
FCLT for toral automorphisms

along the orbits of random walks

Guy Cohen

Ben-Gurion University, Israel

A joint work with Jean-Pierre Conze.

1



Let (ζk) be Z2-valued i.i.d. random variables on (Ω,P), with E(ζ0) =

0 and E|ζ0|2 <∞. Let (Zn) be the associate random walk, de�ned

by Z0 = (0,0) and Zn = ζ0 + · · ·+ ζn−1 with covariance matrix Σ.

Assume the vector space generated by (` : P(ζ0 = `) > 0) is R2.

A result of Bolthausen [Bo89]: Let X(`), ` ∈ Z2 be i.i.d. R-
valued centered random variables with a �nite positive variance σ2

de�ned on a space (X,µ), which are independent of the (ζi). It is

shown in [Bo89] that

Sn(ω, x) =
n∑
i=1

X(Zi(ω))(x)

satis�es the CLT w.r.t. (P×µ). Moreover, if we consider in D(0,1)

the random functions

Yn(ω, x, t) =
√
π(det Σ)

1
4Sbntc(ω, x)/(σ

√
n logn),

Bolthausen proved a functional central limit theorem (FCLT), i.e.,

a weak convergence in law to the Wiener measure of Yn (with

the distribution of (Yn) taken with respect to the product measure

(P× µ)).
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Let Z2 3 ` 7→ A` be a totally ergodic Z2-action by automorphisms

on (Tρ, µ), ρ > 1, with µ the Lebesgue measure (hence, de�ned

by commuting ρ × ρ matrices A1, A2 with integer entries, deter-

minant ±1 such that the eigenvalues of A` = A
`1
1 A

`2
2 are 6= 1, if

` = (`1, `2) 6= (0,0).

Explicit examples can be computed like the example below from the

book of Henri Cohen on computational algebraic number theory.

A1 =

 −3 −3 1
10 9 −3
−30 −26 9

 , A2 =

 11 1 −1
−10 −1 1
10 2 −1

 .
Our aim is to replace the i.i.d. variables (X(`), ` ∈ Z2) in Bolthausen's
model by

X(`) = A`f = f ◦A`, ` ∈ Z2,

generated by an observable f de�ned on the torus Tρ.

For this model, we would like to prove an annealed FCLT and a

'quenched' FCLT. It means that we �x ω and we look, for P-a.e.
ω, at the distribution with respect to the Lebesgue measure µ.
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The method should be able to provide a quenched FCLT in the

model studied by Bolthausen (see also [Guillotin et al] for a quenched

result in this model), as well as in the algebraic action (which in-

cludes Ledrappier's example of a non mixing Zd-action of all orders)

studied in the unpublished paper [CohCo16].

We present the following quenched FCLT:

Theorem 1. For a real function f on Tρ, put

Sn(f, ω) :=
n−1∑
k=0

AZk(ω)f.

If f ∈ AC0(Tρ) has a non zero asymptotic variance, the FCLT holds

for (
1√

n logn
Sbntc(f, ω)

)
t∈[0,1]

for a.e. ω.

The usual quenched CLT (t = 1) for this model was proved in

[CohCo17]. The proof uses an algebraic result that we will describe

later.
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Steps of the proof.

As usual, we need to consider the �nite dimensional distributions.

That is, we need to show that for every 0 = t0 < t1 < . . . < tr ≤ 1,

(Yn(t1)− Yn(t0), ..., Yn(tr)− Yn(tr−1))

=⇒
n→∞ (Wt1, ...,Wtr−tr−1). (1)

Also, we need to show tightness:

∀ε > 0, lim
δ→0

lim sup
n

P( sup
|t−s|≤δ

|Yn(t)− Yn(s)| ≥ ε) = 0.

By Billingsley, the tightness can be checked as follows: If min1<i<r(ti−
ti−1) ≥ δ, then

P( sup
|s−t|≤δ

|Yn(s)− Yn(t)| ≥ 3ε)

≤
r∑

i=1

P( sup
ti−1≤s≤ti

|Yn(s)− Yn(ti−1)| ≥ ε) (2)
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We put

Rn(`) =
n∑

j=1

1Zj=` for ` ∈ Z2.

