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Strong invariance principles

Let (X , Σ, µ) be a probability space. For (Xn)n≥1 ⊂ L2(µ) set
Sn = X1 + . . . + Xn. If T is an ergodic transformation preserving µ
and f ∈ L2(µ) we shall take Xn = f ◦ T n−1.

Let (rn)n≥1 be a non decreasing sequence with

rn = O((n log log n)1/2). We say that (Sn)n≥1 satisfies the almost
sure invariance principle (ASIP) with rate (rn)n≥1, if one can
redefine (Sn)n≥1 without changing its distribution on a (richer)
probability space on which there exists a sequence (Zi )i≥1 of iid
centered Gaussian variables such that

max
k≤n
|Sk − Bk | = o(bn) almost surely,

where Bk = ∑k
i=1 Zi .
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First results: the iid case

Assume that (Xn)n≥1 is iid. Then, one has the following ASIPs with rate
(bn)n≥1.

Strassen (’64): bn = (n log log n)1/2 when X1 ∈ L2;

Major (’76): bn = n1/p when X1 ∈ Lp, 2 < p ≤ 3;

Komlós-Major-Tusnády (’75): bn = n1/p when X1 ∈ Lp, p > 3;

Komlós-Major-Tusnády (’76): bn = log n when E(eε|X1|) < ∞, for
some ε > 0.

When (Xn)n≥1 is a stationary and ergodic sequence of (reverse)
martingale differences and X1 ∈ Lp, 2 ≤ p ≤ 4, the above rates have
been obtained up to some logarithmic factors.
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A coupling inequality allowing to recover KMT’s resullts

Sakhanenko (’06). Let (Xi )i≥1 be a sequence of independent, non
necessarily identically distibuted, r.v.’s centered and in L2. Let
r > 2. On a richer probability space, one can construct a sequence
(Zi )i≥1 of independent centered gaussian r.v.’s with
Var(Zn) = Var(Xn) and such that for all x > 0 and all n ≥ 1,

P
(

max
1≤k≤n

∣∣Sk − Bk

∣∣ > c(r)x
)
≤

n

∑
i=1

E min
( |Xi |r

x r
,
|Xi |2
x2

)
.

Let p > 2. Applying the above result in the iid setting with n = 2m,
x = 2m/p and r > p, one can prove that for every ε > 0

∑
m≥0

P
(

max
1≤k≤n

∣∣Sk − Bk

∣∣ > ε2m/p) ,

which implies KMT’s results for the corresponding p > 2.

Sakhanenko (’84) proved a version of the above result for variables
with exponential moments that implies KMT’s result under an
exponential moment.
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A first dynamical example: the doubling map

Let (X , Σ, µ,T ) = ([0, 1),B([0, 1)), λ,T ) where λ is the Lebesgue
measure and Tx = 2x mod 1. Let f be an Hölder observable on X .

Until 2014, the best available rate in the ASIP has been
bn = n1/4(log n)1/2(log log n)1/4. This can be proved by mean of
martingale approximation.

Notice that to study (f ◦ T n−1)n≥1 (under λ) it is enough to study
(f (Zn)n≥1 where Zn = ∑k≥0

εk+n

2k+1 and (εn)n≥1 is iid with

P(ε0 = 0) = P(ε0 = 1) = 1/2.

In 2014, Berkes-Liu-Wu proved the ASIP with rate o(n1/p), p > 2,
when Xk = g(εk , , εk+1, . . .) with (εk )k≥1 are iid r.v.’ s,
‖X0‖p < ∞ and assuming some weak dependence conditions.

They assume a polynomial decay of convergence of ‖X1 − X ∗1,k‖p
where X ∗1,k = g(ε1, . . . , εk−1, ε∗k , εk+1, . . . ) and (ε∗k )k≥1 is an

independent copy of (εk )k≥1.
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Extensions of the work of BLW

It follows from the results of BLW that an Hölder observable f on [0, 1),
for every ε > 0, (f ◦ T n)n≥1 satisfies the ASIP with rate bn = nε.

The dependence coefficients used by BLW are well suited to linear
processes and their functionals. However they are not well adapted to
more general processes such as Markov processes or processes arising
from dynamical systems.

In 2018, C.-Dedecker-Merlevède adapted the ideas developed in BLW to
obtain sharp conditions for the ASIP with rate o(n1/p). For instance,
when Xk = g(εk , , εk+1, . . .) with (εk )k≥1 they obtained conditions
relying on ‖X1 − X̃ ∗1,k‖p where X̃1,k = g(ε1, . . . , εk−1, ε∗k , ε∗k+1, . . . ) and

(ε∗k )k≥1 is an independent copy of (εk )k≥1.
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A second dynamical example: the LSV map

Let consider the LSV map (Liverani, Saussol and Vaienti, (’99)):

for 0 < γ < 1, T (x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1]

Graph of f
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There exists a unique absolutely continuous f -invariant probability
measure µ on [0, 1], which is equivalent to the Lebesgue measure
and whose density h satisfies 0 < c ≤ xγh(x) ≤ C < ∞.

