DEVIATION INEQUALITIES FOR MARTINGALES

Davide Giraudo

Ruhr-Universität Bochum Supported by Grant SFB 823

Definition of martingale differences sequences

Definition

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A sequence $(\mathcal{F}_i)_{i \ge 1}$ of sub- σ -algebras of \mathcal{F} is a filtration if for all $i \ge 0$, the inclusion $\mathcal{F}_i \subset \mathcal{F}_{i+1}$ holds.
- We say that a sequence of real valued random variables $(X_i)_{i \ge 1}$ is a martingale differences sequence with respect to the filtration $(\mathcal{F}_i)_{i \ge 0}$ if for all $i \ge 1$, the random variable X_i is integrable, \mathcal{F}_i -measurable and $\mathbb{E}[X_i | \mathcal{F}_{i-1}] = 0$.

Examples

- An independent centered sequence is a martingale differences sequence with respect to the filtration $(\mathcal{F}_i)_{i\geq 0}$ defined as $\mathcal{F}_0 := \{\emptyset, \Omega\}$ and $\mathcal{F}_i := \sigma(X_k, 1 \leq k \leq i)$.
- If $(X_i)_{i \ge 1}$ is a martingale differences sequence with respect to the filtration $(\mathcal{F}_i)_{i \ge 0}$, then for all $i \ge Y_i$ is an \mathcal{F}_{i-1} -measurable and bounded random variable, then $(X_iY_i)_{i\ge 1}$ is a martingale differences sequence with respect to the filtration $(\mathcal{F}_i)_{i\ge 0}$.

Goal: obtain deviation inequalities

Deviation inequalities

Let $(X_i)_{i \ge 1}$ be a martingale differences sequence with respect to the filtration $(\mathcal{F}_i)_{i \ge 0}$. Define $S_n := \sum_{i=1}^n X_i$. Our goal is to find a bound for

$$\mathbb{P}\left\{\max_{1\leqslant m\leqslant n}|S_m|>x\right\}$$

in terms of n, x and the distribution function of $\max_{1 \leq i \leq n} |X_i|$ and $\sum_{i=1}^n \mathbb{E}[|X_i|^p | \mathcal{F}_{i-1}], 1$

We know that there exists a constant C_p such that for all martingale differences sequence $(X_i)_{i \ge 1}$,

$$\mathbb{E}\left[|S_n|^p\right] \leqslant C_p \sum_{i=1}^n \mathbb{E}\left[|X_i|^p\right].$$
(1)

Result (G., [1])

For each 1 , <math>q > 0 and for any martingale differences sequence $(X_i, \mathcal{F}_i)_{i \geq 1}$, the following inequality holds for each $n \geq 1$ and x > 0:

$$\mathbb{P}\left\{\max_{1\leqslant i\leqslant n} |S_i| > x\right\} \leqslant \frac{2^q}{2^q - 1} q 2^{-p} \int_0^1 \mathbb{P}\left\{\max_{1\leqslant i\leqslant n} |X_i| > 2^{-1-q/p} C_p^{-1/p} x u\right\} u^{q-1} \mathrm{d}u \\
+ \frac{2^q}{2^q - 1} q 2^{-p} \int_0^1 \mathbb{P}\left\{\left(\sum_{i=1}^n \mathbb{E}\left[|X_i|^p \mid \mathcal{F}_{i-1}\right]\right)^{1/p} > 2^{-1-q/r'} C_p^{-1/p} x u\right\} u^{q-1} \mathrm{d}u,$$

where $S_n = \sum_{i=1}^n X_i$ and C_p is a constant satisfying (1) for any *n* and any martingale differences sequence.

Remark: Nagaev [2] treated the case p = 2.

Application: convergence rates in the law of large numbers

Identically distributed increments (G., [1])

Let $(X_i, \mathcal{F}_i)_{i \ge 1}$ be a martingale differences sequence such that: 1. $(|X_i|)_{i \ge 1}$ is identically distributed; 2. $\mathbb{E} \left[X_1^2 \log (1 + |X_1|) \right]$ is finite. Then for all $\alpha \in (1/2, 1]$ and each positive x, the series $\sum_{n=1}^{+\infty} n^{2\alpha-2} \mathbb{P} \left\{ \max_{1 \le i \le n} |S_i| > n^{\alpha} x \right\}$ converges.

Moments of higher order (G., [1])

Let p > 2 and let $(X_i, \mathcal{F}_i)_{i \ge 1}$ be a martingale differences sequence such that $(|X_i|)_{i \ge 1}$ is identically distributed. Then for all $1/2 < \alpha \le 1$,

• $\sup_{n \ge 1} n^{p(\alpha - 1/2)} \mathbb{P} \{ \max_{1 \le i \le n} |S_i| > n^{\alpha} x \} \le K_p \sup_{t > 0} t^p \mathbb{P} \{ |X_1| > t \} x^{-p/2 - 1};$

• $\sum_{n=1}^{+\infty} n^{p(\alpha-1/2)-1} \mathbb{P} \{ \max_{1 \leq i \leq n} |S_i| > n^{\alpha} x \} \leq K_p x^{-p} \mathbb{E} [|X_1|^p].$

Application: regression model

Assumptions

We consider the stochastic linear regression model given by $X_k = \theta \phi_k + \varepsilon_k, \quad 1 \leq k \leq n,$

Result (G., [1])

Suppose that the assumptions (1), (2) and (3) hold. Suppose that there exists constants C_1 and C_2 such that for any $i \in \{1, \ldots, n\}$,

where

(X_k)_{1≤k≤n} are the observations,
(φ_k)_{1≤k≤n} are the regression variables and
(ε_k)_{1≤k≤n} the driven noises.
We shall make the following assumptions:
(1) the sequence (φ_k)_{1≤k≤n} is independent;
(2) the σ-algebra generated by φ_k, 1 ≤ k ≤ n is independent of that generated by ε_k, 1 ≤ k ≤ n;
(3) for each k ∈ {2,...,n}, E[ε_k | σ(ε_i, 1 ≤ i ≤ k - 1)] = 0 and E[ε₁] = 0.

Let θ_n be the least square estimator defined by

$$\theta_n := \frac{\sum_{k=1}^n \phi_k X_k}{\sum_{i=1}^n \phi_i^2}$$

 $\mathbb{E}\left[|\varepsilon_i|^p\right] \leqslant C_1 \text{ and } \mathbb{E}\left[\varepsilon_i^2 \mid \sigma\left(\varepsilon_j, 1 \leqslant j \leqslant i-1\right)\right] \leqslant C_2 \text{ a.s.}$ Then for any p > 2, q > p and any x > 0,

$$\mathbb{P}\left\{\left|\theta_n - \theta\right| \sqrt{\sum_{i=1}^n \phi_i^2} > x\right\} \leqslant C_1 \frac{2^{q-2}}{2^q - 1} \frac{q}{q-p} 2^{p+pq/2} x^{-p} + \frac{2^{q-2}}{2^q - 1} q 2^{q+q^2/2} x^{-q} C_2^{q/2}.$$

References

- 1. D. Giraudo, Deviation inequalities for Banach space valued martingales differences sequences and random fields, submitted
- 2. S. Nagaev, On probability and moment inequalities for supermartingales and martingales. Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II (2002). Acta Appl. Math. 79 (2003), no. 1-2, 35–46