We denote by ϕf is the spectral density of f w.r.t. the action - it will

be de�ned shortly. Let a1, . . . , ar ∈ R and let dn =
√
n logn/(

√
π(det Σ)

1
4).

For the �nite dimensional distributions (1) we may use the Cramer-

Wold device, we have to show, for a.e. ω, convergence in distribu-

tion of
r∑

j=1

aj
(
Yn(tj)− Yn(tj−1)

)
=

r∑
j=1

∑
`∈Z2

aj
(
Rbntjc(`)−Rbntj−1c(`)

)
X(`)/dn

to a normal law N
(
0, ϕf(0)

∑r
j=1 a

2
j (tj − tj−1)

)
. For the i.i.d. case,

Bolthausen proved the above convergence in distribution of the

annealed model, that is, distributions w.r.t. (P× µ).
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Equivalently, we have to show:

d−1
n (

r∑
j=1

a2
j (tj − tj−1))−

1
2
( r∑
j=1

aj

bntjc∑
k=bntj−1c

AZk(ω)f(.)
)

distr−→
n→∞ N (0, ϕf(0)).

Here ϕf is the spectral density of f w.r.t. the action, that is

〈A`f, f〉 =
∫
T2

e2πi〈`,t〉ϕf(t)dt := ϕ̂f(`), ` ∈ Z2,

which is well de�ned and continuous, since∑
`∈Z2

|〈A`f, f〉| ≤
∑
`∈Z2

∑
k∈Zρ

|f̂(k)||f̂(A`k)| =

∑
k∈Zρ

|f̂(k)| (
∑
`∈Z2

|f̂(A`k)|) ≤ (
∑
k∈Zρ

|f̂(k)|)2 = ‖f‖2AC0
<∞.

In the previous inequality, we used the fact that by total ergodicity

the vectors A`k, ` ∈ Z2, are pairwise distinct for each k ∈ Zρ.
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The problem of the quenched CLT was considered in [CohCo17].

We introduced the notion of a �summation sequence�, i.e., a se-

quence w = (wn)n≥1 of functions from Zd to R with

0 <
∑
`∈Zd
|wn(`)| <∞, ∀n ≥ 1.

We studied there the asymptotic behaviour in distribution of the

self-normalized sums∑
`∈Zd

wn(`)T `f./‖
∑
`∈Zd

wn(`)T `f.‖2.

The random walk can be considered by taking

wn(`) = #{k < n : Zk(ω) = `}.
The result in [CohCo17] can be generalized for

w
a1,...,as
n (`) = a1w

1
n(`) + ...+ asw

s
n(`),

where a1, ..., as are reals and win are s summation sequences.

In the next proposition we assume the existence of σ2
wi

(f) =

lim
n

(
∑
`∈Zd

win(`)2)−1 ‖
∑
`∈Zd

win(`)T `f‖22, i = 1, ..., s.
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Proposition. If the following conditions are satis�ed:

lim
n

∑
`,`′∈Zdw

i
n(`)wjn(`′)〈T `f, T `′f〉∑

`∈Zd(w
i
n(`)2 + (wjn(`)2)

= 0, i 6= j,

∑
i1,...,ir∈{1,...,s}r

w
i1
n (`1)...wirn (`r) c(X`1, ..., X`r)

= o(
∑
`∈Zd

[w1
n(`)2 + ...+ wsn(`)2])r/2, ∀r ≥ 3,

then the process
∑
`∈Zd w

a1,...,as
n (`)T `f after normalization satis�es

the CLT: ∑
`∈Zd wn(`)a1,...,asT `f

(a2
1
∑
`∈Zdw

1
n(`)2 + ...+ a2

s
∑
`∈Zdw

s
n(`)2)

1
2

⇒ N (0,
s∑

i=1

a2
i σ

2
wi

(f)/
s∑

i=1

a2
i ).
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Variance and asymptotic orthogonality of the cross terms.