The intermittent behaviour comes from the fact that 0 is a fixed
point with f ′(0) = 1.

Hence if a point x is close to 0, then its orbit (T n(x))n≥0 stays
around 0 for a long time.

The degree of intermittency is given by the parameter γ and is
quantified by choosing an interval away from 0 such as Y =]1/2, 1]
and considering the first return time τ : Y →N,

τ(x) = min{n ≥ 1 : T n(x) ∈ Y } .

We have C−1n−1/γ ≤ Leb (τ ≥ n) ≤ Cn−1/γ (Gouezel’04 or
Young’99)
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Suppose that f : [0, 1]→ R is a Hölder continuous observable with∫
f dµ = 0.

We have the following polynomial decay for the correlations
associated with (f ◦ T n−1)n≥1∣∣∣∫ f f ◦ T n dµ

∣∣∣ = O
(
n(γ−1)/γ

)
= O

(
n1−1/γ

)
.

If γ < 1/2, n−1/2Sn →d N(0, c2) with

c2 =
∫

f 2 dµ + 2
∞

∑
n=1

∫
f f ◦ T n dµ (∗)

What about rates in the ASIP when γ < 1/2 ?
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Previous results for the LSV map

The first results were obtained by Melbourne and Nicol (’05) but
without explicit rates by using a coupling method due to Philipp
and Stout (’75).

For Hölder continuous or bounded variation observables, using a
conditional quantile method, Merlevède-Rio (’12), proved the ASIP
with rates

Sn −Wn = O(nγ′(log n)1/2(log log n)(1+ε)γ′)

for all ε > 0, where γ′ = max{γ, 1/3}.
Using an approximation via reverse martingale difference sequences
and an ASIP for reverse MDS due to C.-Merlevède (’15),
Korepanov-Kosloff-Melbourne (’18) proved the ASIP with rates

Sn(ϕ)−Wn =

{
o(nγ+ε), γ ∈ [1/4, 1/2[

O(n1/4(log n)1/2(log log n)1/4), γ ∈]0, 1/4[

for all ε > 0 (No way to get better bounds with this method!)
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with rates

Sn −Wn = O(nγ′(log n)1/2(log log n)(1+ε)γ′)

for all ε > 0, where γ′ = max{γ, 1/3}.

Using an approximation via reverse martingale difference sequences
and an ASIP for reverse MDS due to C.-Merlevède (’15),
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Our results

Theorem (C.-Dedecker-Korepanov-Merlevède (submitted))

Let γ ∈ (0, 1/2) and f : [0, 1]→ R be a Hölder continuous observable
with

∫
f dµ = 0. For the LSV map of parameter γ, the random process

Sn satisfies the ASIP with variance c2 given by (*) and rate
o(nγ(log n)γ+ε) for all ε > 0.

If c2 = 0, the rate in the ASIP can be improved to O(1). Indeed,in this
case ϕ is a coboundary in the sense that f = u − u ◦ T with u bounded.

However in general the rates are optimal in the following sense :

Proposition (C-D-K-M. (’18))

There exists a Hölder continuous observable f with
∫
f dµ = 0 such that

lim sup
n→∞

(n log n)−γ|Sn −Wn| > 0

for all Brownian motions (Wt)t≥0 defined on the same (possibly
enlarged) probability space as (Sn)n≥0.
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A third dynamical example: definition and properties

Let κ ≥ 0. Let T : [0, 1]→ [0, 1] be defined by

T (x) =

{
x(1 + c

| log x |κ ), x ≤ 1/2

2x − 1, x > 1/2
(1)

with c = (log 2)κ so that f (1/2) = 1.

Define Y and τ as in the LSV map.

There exists η1, η2 > 0 such that

e−η2n
1/(κ+1) ≤ Leb(τ ≥ n) ≤ e−η1n

1/(κ+1)
.

There exists a unique absolutely continuous invariant probablity
measure µ that is bounded and bounded away from 0 on Y .

Christophe Cuny joint work with J. Dedecker, A. Korepanov and F. Merlevède Université de Bretagne Occidentale
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A third dynamical example: asip with rate

Theorem (C-D-K-M, in progress)

Let κ > 0. Let f be a Hölder continuous observable. Then,
(f ◦ T n−1)n≥1 satisfies the ASIP with rate bn = (log n)2+κ.

Unfortunately, the obtained rate does not seem to be the best possible.
To see that first notice that when κ = 0 one recovers the doubling map.
In that case, our process is f applied to a linear process. Taking
f = Identity, it is possible to prove by a direct argument that bn = log n
in the ASIP.

