
LATEX TikZposter

Deviation inequalities for martingales

Davide Giraudo

Ruhr-Universität Bochum
Supported by Grant SFB 823

Deviation inequalities for martingales

Davide Giraudo

Ruhr-Universität Bochum
Supported by Grant SFB 823

Definition of martingale differences sequences

Definition
•Let (Ω,F ,P) be a probability space. A sequence (Fi)i>1 of sub-σ-algebras of F is a

filtration if for all i > 0, the inclusion Fi ⊂ Fi+1 holds.

•We say that a sequence of real valued random variables (Xi)i>1 is a martingale differences
sequence with respect to the filtration (Fi)i>0 if for all i > 1, the random variable Xi is
integrable, Fi-measurable and E [Xi | Fi−1] = 0.

Examples

•An independent centered sequence is a martingale differences sequence with respect to
the filtration (Fi)i>0 defined as F0 := {∅,Ω} and Fi := σ (Xk, 1 6 k 6 i).

• If (Xi)i>1 is a martingale differences sequence with respect to the filtration (Fi)i>0, then
for all i >, Yi is an Fi−1-measurable and bounded random variable, then (XiYi)i>1 is a
martingale differences sequence with respect to the filtration (Fi)i>0.

Goal: obtain deviation inequalities

Deviation inequalities
Let (Xi)i>1 be a martingale differences sequence with respect to the filtration (Fi)i>0.
Define Sn :=

∑n
i=1Xi. Our goal is to find a bound for

P
{

max
16m6n

|Sm| > x

}
in terms of n, x and the distribution function of max16i6n |Xi| and

∑n
i=1 E [|Xi|p | Fi−1],

1 < p 6 2.
We know that there exists a constant Cp such that for all martingale differences sequence
(Xi)i>1,

E [|Sn|p] 6 Cp

n∑
i=1

E [|Xi|p] . (1)

Result (G., [1])

For each 1 < p 6 2, q > 0 and for any martingale differences sequence (Xi,Fi)i>1, the
following inequality holds for each n > 1 and x > 0:

P
{

max
16i6n

|Si| > x

}
6

2q

2q − 1
q2−p

∫ 1

0

P
{

max
16i6n

|Xi| > 2−1−q/pC−1/p
p xu

}
uq−1du

+
2q

2q − 1
q2−p

∫ 1

0

P


(

n∑
i=1

E [|Xi|p | Fi−1]

)1/p

> 2−1−q/r′C−1/p
p xu

uq−1du,

where Sn =
∑n

i=1Xi and Cp is a constant satisfying (1) for any n and any martingale
differences sequence.
Remark: Nagaev [2] treated the case p = 2.

Application: convergence rates in the law of large numbers

Identically distributed increments (G.,

[1])

Let (Xi,Fi)i>1 be a martingale differences sequence such that:

1. (|Xi|)i>1 is identically distributed;

2.E
[
X2

1 log (1 + |X1|)
]

is finite.

Then for all α ∈ (1/2, 1] and each positive x, the series∑+∞
n=1 n

2α−2P {max16i6n |Si| > nαx} converges.

Moments of higher order (G., [1])

Let p > 2 and let (Xi,Fi)i>1 be a martingale differences sequence such that (|Xi|)i>1 is identically distributed.
Then for all 1/2 < α 6 1,

• supn>1 n
p(α−1/2)P {max16i6n |Si| > nαx} 6 Kp supt>0 t

pP {|X1| > t}x−p/2−1;

•
∑+∞

n=1 n
p(α−1/2)−1P {max16i6n |Si| > nαx} 6 Kpx

−pE [|X1|p].

Application: regression model

Assumptions
We consider the stochastic linear regression model given by

Xk = θφk + εk, 1 6 k 6 n,

where

• (Xk)16k6n are the observations,

• (φk)16k6n are the regression variables and

• (εk)16k6n the driven noises.

We shall make the following assumptions:

(1) the sequence (φk)16k6n is independent;

(2) the σ-algebra generated by φk, 1 6 k 6 n is independent of that
generated by εk, 1 6 k 6 n;

(3) for each k ∈ {2, . . . , n}, E [εk | σ (εi, 1 6 i 6 k − 1)] = 0 and
E [ε1] = 0.

Let θn be the least square estimator defined by

θn :=

∑n
k=1 φkXk∑n
i=1 φ

2
i

.

Result (G., [1])

Suppose that the assumptions (1), (2) and (3) hold. Suppose that there exists constants C1 and C2 such
that for any i ∈ {1, . . . , n},

E [|εi|p] 6 C1 and E
[
ε2
i | σ (εj, 1 6 j 6 i− 1)

]
6 C2 a.s.

Then for any p > 2, q > p and any x > 0,

P

|θn − θ|
√√√√ n∑

i=1

φ2
i > x

 6 C1
2q−2

2q − 1

q

q − p
2p+pq/2x−p +

2q−2

2q − 1
q2q+q

2/2x−qC
q/2
2 .
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