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Genetic basis of complex traits

Problem of interest: detect/estimate differences in molecular-level
phenotypes between multiple groups of samples using high-throughput
sequencing data
- e.g., differential gene expression analysis, eQTLs analysis
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High-throughput sequencing data: a very simple illustration
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High-throughput sequencing data

Common form: each sample consists of the number of reads which start at
each base across the whole genome (3 billion bases for human genome).

Functional data and count data.
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Problem of interest: detect/estimate differences in molecular-level
phenotypes between multiple groups of samples using high-throughput
sequencing data

Molecular-level phenotypes from base 1 to base T in a given region:

Data: multiple independent samples.

Sample id High-throughput sequencing data from base 1 to base T Group indicator

1 X 1
1AAX

1
2AAAAA . . .AAAAAX

1
T g 1

·
·
i X i

1AAX
i
2AAAAA . . .AAAAAX

i
T g i

·
·
I X I

1AAX
I
2AAAAA . . .AAAAAX

I
T g I
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Typical approach: window based approach

Define a window: genes or windows of fixed length (e.g, 100 bases)

Use total number of reads mapped to the window.

Simple linear regression: Pickrell et al, 2010, Degner et al, 2012, . . .
Negative Binomial model: edgeR (Robinson et al, 2010), DESeq2
(Love et al, 2014), . . .

Fail to exploit high-resolution information.
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Multi-scale approaches use high-resolution information

Use high-resolution information?

no yes
(window approach) (multi-scale approach)

Pickrell et al, 2010,
Degner et al, 2012, etc.

Wavelet-based approach,
Shim and Stephens, 2015

DESeq2, edgeR, etc. Shim et al, In preparation
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Why multi-scale approaches?

High-throughput sequencing data: very noisy measurements of an
underlying molecular phenotype.

The molecular phenotype is spatially structured and has a lot of local
structure (inhomogeneous along the genome).

Heejung Shim (University of Melbourne) Bayesian multi-scale Poisson models November 27, 2018 17 / 39



Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

λ1, . . . , λT

φ01 =
∑T

i=1 λi

φ11 =
∑T/2

i=1 λi −
∑T

i=T/2+1 λi

φ21 =
∑T/4

i=1 λi −
∑T/2

i=T/4+1 λi φ22 =
∑3T/4

i=T/2+1 λi −
∑T

i=3T/4+1 λi
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

λ1, . . . , λT

The multi-scale transform is 1-1, but important advantages:

Spatial structure in λ implies sparsity in θ.

Easy to capture local structure.
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Multi-scale approaches
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Multi-scale approaches use high-resolution information

Use high-resolution information?

No Yes
(window approach) (multi-scale approach)

Model count data?
No Pickrell et al, 2010,

Degner et al, 2012, etc.

Wavelet-based approach
Shim and Stephens, 2015

Yes DESeq2, edgeR, etc Shim et al, In preparation

Wavelet-based (“normal”) multi-scale approach

Software WaveQTL : https://github.com/heejungshim/WaveQTL

We demonstrated that WaveQTL has more power than simpler
window-based approaches (sample size: 70).

Potential limitations in application to small sample sizes or low read
count data.
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Use high-resolution information?

No Yes
(window approach) (multi-scale approach)

Model count data?
No Pickrell et al, 2010,

Degner et al, 2012, etc.
Wavelet-based approach
Shim and Stephens, 2015

Yes DESeq2, edgeR, etc Shim et al, In preparation

Multi-scale model for count data

Model the count nature of the sequencing data directly.

Software multiseq : https://github.com/stephenslab/multiseq
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multiseq: multi-scale method to model

multiple samples of functional count data with a covariate.
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multi-scale model for inhomogeneous Poisson processes: one sample

Kolaczyk 1999 and Timmermann and Nowak 1999

P(X1, . . . ,XT | λ1, . . . , λT ) =
∏
t

Pois(Xt | λt) T = 2J

= P(X1, . . . ,XT | µ0, p11, p21, p22, . . . , pJ1, . . . , pJ,2J−1)

µ0 : λ1 + . . .+ λT

p11:
λ1+...+λT/2

λ1+...+λT

p21:
λ1+...+λT/4

λ1+...+λT/2
λ1 + λ2 p22:

λT/2+1+...+λ3T/4

λT/2+1+...+λT
. . .