For any intervals I, J ⊂ [1, n] and p ∈ Z2, put

VI,J,p(ω) :=

∫ (∑
u∈I

e2πi〈Zu,t〉
) (∑

v∈J
e−2πi〈Zv,t〉

)
e−2πi〈p,t〉 dt

= #{(u, v) ∈ I × J : Zu − Zv = p} ≥ 0.

For I = J, we write simply VI,p(ω).

Proposition 1. For 0 < A < B < C < D < 1, we have for a.e. ω

and for every p ∈ Z2

V[nA,nB],[nC,nD],p = o(n logn).

Remarks. Bolthausen proved the above for the probability of the

cross intersections. In [CohCo17] we proved limV[1,n],p/E(V[1,n],p) =

1 a.e. and [Lew93] proved E(V[1,n],p) ∼ cn logn.
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Sketch of proof.

We will use the following elementary lemma:

Lemma 1.

Let (y(j), j ≥ 1) be a sequence with values in {0,1} such that

limn
1
n

∑n
j=1 y(j) = a, with 0 < a ≤ 1. Let (kn) be the sequence of

successive times such that y(kn) = 1, then, for every δ > 0, there

is N(δ) such that, for N ≥ N(δ),

kn+1 − kn ≤ δN, ∀n ∈ [1, N ].

If zn := max(j ≤ n : y(j) = 1), then n− zn = o(n).

We use this lemma for the successive returns of a point ω into

speci�c sets under the iterates of the shift θ. It will be useful for

the �nite dimensional distributions part and also for the tightness

part.
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Proof of Proposition 1

We omit p as it is �xed. So we write V[1,n](ω) instead of V[1,n],p(ω).

Usually we omit also ω. For a �xed A ∈ (0,1), put:

U(n,A, ω) := V[1,n](ω)− V[1,nA](ω)− V[nA,n](ω).

Claim: U(n,A, ω) := o(n logn) a.e.

The result for the cross term will follow from this claim. Indeed we

have:

V[1,n] = V[1,nA] + V[nA,n] + V[1,nA],[nA,n] + V[nA,n],[1,nA].

Each of the quantities V[1,nA],[nA,n] and V[nA,n],[1,nA] is positive and

less than U(n,A) . Hence the result.
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Put ϕn(ω, p) := Vn,p(ω)/Cn lnn with C some absolute constant. We

have mentioned that, for any �xed A ∈ [0,1]:

V[1,nA],p(ω) ∼ CnA lnn, lim
n
ϕn(ω, p) = 1, a.s.

Put

A(L, δ) := {ω : ϕn(ω) ∈ [1− δ,1 + δ], ∀n ≥ L}.

We have limL↑∞ P(A(L, δ)) = 1.

Using the pointwise ergodic theorem we obtain the existence of a

set Ω0 of full measure such that, for ω ∈ Ω0, for all L ≥ 1, all M ≥ 1

lim
n

1

n

n∑
i=1

1A(L,M−1)(θiω) = P(A(L,M−1)).

For δ > 0, let M be an integer such that 1
M ≤ δ. Take L = L(M)

such that for ω ∈ A(L,M−1) and n ≥ L, we have ϕn(ω) = 1 + δn,

with δn ∈ [−δ,+δ].

Since we are working with a.e. �xed ω's, taking if necessary L

bigger, we can assume that ω ∈ A(L(M),M−1)
⋂

Ω0.
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We apply the elementary lemma to the sequence of times of visits of

θiω to A(L, 1
M )). Let nA, n

′
A be the visit times of θkω to A(L(M), 1

M ))

de�ned by nA ≤ nA < n′A. By Lemma 1, for n big enough, we have

0 < n′A − nA ≤ δn and we can write

nA = nA (1− ρn), n′A = nA (1− ρ′n),

with 0 ≤ ρn, ρ′n ≤ δ.

