg e NDE g1 NN DG agik)
— (@(Dry N0 Dﬁ,q)) | < Co*

for all k,n,q € N satisfying 2q + k < n. Also, there exists e > 0
such that forall1 <i<j<n

(D,,,ﬁD,,J)<o< 11+> (4)
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Levy diffusion for the induced process

O = 9 e

Na

converges in distribution, in the Skorokhod J;-topology;

@ W(t) is an a-stable Lévy motion with jumps.

o W(1) =323, Se,or.,6 15 @ summation of 3 independent stable
variables.

@ Question: How to extend it to the process associated to the
original map?
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Levy convergence for the orginal system

Wi(t) == n~ Sy f,  Wa(t) = n oS, f

Theorem (Melbourne and Zweimiiller(2015))

If Wh(t),t > 0) converges weakly in the My-topology, as n — oo,
to an a-stable Lévy motion (W(t),t > 0) and

n~ /e ( max f* o}'k> 9 0. (5)
0<k<n

then (Wh(s),s > 0) N (W(su(M)),s > 0) in the M;-topology.

*(x) = f — f—Syf .
Pt <o<e'r<nfa<xn<x)(5” Sff)(x)>A<0<wr<nfa<XR<x)(Se S )(X)>

Remark: If f has the same sign in a neighborhood of each cusp,
then (5) holds.

Hong-Kun Zhang Levy diffusion of dispersing billiards with flat points



Theorem (P.Jung, F.Pene, Zhang (2018)- billiard with 3 identical

cusps)

Sint|f
(Wa)o = 25 — W(2)
naoa
converges in distribution, in the Skorokhod M;-topology, where
W(t) is an a-stable Lévy motion with W(1) = Y3_, Sevtior, Such
that S, ¢, 0, are independent stable random variables with
characteristic function

E (eiuSa,g,s) = exp <_|US|O¢ (]_ = igsign(u) tan %)) , u€eR.

1 2I¢;
B o= = . and & := sign(l¢ ;).
Uf,l 3,6|8Q| € 8 (f,)

Question: Will they converge in J; topology?
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Non-convergence for the J;-metric for f o F”

Let (W,)(t) == SLE’C

process W (t) Wit;;o}'umps in the Skorokhod J;-topology.

. Then (W) can not converge to a « Levy

Proof.

Let w,(t) be the continuous process obtained by linearization:

| \

(nt — [nt])f o L7t

nl/a ’

wp(t) := W, (t) + t>0

Since f is uniformly bounded, we also have

[l
nl/e

sup [wp(t) — Wp(t)| < — 0, as n—o0.
t>0

W, (t) — W(t) in Ji would imply w,(t) — W(t) in J1. Thus
W(t) is a continuous process, which is a contradiction. O
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