DEVIATION INEQUALITIES FOR MARTINGALES

Davide Giraudo

Ruhr-Universität Bochum
Supported by Grant SFB 823

Definition of martingale differences sequences

Definition

- Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. A sequence $\left(\mathcal{F}_{i}\right)_{i \geqslant 1}$ of sub- σ-algebras of \mathcal{F} is a filtration if for all $i \geqslant 0$, the inclusion $\mathcal{F}_{i} \subset \mathcal{F}_{i+1}$ holds.
- We say that a sequence of real valued random variables $\left(X_{i}\right)_{i \geqslant 1}$ is a martingale differences sequence with respect to the filtration $\left(\mathcal{F}_{i}\right)_{i \geqslant 0}$ if for all $i \geqslant 1$, the random variable X_{i} is integrable, \mathcal{F}_{i}-measurable and $\mathbb{E}\left[X_{i} \mid \mathcal{F}_{i-1}\right]=0$.

Examples

- An independent centered sequence is a martingale differences sequence with respect to the filtration $\left(\mathcal{F}_{i}\right)_{i \geqslant 0}$ defined as $\mathcal{F}_{0}:=\{\emptyset, \Omega\}$ and $\mathcal{F}_{i}:=\sigma\left(X_{k}, 1 \leqslant k \leqslant i\right)$.
- If $\left(X_{i}\right)_{i \geqslant 1}$ is a martingale differences sequence with respect to the filtration $\left(\mathcal{F}_{i}\right)_{i \geqslant 0}$, then for all $i \geqslant, Y_{i}$ is an \mathcal{F}_{i-1}-measurable and bounded random variable, then $\left(X_{i} Y_{i}\right)_{i \geqslant 1}$ is a martingale differences sequence with respect to the filtration $\left(\mathcal{F}_{i}\right)_{i \geqslant 0}$.

Goal: obtain deviation inequalities

Deviation inequalities

Let $\left(X_{i}\right)_{i \geqslant 1}$ be a martingale differences sequence with respect to the filtration $\left(\mathcal{F}_{i}\right)_{i \geqslant 0}$. Define $S_{n}:=\sum_{i=1}^{n} X_{i}$. Our goal is to find a bound for

$$
\mathbb{P}\left\{\max _{1 \leqslant m \leqslant n}\left|S_{m}\right|>x\right\}
$$

in terms of n, x and the distribution function of $\max _{1 \leqslant i \leqslant n}\left|X_{i}\right|$ and $\sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|^{p} \mid \mathcal{F}_{i-1}\right]$, $1<p \leqslant 2$.
We know that there exists a constant C_{p} such that for all martingale differences sequence $\left(X_{i}\right)_{i \geqslant 1}$,

$$
\begin{equation*}
\mathbb{E}\left[\left|S_{n}\right|^{p}\right] \leqslant C_{p} \sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|^{p}\right] . \tag{1}
\end{equation*}
$$

Result (G., [1])

For each $1<p \leqslant 2, q>0$ and for any martingale differences sequence $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geqslant 1}$, the following inequality holds for each $n \geqslant 1$ and $x>0$:
$\mathbb{P}\left\{\max _{1 \leqslant i \leqslant n}\left|S_{i}\right|>x\right\} \leqslant \frac{2^{q}}{2^{q}-1} q 2^{-p} \int_{0}^{1} \mathbb{P}\left\{\max _{1 \leqslant i \leqslant n}\left|X_{i}\right|>2^{-1-q / p} C_{p}^{-1 / p} x u\right\} u^{q-1} \mathrm{~d} u$ $+\frac{2^{q}}{2^{q}-1} q 2^{-p} \int_{0}^{1} \mathbb{P}\left\{\left(\sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|^{p} \mid \mathcal{F}_{i-1}\right]\right)^{1 / p}>2^{-1-q / r^{\prime}} C_{p}^{-1 / p} x u\right\} u^{q-1} \mathrm{~d} u$,
where $S_{n}=\sum_{i=1}^{n} X_{i}$ and C_{p} is a constant satisfying (1) for any n and any martingale differences sequence.
Remark: Nagaev [2] treated the case $p=2$.

Application: convergence rates in the law of large numbers

Identically distributed increments (G.,
[1])
Let $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geqslant 1}$ be a martingale differences sequence such that:

1. $\left(\left|X_{i}\right|\right)_{i \geqslant 1}$ is identically distributed;
2. $\mathbb{E}\left[X_{1}^{2} \log \left(1+\left|X_{1}\right|\right)\right]$ is finite.