= Pois(
T∑
t=1

Xt | µ0)Binomial(

T/2∑
t=1

Xt |
T∑
t=1

Xt , p11)

Binomial(

T/4∑
t=1

Xt |
T/2∑
t=1

Xt , p21)Binomial(

3T/4∑
t=T/2+1

Xt |
T∑

t=T/2+1

Xt , p22), . . .

g i : a group indicator of sample i
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multiseq: extension of window based methods

model at the zeroth scale (i.e., s = 0):

T∑
t=1

X i
t ∼ Pois(µi0), where µi0 =

T∑
t=1

λit

Model additional variation across multiple samples.

Negative binomial models considered in window based methods.
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multiseq: model multiple samples with covariate
For each scale s and location l , we model the potential association by

logit(pisl) = αsl + βslg
i + εisl ,

where g i is a group indicator of sample i .

We place the following prior on βsl :

βsl ∼ γslN(0, τ2sl) + (1− γsl)δ0,
γsl ∼ Bernoulli(πs).

where δ0 is a point mass at zero.

In practice:

Approximate the likelihood by a Normal likelihood.

Prior: a mixture of a point mass at zero and multiple normal
distributions with known variances (the ashr ”Adaptive SHrinkage”
package, Stephens, 2016).
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We place the following prior on βsl :

βsl ∼ γslN(0, τ2sl) + (1− γsl)δ0,
γsl ∼ Bernoulli(πs).

where δ0 is a point mass at zero.

To detect difference:

Posterior joint alternative probability : 1− P(γsl = 0 ∀s, l |X )
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multiseq: model multiple samples with covariate

To explain observed difference/association:

P(βsl | X ): a mixture of a point mass at zero and normal
distributions.

Provide posterior mean and variance on difference (log scale) in the
data space (approximation by using Taylor expansion).

Other types of posterior inference (e.g. pointwise credible intervals):
sampling procedure.
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Analysis of ATAC-seq data from Luca/Pique-Regi group

ATAC-seq measures chromatin accessibility

Tn5 transposase cuts DNA more often in regions that are accessible.

Higher ATAC-seq read count corresponds to higher chromatin
accessibility at each base.

Chromatin accessibility is related to functional elements of the
genome (e.g., transcription factor binding sites).
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Analysis of ATAC-seq data from Luca/Pique-Regi group

Data

ATAC-seq data in Copper-treated and control samples (3 vs 3)

Question: detect regions with difference in chromatic accessibility
between two groups

Analysis

237K 1024bp (≈ 1kb) regions
For each region, test statistic

multiseq: posterior joint alternative probability
window methods (1024 bp as window size): p-value from DESeq2

p-value from an empirical null distribution of test statistic.
FDR (the qvalue package, Storey 2002, 2003) for each method
computed using p values from 237K 1kb regions.
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multiseq has better power than a window approach
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Differential chromatin accessibility found only by multiseq

chr1:111764939-111765962
p-value : multiseq (< 0.000017), DESeq2 with 1kb (0.5)
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Further information:

More results (e.g. simulation studies, comparison with WaveQTL)
can be shared after the talk.

Shim et al, in preparation

Software multiseq : https://github.com/stephenslab/multiseq

Summary

Presented multi-scale methods (multiseq)

model the count nature of the sequencing data directly.
model multiple samples of functional count data with a covariate.

Demonstrated that

multi-scale methods outperform window-based methods.

Discussion

Putting dependent (Markov Tree) priors on differences in multi-scale
space (Crouse et al., 1998, Ma and Soriano, 2018)
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