SMC sampling from deterministic approximations:

Application to the Poisson stochastic block-model

S. Robin

Joint work with S. Donnet

INRA / AgroParisTech / univ. Paris Saclay

CIRM, November 2018, Marseille

Outline

Motivating example

Variational EM inference

SMC sampling

Illustrations

 Y_{ij} = number of interactions between nodes *i* and *j* (count)

 Y_{ij} = number of interactions between nodes *i* and *j* (count)

Questions.

- Is there some structure in the network?
- Do the covariates contribute to explain it?
- Do they explain all of the structure? Is there some 'residual' structure?

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]

Frequentist version.

n nodes $(1 \le i, j \le n)$

 $\{Z_i\}_i \text{ iid } \sim \mathcal{M}_{\mathcal{K}}(1,\pi)$

 $\{Y_{ij}\}_{i < j}$ independent $|\{Z_i\}$

$$Y_{ij} \mid (Z_i = k, Z_j = \ell) \sim \mathcal{P}(\exp(\alpha_{k\ell} + x_{ij}^{\mathsf{T}}\beta))$$

Latent variables Z, parameter $\theta = (\pi, \alpha, \beta)$.

 $\{Z_i\}$ = node memberships π = group proportions α = between group interactions β = effects of the covariates

Stochastic block-model (SBM)

Proposed model. Poisson SBM, including covariates [MRV10]

Frequentist version.

Bayesian version.

n nodes $(1 \le i, j \le n)$

 $\{Z_i\}_i \text{ iid } \sim \mathcal{M}_K(1,\pi) \qquad \qquad \pi \sim \mathcal{D}_K$

 $\{Y_{ij}\}_{i < j}$ independent $|\{Z_i\}$

 $Y_{ij} \mid (Z_i = k, Z_j = \ell) \sim \mathcal{P}(\exp(\alpha_{k\ell} + x_{ij}^{\mathsf{T}}\beta)) \qquad \gamma = (\alpha, \beta) \sim \mathcal{N}$

Latent variables Z, parameter $\theta = (\pi, \alpha, \beta)$.

 $\{Z_i\}$ = node memberships π = group proportions α = between group interactions β = effects of the covariates

Inference of SBM

- ▶ Bayesian inference using MCMC: time consuming + convergence issues
- Frequenstist inference via maximum likelihood (ML): intractable
- ▶ Variational approximation of ML (VEM): efficient, but with no statistical guaranty
- No easy-to-handle variational Bayes approximation (no conjugacy)

Inference of SBM

- ▶ Bayesian inference using MCMC: time consuming + convergence issues
- Frequenstist inference via maximum likelihood (ML): intractable
- ▶ Variational approximation of ML (VEM): efficient, but with no statistical guaranty
- No easy-to-handle variational Bayes approximation (no conjugacy)

Aim.

Design a posterior sampling taking advantage of the efficiency of (frequentist) VEM

Variational EM inference

Outline

Motivating example

Variational EM inference

SMC sampling

Illustrations

EM and VEM

 $\mathsf{SBM} = \mathsf{incomplete} \mathsf{ data} \mathsf{ model}$

Maximum likelihood. Most popular way: EM

 $\log p_{\theta}(Y) = \mathbb{E}\left(\left(\log p_{\theta}(Y, Z) \mid Y\right) - \mathbb{E}\left(\log p_{\theta}(Z \mid Y) \mid Y\right)\right)$

→ Requires to determine (some moments of) $p_{\theta}(Z \mid Y)$, which is intractable.

EM and VEM

 $\mathsf{SBM} = \mathsf{incomplete} \mathsf{ data} \mathsf{ model}$

Maximum likelihood. Most popular way: EM

$$\log p_{\theta}(Y) = \mathbb{E}\left(\left(\log p_{\theta}(Y, Z) \mid Y\right) - \mathbb{E}\left(\log p_{\theta}(Z \mid Y) \mid Y\right)\right)$$

→ Requires to determine (some moments of) $p_{\theta}(Z \mid Y)$, which is intractable.

Variational approximation. When $p_{\theta}(Z \mid Y)$ is intractable, rather maximize

$$J(\theta, q) = \log p_{\theta}(Y) - KL(q(Z) || p_{\theta}(Z | Y))$$
$$= \mathbb{E}_{q} \log p_{\theta}(Y, Z) - \mathbb{E}_{q} \log q(Z)$$

taking $q \in Q$.

Mean field. Typical choice for SBM: $Q = \{q : q(Z) = \prod_i q_i(Z_i)\}.$

Approximate posterior from Louis approximation

Louis formulas [Lou82]. Compute Fisher information using EM side-products:

 $\partial_{\theta^2}^2 \log p_{\theta}(Y) = \mathbb{E}\left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z) \mid Y\right) + \mathbb{V}\left(\partial_{\theta} \log p_{\theta}(Y, Z) \mid Y\right)$

Approximate posterior from Louis approximation

Louis formulas [Lou82]. Compute Fisher information using EM side-products:

$$\partial_{\theta^2}^2 \log p_{\theta}(Y) = \mathbb{E}\left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z) \mid Y\right) + \mathbb{V}\left(\partial_{\theta} \log p_{\theta}(Y, Z) \mid Y\right)$$

