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Genetic basis of complex traits
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Molecular/Cellular-level phenotypes: Diabetes
gene expression, transcription factor binding, Cancer

chromatin openness, ribosome profiling, ...
(high-throughput sequencing assays)
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Genetic basis of complex traits

Problem of interest: detect/estimate differences in molecular-level
phenotypes between multiple groups of samples using high-throughput
sequencing data

- e.g., differential gene expression analysis, eQTLs analysis

genotypes at SNP Organismal-level traits
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Example:
ATTGTG :
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ATTGTG BMI
Molecular/Cellular-level phenotypes: Diabetes
gene expression, transcription factor binding, Cancer

chromatin openness, ribosome profiling, ...
(high-throughput sequencing assays)
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High-throughput sequencing data: a very simple illustration

Sequencing Example
INJecam RNA-seq : gene expression
1 DNase-seq and ATAC-seq :
?W chromatin accessibility
ChlP-seq : transcription factor binding

CAGE-seq : transcription start site usage
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High-throughput sequencing data: a very simple illustration
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W chromatin accessibility
ChlP-seq : transcription factor binding

CAGE-seq : transcription start site usage
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High-throughput sequencing data: a very simple illustration
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High-throughput sequencing data: a very simple illustration

Reads:

~ 20-70 bases for each read
~ 40M reads for each sample
(sequencing depth)
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High-throughput sequencing data: a very simple illustration

Reads:

~ 20-70 bases for each read
~ 40M reads for each sample
(sequencing depth)

I—
[— [
Ma [ [ B
P [ I [
reads IS D D S I

genomic location
Data: ..0110210011101100000113010..

# of reads which start at each base = level of trait at each base
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High-throughput sequencing data

Common form: each sample consists of the number of reads which start at
each base across the whole genome (3 billion bases for human genome).

read
count

! 1
6264600 6264800

Genomic location

@ Functional data and count data.
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Problem of interest: detect/estimate differences in molecular-level
phenotypes between multiple groups of samples using high-throughput

sequencing data
Molecular-level phenotypes from base 1 to base T in a given region:

Group 1
Group 2

genomic location

Bayesian multi-scale Poisson models
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Problem of interest: detect/estimate differences in molecular-level
phenotypes between multiple groups of samples using high-throughput
sequencing data

Molecular-level phenotypes from base 1 to base T in a given region:

Group 1
Group 2

genomic location

Data: multiple independent samples.

Sample id  High-throughput sequencing data from base 1 to base T Group indicator

1 Xt X3 . XL g
i X\ X X7 g
I X X Xt g
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Typical approach: window based approach

@ Define a window: genes or windows of fixed length (e.g, 100 bases)
@ Use total number of reads mapped to the window.

o Simple linear regression: Pickrell et al, 2010, Degner et al, 2012, ...
o Negative Binomial model: edgeR (Robinson et al, 2010), DESeq?2
(Love et al, 2014), ...
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Typical approach: window based approach

@ Define a window: genes or windows of fixed length (e.g, 100 bases)
@ Use total number of reads mapped to the window.

o Simple linear regression: Pickrell et al, 2010, Degner et al, 2012, ...
o Negative Binomial model: edgeR (Robinson et al, 2010), DESeq?2
(Love et al, 2014), ...

o Fail to exploit high-resolution information.
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Typical approach: window based approach

@ Define a window: genes or windows of fixed length (e.g, 100 bases)
@ Use total number of reads mapped to the window.
@ Fail to exploit high-resolution information

Large window : ——  Group1
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Typical approach: window based approach

@ Define a window: genes or windows of fixed length (e.g, 100 bases)
@ Use total number of reads mapped to the window.
@ Fail to exploit high-resolution information

Large window : ——  Group1

Small window :

A
e N
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Typical approach: window based approach

@ Define a window: genes or windows of fixed length (e.g, 100 bases)
@ Use total number of reads mapped to the window.
@ Fail to exploit high-resolution information

Large window : ——  Group1l
/\/\ ———  Group2

Small window :

/N
Y
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Multi-scale approaches use high-resolution information

Use high-resolution information?

no yes
(window approach) (multi-scale approach)
Pickrell et al, 2010, Wavelet-based approach,

Degner et al, 2012, etc. Shim and Stephens, 2015

DESeq2, edgeR, etc. Shim et al, In preparation
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Why multi-scale approaches?

read
count

T 1
6264600 6264800

Genomic location

@ High-throughput sequencing data: very noisy measurements of an
underlying molecular phenotype.

