Limit theorem for random fields 1 - weak

Davide Giraudo

Ruhr Universität Bochum

Luminy, October 28th 2018 Probabilistic Limit Theorems for Dynamical Systems

Contents

Invariance principle for stationary random fields

Orthomartingales

Definition Properties

Orthomartingale approximation

Dimension one A sufficient condition for orthomartingale approximation

Projective conditions

Setting

• Let $(\Omega, \mathcal{A}, \mu)$ be a probability space.

For q ∈ {1,2}, let T_q: Ω → Ω be a bijective, bi-measurable measure preserving map.

• We assume that $T_1 \circ T_2 = T_2 \circ T_1$ and denote $T^{i_1,i_2} = T_1^{i_1} \circ T_2^{i_2}$, $(i_1, i_2) \in \mathbb{Z}^2$.

We are interested in the asymptotic behavior of the partial sums over rectangles, that is,

$$S_{n_1,n_2}(f) := \sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} f \circ T^{i_1,i_2}$$

where $f: \Omega \to \mathbb{R}$.

Invariance principle

For $i_1, i_2 \ge 1$, we consider the unit cube with upper corner at (i_1, i_2) that is,

$$R_{i_1,i_2} := (i_1 - 1, i_1] \times (i_2 - 1, i_2].$$

For $f: \Omega \to \mathbb{R}$, $t_1, t_2 \in [0, 1]$, $n_1, n_2 \in \mathbb{N}$, the partial sum process is

defined by

$$W_{n_1,n_2}(f,t_1,t_2) := \sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \lambda \left(\left([0,n_1t_1] \times [0,n_2t_2] \right) \cap R_{i_1,i_2} \right) U^{i_1,i_2} f,$$

where λ denotes the Lebesgue measure on \mathbb{R}^2 and $U^{i_1,i_2}f(\omega) = f(T^{i_1,i_2}\omega)$.

Note that $W_{n_1,n_2}\left(f,\frac{i_1}{n_1},\frac{i_2}{n_2}\right) = S_{i_1,i_2}(f)$ and $(t_1,t_2) \mapsto W_{n_1,n_2}(f,t_1,t_2)$ is continuous.

Invariance principle

Definition

We say that f satisfies the invariance principle if $\left(W_{n_1,n_2}\left(\cdot\right)/\left(n_1n_2\right)^{1/2}\right)_{n_1,n_2 \geqslant 1}$ converges in distribution in $C\left(\left[0,1\right]^2\right)$ endowed with the uniform norm, that is, if there exists a processes W with paths in $C\left(\left[0,1\right]^2\right)$ such that

$$\lim_{\min\{n_1,n_2\}\to+\infty} \mathbb{E}\left[g\left(W_{n_1,n_2}\left(\cdot\right)/\left(n_1n_2\right)^{1/2}\right)\right] = \mathbb{E}\left[g\left(W\right)\right]$$

for each continuous and bounded function $g \colon C\left(\left[0,1\right]^2\right) \to \mathbb{R}.$

If $(f \circ T^{i_1,i_2})_{i_1,i_2 \in \mathbb{Z}}$ is a centered, square integrable i.i.d. random field, then f satisfies the invariance principle.

In dimension one, we only have an application $T: \Omega \to \Omega$. If $(f \circ T^i, T^{-i}\mathcal{F}_0)_{i \in \mathbb{Z}}$ is a martingale differences sequence, then f satisfies the invariance principle.

Martingale approximation

In dimension one, martingale approximation is a useful tool for establishing the invariance principle. The idea dates back to Gordin (1969).

If f is such that there exists $m: \Omega \to \mathbb{R}$ such that $(m \circ T^i, T^{-i}\mathcal{F}_0)_{i \in \mathbb{Z}}$ is a stationary martingale differences sequence and

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} \left\| \max_{1 \leq i \leq n} |S_i(f - m)| \right\| = 0,$$

then f satisfies the invariance principle.

Question

- 1. What plays the role of martingales in dimension greater than one?
- 2. How to develop a satisfactory theory of martingale approximations in the multidimensional setting?

Commuting filtrations

Let $\mathcal{F}_{0,0}$ be a sub- σ -algebra of \mathcal{A} such that $T_q \mathcal{F}_{0,0} \subset \mathcal{F}_{0,0}$, q = 1, 2. Then defining $\mathcal{F}_{i_1,i_2} := T^{-i_1,-i_2} \mathcal{F}_{0,0}$ yields a filtration. Define

 $\operatorname{Proj}_{i_1,i_2}(Y) := \mathbb{E}\left[Y \mid \mathcal{F}_{i_1,i_2}\right], \quad Y \in \mathbb{L}^1.$

We assume that the filtration $(\mathcal{F}_{i_1,i_2})_{i_1,i_2\in\mathbb{Z}}$ is commuting in sense that