Then for all $\alpha \in(1 / 2,1]$ and each positive x, the series $\sum_{n=1}^{+\infty} n^{2 \alpha-2} \mathbb{P}\left\{\max _{1 \leqslant i \leqslant n}\left|S_{i}\right|>n^{\alpha} x\right\}$ converges.

Moments of higher order (G., [1])

Let $p>2$ and let $\left(X_{i}, \mathcal{F}_{i}\right)_{i \geqslant 1}$ be a martingale differences sequence such that $\left(\left.\left|X_{i}\right|\right|_{i \geqslant 1}\right.$ is identically distributed. Then for all $1 / 2<\alpha \leqslant 1$,

- $\sup _{n \geqslant 1} n^{p(\alpha-1 / 2)} \mathbb{P}\left\{\max _{1 \leqslant i \leqslant n}\left|S_{i}\right|>n^{\alpha} x\right\} \leqslant K_{p} \sup _{t>0} t^{p} \mathbb{P}\left\{\left|X_{1}\right|>t\right\} x^{-p / 2-1} ;$
- $\sum_{n=1}^{+\infty} n^{p(\alpha-1 / 2)-1} \mathbb{P}\left\{\max _{1 \leqslant i \leqslant n}\left|S_{i}\right|>n^{\alpha} x\right\} \leqslant K_{p} x^{-p} \mathbb{E}\left[\left|X_{1}\right|^{p}\right]$.

Application: regression model

Assumptions

We consider the stochastic linear regression model given by

$$
X_{k}=\theta \phi_{k}+\varepsilon_{k}, \quad 1 \leqslant k \leqslant n
$$

where

- $\left(X_{k}\right)_{1 \leqslant k \leqslant n}$ are the observations,
- $\left(\phi_{k}\right)_{1 \leqslant k \leqslant n}$ are the regression variables and
- $\left(\varepsilon_{k}\right)_{1 \leqslant k \leqslant n}$ the driven noises.

We shall make the following assumptions:
(1) the sequence $\left(\phi_{k}\right)_{1 \leqslant k \leqslant n}$ is independent;
(2) the σ-algebra generated by $\phi_{k}, 1 \leqslant k \leqslant n$ is independent of that generated by $\varepsilon_{k}, 1 \leqslant k \leqslant n$;
(3) for each $k \in\{2, \ldots, n\}, \mathbb{E}\left[\varepsilon_{k} \mid \sigma\left(\varepsilon_{i}, 1 \leqslant i \leqslant k-1\right)\right]=0$ and $\mathbb{E}\left[\varepsilon_{1}\right]=0$.
Let θ_{n} be the least square estimator defined by

$$
\theta_{n}:=\frac{\sum_{k=1}^{n} \phi_{k} X_{k}}{\sum_{i=1}^{n} \phi_{i}^{2}}
$$

Result (G., [1])

Suppose that the assumptions (1), (2) and (3) hold. Suppose that there exists constants C_{1} and C_{2} such that for any $i \in\{1, \ldots, n\}$,
$\mathbb{E}\left[\left|\varepsilon_{i}\right|^{p}\right] \leqslant C_{1}$ and $\mathbb{E}\left[\varepsilon_{i}^{2} \mid \sigma\left(\varepsilon_{j}, 1 \leqslant j \leqslant i-1\right)\right] \leqslant C_{2}$ a.s.
Then for any $p>2, q>p$ and any $x>0$,

$$
\mathbb{P}\left\{\left|\theta_{n}-\theta\right| \sqrt{\sum_{i=1}^{n} \phi_{i}^{2}}>x\right\} \leqslant C_{1} \frac{2^{q-2}}{2^{q}-1} \frac{q}{q-p} 2^{p+p q / 2} x^{-p}+\frac{2^{q-2}}{2^{q}-1} q 2^{q+q^{2} / 2} x^{-q} C_{2}^{q / 2}
$$

References

1. D. Giraudo, Deviation inequalities for Banach space valued martingales differences sequences and random fields, submitted
2. S. Nagaev, On probability and moment inequalities for supermartingales and martingales. Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part II (2002). Acta Appl. Math. 79 (2003), no. 1-2, 35-46