U(n,A, ω) can be written up to the absolute constant C:

ϕ(n, ω)n lnn− ϕ(nA, ω)nA ln(nA)−

ϕ(n(1−A), θnAω)n(1−A) ln(n(1−A)).
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It su�ces to show that, for a constant C,

V[nA,n](ω)

n(1−A) ln(n(1−A))
∈ [1− Cδ,1 + Cδ]. (3)

As VJ(ω) increases if we increase the set J, we have by the choice

of nA and n′A:

V[n′A,n](ω) ≤ V[nA,n](ω) ≤ V[nA,n](ω)

and (1−δ′n)(n−n′A) ln(n−n′A) ≤ V[n′A,n](ω), V[nA,n](ω) ≤ (1+δn)(n−
nA) ln(n− nA).

This shows (3), if n is big enough and max(ρn, δn, δ′n, δ
′′
n) ≤ constant δ.
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About the tightness.

We prove the property when the observable f is a character. Since

we are taking f ∈ AC0(Tρ) and the bounds will be independent of

the speci�c character, we may conclude for f ∈ AC0(Tρ).

We use the following algebraic result (S-unit theorem) in its version

given by Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M (2002)):

Theorem. Let K be an algebraically closed �eld of characteristic

0 and let r be a natural number. Let Γr be a subgroup of the

multiplicative group (K∗)r of �nite rank ρ. For any (a1, ..., ar) ∈
(K∗)r, the number A(a1, ..., ar,Γr) of solutions x = (x1, ..., xr) ∈ Γr
of the equation

a1x1 + ...+ arxr = 1,

such that no proper subsum of a1x1 + ... + arxr vanishes, satis�es

the estimate

A(a1, ..., ar,Γr) ≤ A(r,Γr) = exp((6r)3r(ρ+ 1)).
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Moments of order 4

To show the tightness, we will use Móricz's maximal inequality. We

need �rst to bound the moments of order 4. As remarked, it su�ces

to consider functions reduced to characters.

Let us consider on the torus Tρ a character χv, x→ exp(2πi〈v, x〉),
where v ∈ Zρ \ {0}.

Let αu,j, u = 1, ..., ρ′, be the set of distinct eigenvalues of Aj, j =

1,2.

We write α
`
u for α`

1

u1,1
α`

2

u2,2
, if u = (u1, u2) and ` = (`1, `2).
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We �rst compute

‖
∑N2
i=N1

AZiχ‖4 =

#{(i1, i2, i3, i4) ∈ [N1, N2]4 : (AZi1 −AZi2 +AZi3 −AZi4)v = 0}.(4)

There is a decomposition Cρ = ⊕kEk, with Ek simultaneously in-

variant by Ãj, j = 1,2, such that there is a basis Bk in which Ai
restricted to Ek is represented in a triangular form with eigenvalues

of Ãi on the diagonal. The number in (4) is bounded by

#{(i1, i2, i3, i4) ∈ [N1, N2]4 : (αZ1
u − αZ2

u + α
Z3
u − αZ4

u )v0 = 0},

where v0 is some non zero component of v and αu = αu1αu2, with

αu1 (resp. αu2) some eigenvalue of A1 (resp. A2).

This number is less than f2
1 (N1, N2−N1) + f2(N1, N2−N1), where

f1(N1, N2 −N1) := #{(i1, i2) ∈ [N1, N2]2 : α
Zi1
u − α

Zi2
u = 0},

f2(N1, N2 −N1) := #{(i1, i2, i3, i4) ∈ [N1, N2]4 : α
Zi1
u − α

Zi2
u + α

Zi3
u − α

Zi4
u

= 0, without vanishing proper sub-sum}.
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The total ergodicity of the action implies that, if α
Zi1
u = α

Zi2
u , then

Zi1 = Zi2. Therefore we have:

f2
1 (N1, N2 −N1) = (#{i1, i2 ∈ [N1, N2] : Zi1 = Zi2})

2,

which is the square of the self-intersections of the random walk

starting from N1. For f2 we may write up to a constant factor:

f2(N1, N2 −N1) =

#{N1 ≤ i4 < i3 < i2 < i1 ≤ N2 : α
Zi1−Zi4
u − α

Zi2−Zi4
u + α

Zi3−Zi4
u = 1}.
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Let S be the set of triples `1, `2, `3 ∈ Z2 solving of the equation

α
`1
u − α`2u + α

`3
u = 1.