 $\mathsf{Proj}_{i_1,i_2} \circ \mathsf{Proj}_{j_1,j_2} = \mathsf{Proj}_{j_1,j_2} \circ \mathsf{Proj}_{i_1,i_2} = \mathsf{Proj}_{\min\{i_1,j_1\},\min\{i_2,j_2\}}.$

Examples

- 1. *T* is the shift on $\mathbb{R}^{\mathbb{Z}^2}$ and $\mathcal{F}_{i_1,i_2} := \sigma(\varepsilon_{u_1,u_2}, u_1 \leq i_1, u_2 \leq i_2)$, where $(\varepsilon_{u_1,u_2})_{u_1,u_2 \in \mathbb{Z}}$ is an i.i.d. random field.
- 2. Assume that $(e_j^{(q)})_{j\in\mathbb{Z}}$, $q \in \{1,2\}$ is i.i.d. and the sequence $(e_j^{(1)})_{j\in\mathbb{Z}}$ is independent of $(e_j^{(2)})_{j\in\mathbb{Z}}$. Let $\mathcal{F}_{i_1,i_2} := \sigma \left(e_{j_q}^{(q)}, j_q \leqslant i_q, 1 \leqslant q \leqslant 2\right)$.

Definition of orthomartingale, first properties

Definition

Let $(\mathcal{F}_{i_1,i_2})_{i_1,i_2\in\mathbb{Z}} = (\mathcal{T}^{-i_1,-i_2}\mathcal{F}_{0,0})_{i_1,i_2\in\mathbb{Z}}$ be a commuting filtration and $m: \Omega \to \mathbb{R}$.

We say that $(m \circ T^{i_1,i_2})_{i_1,i_2 \in \mathbb{Z}}$ is an orthomartingale differences random field if the function m is $\mathcal{F}_{0,0}$ -measurable and for each $q \in \{1,2\}$, $\mathbb{E}[m \mid T_q \mathcal{F}_{0,0}] = 0$.

▶ For any $N_1 \in \mathbb{N}$, the sequence $(S_{N_1,n}(m))_{n \ge 1}$ is a martingale.

▶ If $m \in \mathbb{L}^2$, then the family

$$\left\{\frac{1}{n_{1}n_{2}}\max_{\substack{1 \leq i_{1} \leq n_{1} \\ 1 \leq i_{2} \leq n_{2}}}|S_{i_{1},i_{2}}(m)|^{2}, n_{1}, n_{2} \geq 1\right\}$$

is uniformly integrable (Volný, Wang, 2014).

Definition of orthomartingale approximation

If T_1 or T_2 is ergodic, then any stationary orthomartingale differences random field satisfies the invariance principle (Volný, 2015). In this case, an orthomartingale approximation leads to the invariance principle.

Definition

We say that the function f admits an orthomartingale approximation if there exists a square integrable function m such that $(m \circ T^{i_1, i_2})_{i_1, i_2 \in \mathbb{Z}}$ is an orthomartingale differences random field such that

$$\lim_{N \to \infty} \sup_{n_1, n_2 \geqslant N} \frac{1}{\sqrt{n_1 n_2}} \left\| \max_{\substack{1 \leq i_1 \leq n_1 \\ 1 \leq i_2 \leq n_2}} |S_{i_1, i_2} \left(f - m \right)| \right\| = 0$$

We need a sufficient condition for orthomartingale approximation.

Contractions

If f is an $\mathcal{F}_{0,0}$ -measurable function and $i_1, i_2 \in \mathbb{N}$, we define

 $P^{i_1,i_2}f = \mathbb{E}\left[U^{i_1,i_2}f \mid \mathcal{F}_{0,0}
ight],$ $P^{i_1}_1f = \mathbb{E}\left[U^{i_1,0}f \mid \mathcal{F}_{0,0}
ight]$ and $P^{i_2}_2f = \mathbb{E}\left[U^{0,i_2}f \mid \mathcal{F}_{0,0}
ight].$

Then

$$P^{i_1,i_2} \circ P^{j_1,j_2}f = P^{i_1+j_1,i_2+j_2}f$$
$$P^{i_1,i_2}U^{-i_1,-i_2}f = f.$$

If $(m \circ T^{i_1,i_2})_{i_1,i_2 \in \mathbb{Z}}$ is an orthomartingale differences random field, then for all $i_1, i_2 \ge 1$, $P^{i_1,i_2}m = 0$.

Orthomartingale-coboundary decomposition

Proposition

Let f be an $\mathcal{F}_{0,0}$ -measurable function. Assume that there is an $\mathcal{F}_{0,0}$ -measurable and square integrable function h such that $f = (I - P_1)(I - P_2)h$. Then there exists square integrable functions m, m_1 , m_2 and g such that

$$f = m + (I - U^{1,0}) m_2 + (I - U^{0,1}) m_1 + (I - U^{1,0}) (I - U^{0,1}) g,$$

 $(m \circ T^{i_1,i_2})_{(i_1,i_2) \in \mathbb{Z}^2}$ is an orthomartingale differences random field and $(m_q \circ T^i_q)_{i \in \mathbb{Z}^r}, q \in \{1, 2\}$ are martingale differences sequences.