@ The molecular phenotype is spatially structured and has a lot of local
structure (inhomogeneous along the genome).
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

<= trait at each base

~
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

~

o1 = ZiTzl Ai
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

~

A, .o AT
Oor = >4\

T/2
011 = Ziz/l Ai = ZiT:T/2+1 Ai
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

~

e 00
M, oo AT
for =11\

T/2
011 = Zi:/1 A — ZiT:T/2+1 Ai

T T/2
01 = Z,:/f Ai — Z,':/T/4+1 Ai
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

~

AL, . AT
fo1 = 31 A
T/2
011 = Ziz/l Ai = ZiT:T/2+1 Ai

T/4 T/2 3T/4
02 = Ziz/l Ai — Ziz/T/4+1 Ai 022 = Zi=7/'/2+1 Ai = ZIT:3T/4+1 Ai
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Key ideas: multi-scale transform
Molecular phenotype is spatially structured and has a lot of local structure.

Data Space :

AL, oo AT
Multi-scale Space :

esI

L I

The multi-scale transform is 1-1, but important advantages:

@ Spatial structure in A implies sparsity in 6.
o Easy to capture local structure.
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Multi-scale approaches

Data Space Multi-scale Space

Multi-scale

/\/\ transform
—

Multi-scale
i i transform Build a model
Provide effect size
it ) < Test
(difference) in Estimate effect
data space size (difference)
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Multi-scale approaches use high-resolution information

Use high-resolution information?

No Yes
(window approach) (multi-scale approach)
Pickrell et al 2010 Wavelet-based approach

Model count data? Degner et al, 2012, etc. Shim and Stephens, 2015

Yes DESeq2, edgeR, etc Shim et al, In preparation

Wavelet-based (“normal”) multi-scale approach
o Software WaveQTL : https://github.com/heejungshim /WaveQTL

o We demonstrated that WaveQTL has more power than simpler
window-based approaches (sample size: 70).

@ Potential limitations in application to small sample sizes or low read
count data.
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Multi-scale approaches use high-resolution information

Use high-resolution information?

No Yes
(window approach) (multi-scale approach)
Pickrell et al, 2010, Wavelet-based approach
Model count data? Degner et al, 2012, etc. Shim and Stephens, 2015
Yes DESeq2, edgeR, etc Shim et al, In preparation

Multi-scale model for count data
@ Model the count nature of the sequencing data directly.

e Software multiseq : https://github.com/stephenslab/multiseq
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multiseq: multi-scale method to model
multiple samples of functional count data with a covariate.
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multi-scale model for inhomogeneous Poisson processes: one sample
Kolaczyk 1999 and Timmermann and Nowak 1999

P(Xt, ..., X7 | A1, Ar) = [[ Pois(Xe | Ae) T =27
t
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multi-scale model for inhomogeneous Poisson processes: one sample
Kolaczyk 1999 and Timmermann and Nowak 1999

P(Xt, ..., X7 | A1, Ar) = [[ Pois(Xe | Ae) T =27
t

=P(X1,..., X7 | po, p11, p21, P22, - - -, Pois - - ~7PJ,2J71)
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multi-scale model for inhomogeneous Poisson processes: one sample
Kolaczyk 1999 and Timmermann and Nowak 1999

P(Xt, ..., X7 | A1, Ar) = [[ Pois(Xe | Ae) T =27
t

= P(X17 .- '7XT | Mo, P11, P21, P22, - - -, PJ1, - - '7pJ,2J*1)

0: A+ ...+ AT

A+ HAT o
pii: AT TAT/2
Nt AT

L At AT L ATt A3T /g
p21: PR ey p22: AT o1t AT
T/2
= Po:s(z X | po)B/nomlal(Z X | th,pn

t=1 t=1

T/4 T/2 3T/4 T
Bmom/al(ZXt | ZXt,pgl)Bmom/al( Z X | Z X, p22), - - -

t=1 t=T/2+1 t=T/2+1
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multi-scale model for inhomogeneous Poisson processes: one sample
Kolaczyk 1999 and Timmermann and Nowak 1999

P(Xt, ..., X7 | A1, Ar) = [[ Pois(Xe | Ae) T =27
t

= P(X17 .- '7XT | Mo, P11, P21, P22, - - -, PJ1, - - '7pJ,2J*1)

0: A+ ...+ AT

A+ HAT o
pui: AT TAT/2
Nt AT

L At AT L ATt A3T /g
p21: Nt A7) p22: N jop1 AT
T/2
= Po:s(z X | po)B/nomlal(Z X | th,pn

t=1 t=1

T/4 T/2 3T/4 T
Bmom/al(ZXt | ZXt,pgl)Bmom/al( Z X | Z X, p22), - - -

t=1 t=T/2+1 t=T/2+1

i

g': a group indicator of sample i
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multiseq: extension of window based methods

model at the zeroth scale (i.e., s = 0):

T T
ZX{ ~ Pois(u), where pb= Z’\If

t=1 t=1

@ Model additional variation across multiple samples.

o Negative binomial models considered in window based methods.
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multiseq: model multiple samples with covariate

For each scale s and location /, we model the potential association by
/ogit(p;,) = ag + Bag' + 6Isly

where g is a group indicator of sample i.
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multiseq: model multiple samples with covariate

For each scale s and location /, we model the potential association by

/ogit(p;,) = oy + /legi + 62/7
where g is a group indicator of sample i.