By the S-unit theorem, S is �nite.

Using the local limit theorem for the random walk and a Borel-

Cantelli argument, it can be deduced that for a.e. ω

f2(1, n) ≤ C(ω)n(logn)5.

It means that f2
1 is the dominant part and we obtain

‖
∑N2
i=N1

AZi(ω)χ‖4
L4(µ)

≤ (5)

f2
1 (N1, N2 −N1) + f2(N1, N2 −N1)

≤ C(θN1ω) [f1(N1, N2 −N1)]2 := ϕ(N1, N2 −N1)

and ϕ(N1, N2 −N1) is a sub-additive function.

Observe that the bounds do not depend on the character, but only

on the eigenvalues of A1, A2. Now, we will use Móricz's maximal

inequality.
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Móricz's maximal inequality: A non-negative function ψ(a, r) is

called sub-additive if

ψ(a, s)+ψ(a+s, r−s) ≤ ψ(a, r), for every a ≥ 0, r ≥ 1and 0 ≤ s ≤ r.

Theorem. Móricz (1977). Let (ζk) be a sequence of random

variables. Assume that for some sub-additive non-negative function

ψ(a, s) we have

∥∥∥ a+s∑
k=a

ζk

∥∥∥4

4
≤ ψ2(a, s), ∀a ≥ 0, s ≥ 1.

Then, there is an absolute constant C such that

∥∥∥ max
1≤s≤r

∣∣∣ a+s∑
k=a

ζk

∣∣∣∥∥∥4

4
≤ Cψ2(a, r). (6)

Using (5) and (6) we conclude∥∥∥maxN1≤k≤N2
|
∑k
i=N1

AZi(ω)χ|
∥∥∥4

L4(µ)
(7)

≤ C(θN1ω) (N2 −N1)2 (ln(N2 −N1))2,

for a constant C(ω) > 0 which is a.e. �nite and does not depend

on the character χ.
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Concluding the tightness:

For M > 0 big enough, ΩM := {ω : C(ω) ≤ M} has a probability

P(ΩM) ≥ 1
2. Let us �x ω ∈ Ω. The properties below will hold for

P-a.e. The previous bound (7) yields∥∥∥maxN1≤k≤N2
|
∑k
i=N1

AZi(ω)χ|
∥∥∥4

L4(µ)
(8)

≤M (N1 −N2)2 (ln(N1 −N2))2, if θN1ω ∈ ΩM .

Let δ be a positive number. If n is big enough, we can �nd 0 ≤ ρ1 <

ρ2 < ... < ρv ≤ n, visit times of ω to ΩM under the iteration of the

shift θ, such that ρi+1− ρi is of order δn and v is of order 1/δ. This

follows from Birkho� ergodic theorem and the elementary Lemma.
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Now, we consider the normalised sums

Mn(χ, t) :=
1√

n logn

bntc∑
k=1

AZkχ.

For δ > 0, let v := b1/δc and ti = ρi/n. By our bound (8), we have∥∥∥ sup
ti−1≤s≤ti

|Mn(χ, s)−Mn(χ, ti−1)|
∥∥∥4

4
≤

M
(ti − ti−1)2n2 log2[(ti − ti−1)n]

n2 log2 n
=

Mδ2[1 +
log δ

logn
]2;

hence
v∑

i=1

‖ sup
ti−1≤s≤ti

|Mn(χ, s)−Mn(χ, ti−1)|‖44 ≤

M
b1/δc∑
i=1

δ2[1 +
log δ

logn
]2 ≤Mδ[1 +

log δ

logn
]2.

Taking the lim supn and then δ → 0 yields the tightness by Billings-

ley's bound (2). As we mentioned we may pass to f ∈ AC0(Tρ).
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