Idea of proof: write

$$f = \left(I - U_1^{-1}P_1 + U_1^{-1}P_1 - P_1\right)\left(I - U_2^{-1}P_2 + U_2^{-1}P_2 - P_2\right)h$$

and expand.

A sufficient condition for orthomartingale approximation

Definition

Let $f\colon\Omega\to\mathbb{R}$ be a measurable function. The plus semi-norm, denoted by $\|\cdot\|_+,$ is defined by

$$\|f\|_{+} := \lim_{N \to +\infty} \sup_{n_{1}, n_{2} \ge N} \frac{1}{(n_{1}n_{2})^{1/2}} \left\| \max_{\substack{1 \le i_{1} \le n_{1} \\ 1 \le i_{2} \le n_{2}}} |S_{i_{1}, i_{2}}(f)| \right\|$$

Definition

Let $f: \Omega \to \mathbb{R}$ be an $\mathcal{F}_{0,0}$ -measurable function and let k be an integer greater or equal to 1. Let

$$A_{k}(f) := \frac{1}{k^{2}} \sum_{i_{1}, i_{2}=1}^{k} \left(I - P_{1}^{i_{1}} \right) \left(I - P_{2}^{i_{2}} \right) (f)$$

and $R_{k}(f) := f - A_{k}(f)$ (so that $f - R_{k}(f) = A_{k}(f)$).

Sufficient condition

Theorem (G., 2018+)

Assume that f is such that $||R_k(f)||_+ \to 0$ as k goes to infinity. Then f admits an orthomartingale approximation.

Idea of proof: write

 $f = m_k + (I - U_1) m'_k + (I - U_2) m''_k + (I - U_1) (I - U_2) g_k + R_k (f),$

where $(m_k \circ T^{i_1,i_2})_{(i_1,i_2)\in\mathbb{Z}^2}$ is an orthomartingale differences random field and $(m'_k \circ T^i_1)_{i\in\mathbb{Z}}$, $(m'_k \circ T^i_2)_{i\in\mathbb{Z}}$ are martingale differences sequences and $g_k \in \mathbb{L}^2$.

If $||R_k(f)||_+ \to 0$, then the sequence $(m_k)_{k \ge 1}$ is Cauchy in \mathbb{L}^2 and converges in \mathbb{L}^2 to some m.

Maxwell and Woodroofe condition

Theorem (G., 2018+)

Let T_1 , T_2 be commuting measure preserving maps and let $\mathcal{F}_{0,0}$ be a sub- σ -algebra such that $(T^{-i_1,-i_2}\mathcal{F}_{0,0})_{i_1,i_2\in\mathbb{Z}}$ is a commuting filtration. Let f be an $\mathcal{F}_{0,0}$ -measurable square integrable function such that

$$\sum_{n_1,n_2 \geqslant 1} rac{1}{n_1^{3/2} n_2^{3/2}} \| \mathbb{E} \left[S_{n_1,n_2} \left(f
ight) \mid \mathcal{F}_{0,0}
ight] \| < +\infty.$$

Then there exists a function m such that $(m \circ T^{i_1,i_2})_{i_1,i_2 \in \mathbb{Z}}$ is an orthomartingale differences random field and

$$\lim_{\min\{n_1,n_2\}\to+\infty} \frac{1}{\sqrt{n_1n_2}} \left\| \max_{\substack{1 \leq i_1 \leq n_1 \\ 1 \leq i_2 \leq n_2}} |S_{i_1,i_2}(f-m)| \right\| = 0.$$

Remarks

Recall

$$\sum_{n_1,n_2 \ge 1} \frac{1}{n_1^{3/2} n_2^{3/2}} \|\mathbb{E} \left[S_{n_1,n_2} \left(f \right) \mid \mathcal{F}_{0,0} \right] \| < +\infty.$$
 (C)

- Peligrad and Zhang (2017) obtained a central limit theorem under (C) (plus ergodicity of T₁).
- ▶ Like in dimension one (Peligrad, Utev, 2005), the weight $(n_1n_2)^{-3/2}$ cannot be replaced by $a_{n_1}(n_1n_2)^{-3/2}$, where $a_{n_1} \rightarrow 0$.
- ▶ The quantity $\|\mathbb{E}[S_{n_1,n_2}(f) | \mathcal{F}_{0,0}]\|$ involved in condition (C) can be estimated in the case of linear random fields of Volterra random fields.

Prospects

- 1. Marcinkievicz-Sygmund law of large numbers;
- 2. Law of the iterated logarithms;
- 3. U-statistics: $U_n = \sum_{1 \leq i < j \leq n} h(X_i, X_j)$, where $h: \mathbb{R}^2 \to \mathbb{R}$ and $(X_i)_{i \in \mathbb{Z}}$ is a stationary sequence.

Denker and Gordin's paper (2014) uses tensor products and a kind of orthomartingale-coboundary decomposition.