We place the following prior on [Bg;:

Bt~ sN(0,73) + (1 = 7s1)d0,
vsi ~ Bernoulli(ms).

where dp is a point mass at zero.
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multiseq: model multiple samples with covariate

For each scale s and location /, we model the potential association by

/ogit(p;,) = ag + 5slgi + 52/,

where g is a group indicator of sample i.

We place the following prior on [Bg;:

Bsi ~ 7SIN(077521)+(1_75I)60a
vs1 ~ Bernoulli(s).

where &g is a point mass at zero.

In practice:
@ Approximate the likelihood by a Normal likelihood.

@ Prior: a mixture of a point mass at zero and multiple normal
distributions with known variances (the ashr " Adaptive SHrinkage”
package, Stephens, 2016).
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multiseq: model multiple samples with covariate

For each scale s and location /, we model the potential association by
logit(pg) = cvsi + Bsig' + €,

where g’ is a group indicator of sample i.

We place the following prior on f:

Bst ~ N0, 73) + (1 — vs1)do,
vsi ~ Bernoulli(ms).

where dp is a point mass at zero.

To detect difference:

o Posterior joint alternative probability : 1 — P(yg =0 Vs, /|X)

Heejung Shim (University of Melbourne) Bayesian multi-scale Poisson models



multiseq: model multiple samples with covariate

To explain observed difference/association:
e P(Bs | X): a mixture of a point mass at zero and normal
distributions.
@ Provide posterior mean and variance on difference (log scale) in the
data space (approximation by using Taylor expansion).
@ Other types of posterior inference (e.g. pointwise credible intervals):
sampling procedure.
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Analysis of ATAC-seq data from Luca/Pique-Regi group

ATAC-seq measures chromatin accessibility

@ Tnb transposase cuts DNA more often in regions that are accessible.

WV

: :?: : :T Tﬁ:Mﬂ: 00C

o Higher ATAC-seq read count corresponds to higher chromatin
accessibility at each base.
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Analysis of ATAC-seq data from Luca/Pique-Regi group

ATAC-seq measures chromatin accessibility

@ Tnb transposase cuts DNA more often in regions that are accessible.

WV

> :¥: : :T Tﬁ:Mﬁ: 00C

o Higher ATAC-seq read count corresponds to higher chromatin
accessibility at each base.

@ Chromatin accessibility is related to functional elements of the
genome (e.g., transcription factor binding sites).
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Analysis of ATAC-seq data from Luca/Pique-Regi group

o Data
o ATAC-seq data in Copper-treated and control samples (3 vs 3)

@ Question: detect regions with difference in chromatic accessibility
between two groups
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Analysis of ATAC-seq data from Luca/Pique-Regi group

o Data
o ATAC-seq data in Copper-treated and control samples (3 vs 3)

@ Question: detect regions with difference in chromatic accessibility
between two groups

@ Analysis
e 237K 1024bp (= 1kb) regions
o For each region, test statistic

o multiseq: posterior joint alternative probability
o window methods (1024 bp as window size): p-value from DESeq?2
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Analysis of ATAC-seq data from Luca/Pique-Regi group

o Data
o ATAC-seq data in Copper-treated and control samples (3 vs 3)

@ Question: detect regions with difference in chromatic accessibility
between two groups

@ Analysis
e 237K 1024bp (= 1kb) regions
o For each region, test statistic
o multiseq: posterior joint alternative probability
o window methods (1024 bp as window size): p-value from DESeq?2
e p-value from an empirical null distribution of test statistic.
o FDR (the qvalue package, Storey 2002, 2003) for each method
computed using p values from 237K 1kb regions.
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multiseq has better power than a window approach

2500

— multiseq
~—— DESeq2 (window method)

1000 1500 2000
| |

number of differentially expressed sites
500
|

T T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10

FDR
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Differential chromatin accessibility found only by multiseq
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Further information:
@ More results (e.g. simulation studies, comparison with WaveQTL)
can be shared after the talk.

@ Shim et al, in preparation
o Software multiseq : https://github.com/stephenslab/multiseq

Summary
@ Presented multi-scale methods (multiseq)
e model the count nature of the sequencing data directly.
e model multiple samples of functional count data with a covariate.

@ Demonstrated that
e multi-scale methods outperform window-based methods.

Discussion
e Putting dependent (Markov Tree) priors on differences in multi-scale
space (Crouse et al., 1998, Ma and Soriano, 2018)
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