Also, let us mention that for Harris recurrent geometrically ergodic
Markov chains and (only) bounded observables, Merlevède et Rio
obtained the rate bn = log n.
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Main ideas of the proof in the case of the LSV

The main idea is to construct a stationary Markov chain
(gn, n ∈N) on a countable space S and an observable ψ : Ω→ R

(here Ω ⊂ SN) such that
∫

ψ dPΩ = 0 and setting

Xk = ψ(gk−1, gk , . . .) , k ≥ 1,

the process (Xk )k≥1 on the probability space (Ω, PΩ) has the same
law as (f ◦ T k−1)k≥1 on ([0, 1], µ).

The Markov chain is related to the classical Young towers.

Recall that Y =]1/2, 1] and τ : Y →N be the inducing time
τ(x) = min{n ≥ 1 : f n(x) ∈ Y }. Let F : Y → Y be the induced

map: F (x) = f τ(x)(x). Let α be the partition of Y into the
intervals where τ is constant.

Let A denote the set of all finite words in the alphabet α, not
including the empty word. Denote by w = a0 · · · an−1 an element
of A. Let also h : A →N, h(w) = τ(a0) + · · ·+ τ(an−1)
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On the Markov chain

Let S = {(w , `) ∈ A×Z : 0 ≤ ` < h(w)}.

Let g0 ∈ S be distributed according to a certain ν and (εk ) be a
sequence of iid r.v. with values in A, distribution PA and
independent from g0.

Then, for any n ≥ 0, we define

gn+1 = U(gn, εn+1)

where

U((w , `), ε) =

{
(w , `+ 1), ` < h(w)− 1 ,

(ε, 0), ` = h(w)− 1 .

For the LSV maps the constructed Markov chain is aperiodic.
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We are back to prove an ASIP for the partial sums associated with
(Xk )k≥0 where Xk = ψ(gk , gk+1, . . .).

The function ψ satisfies the following property: for
a = (g0, . . . , gN , gN+1, . . .) and b = (g0, . . . , gN , g ′N+1, . . .) with
gN+1 6= g ′N+1,

|ψ(a)− ψ(b)| ≤ Cθ∑N
k=0 1{gk∈S0} ,

where S0 = {(w , 0) : w ∈ A} and θ ∈]0, 1[.

With the help of the above property one can prove that there exists
a bounded measurable function Gm such that, for any r ≥ 1,

‖Xk − Gm(εk−m, . . . , εk+m)‖1 � P(S ≥ m) +m−r/2

where S is the meeting time

S = inf{n ≥ 0 : gn = g∗n }

here g∗0 has distribution ν and is independent of (g0, (εk )k≥1) and
g∗n+1 = U(g∗n , εn+1).
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We are back to prove an ASIP for the partial sums associated with
(Xk )k≥0 where Xk = ψ(gk , gk+1, . . .).

The function ψ satisfies the following property: for
a = (g0, . . . , gN , gN+1, . . .) and b = (g0, . . . , gN , g ′N+1, . . .) with
gN+1 6= g ′N+1,

|ψ(a)− ψ(b)| ≤ Cθ∑N
k=0 1{gk∈S0} ,

where S0 = {(w , 0) : w ∈ A} and θ ∈]0, 1[.

With the help of the above property one can prove that there exists
a bounded measurable function Gm such that, for any r ≥ 1,

‖Xk − Gm(εk−m, . . . , εk+m)‖1 � P(S ≥ m) +m−r/2

where S is the meeting time

S = inf{n ≥ 0 : gn = g∗n }

here g∗0 has distribution ν and is independent of (g0, (εk )k≥1) and
g∗n+1 = U(g∗n , εn+1).

Christophe Cuny joint work with J. Dedecker, A. Korepanov and F. Merlevède Université de Bretagne Occidentale
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The moments of S can be handled thanks to a result of Lindvall
(’79) combined with a result of Korepanov (’18):

Since Leb (τ ≥ n) ≤ Cn−1/γ then E(hγ,η(S)) < ∞ for any η > 1

where hβ,η(x) = x (1−γ)/γ(log(1 + x))−η.

The 2m-dependent approximation

‖Xk − Gm(εk−m, . . . , εk+m)‖1 � P(S ≥ m) +m−r/2

allows to adapt the scheme of proof developped by Berkes-Liu-Wu
(’14) to prove KMT with rate o(n1/p) for functions of iid having a
moment of order p, under a weak dependence condition.

Their proof consists first in providing a conditional Gaussian
approximation by freezing some part of the (εk )k , making suitable
blocks and applying Sakhanenko’s ’06 result, and after of
proceeding to a unconditional Gaussian approximation.
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Thank you for your attention!
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