Approximate variance for VEM estimates. Denote $(\tilde{\theta}, \tilde{q}) = \arg \max_{\theta, q \in Q} J(\theta, q)$ and take

$$\begin{split} \mathbb{V}(\widetilde{\theta})^{-1} &\simeq \mathbb{E}_{\widetilde{q}}\left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z)\right) + \mathbb{V}_{\widetilde{q}}\left(\partial_{\theta} \log p_{\theta}(Y, Z)\right) \\ &\simeq \mathbb{E}_{\widetilde{q}}\left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z)\right) \qquad \text{ as } \mathbb{V}_{\widetilde{q}}(\cdot) \simeq 0. \end{split}$$

Approximate posterior from Louis approximation

Louis formulas [Lou82]. Compute Fisher information using EM side-products:

$$\partial_{\theta^2}^2 \log p_{\theta}(Y) = \mathbb{E}\left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z) \mid Y\right) + \mathbb{V}\left(\partial_{\theta} \log p_{\theta}(Y, Z) \mid Y\right)$$

Approximate variance for VEM estimates. Denote $(\widetilde{\theta}, \widetilde{q}) = \arg \max_{\theta, q \in \mathcal{Q}} J(\theta, q)$ and take $\mathbb{V}(\widetilde{\theta})^{-1} \simeq \mathbb{E}_{\widetilde{q}} \left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z) \right) + \mathbb{V}_{\widetilde{q}} \left(\partial_{\theta} \log p_{\theta}(Y, Z) \right)$ $\simeq \mathbb{E}_{\widetilde{q}} \left(\partial_{\theta^2}^2 \log p_{\theta}(Y, Z) \right) \qquad \text{as } \mathbb{V}_{\widetilde{q}}(\cdot) \simeq 0.$

Approximate posterior. Define the approximate posterior \widetilde{p}

$$\widetilde{p}(\pi) = \mathcal{D}(\widetilde{a}), \qquad \widetilde{p}(\gamma) = \mathcal{N}(\gamma; \widetilde{\mu}, \widetilde{\Sigma})$$

setting

$$\mathbb{E}_{\widetilde{p}}(\theta) = \widetilde{\theta}, \qquad \mathbb{V}_{\widetilde{p}}(\theta) = \mathbb{V}(\widetilde{\theta})$$

S. Robin (INRA/AgroParisTech/univ. Paris Saclay)

SMC sampling for Poisson SBM

Outline

Motivating example

Variational EM inference

SMC sampling

Illustrations

•
$$\widetilde{p}$$
 = proposal, p^* = target

- \widetilde{p} = proposal, p^* = target
- Intermediate distributions

$$\widetilde{p} = p_0, p_1, \dots, p_H = p^*$$

- \widetilde{p} = proposal, p^* = target
- Intermediate distributions

$$\widetilde{p} = p_0, p_1, ..., p_H = p^*$$

- \widetilde{p} = proposal, p^* = target
- Intermediate distributions

$$\widetilde{p} = p_0, p_1, ..., p_H = p^*$$

- \widetilde{p} = proposal, p^* = target
- Intermediate distributions

$$\widetilde{p} = p_0, p_1, ..., p_H = p^*$$

- \widetilde{p} = proposal, p^* = target
- Intermediate distributions

$$\widetilde{p} = p_0, p_1, ..., p_H = p^*$$

step 4: ESS = 0.31

• \widetilde{p} = proposal, p^* = target

Intermediate distributions

$$\widetilde{p} = p_0, p_1, \dots, p_H = p^*$$

Iteratively: use p_h to get a sample from p_{h+1}

Here. Take $p_0 = \widetilde{p}$ (rather than $p_0 = \pi = \text{prior}$), $p^* = p(\cdot | Y)$

step 4: ESS = 0.31

Sequential importance sampling scheme

Denote

$$U = (\theta, Z),$$
 $\pi = \text{ prior},$ $\ell = \text{ likelihood}$

Distribution path: set $0 = \rho_0 < \rho_1 < \dots < \rho_{H-1} < \rho_H = 1$,

$$p_{h}(U) \propto \widetilde{p}(U)^{1-\rho_{h}} \times p(U|Y)^{\rho_{h}}$$
$$\propto \widetilde{p}(U) \times r(U)^{\rho_{h}}, \qquad r(U) = \frac{\pi(U)\ell(Y|U)}{\widetilde{p}(U)}$$

Sequential importance sampling scheme

Denote

$$U = (\theta, Z), \quad \pi = \text{ prior}, \quad \ell = \text{ likelihood}$$

Distribution path: set
$$0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$$
,
 $p_h(U) \propto \widetilde{p}(U)^{1-\rho_h} \times p(U|Y)^{\rho_h}$
 $\propto \widetilde{p}(U) \times r(U)^{\rho_h}$, $r(U) = \frac{\pi(U)\ell(Y|U)}{\widetilde{p}(U)}$

Sequential sampling. At each step h, provides

 $\mathcal{E}_h = \{(U_h^m, w_h^m)\}_m = \text{ weighted sample of } p_h$

Sequential importance sampling scheme

Denote

$$U = (\theta, Z),$$
 $\pi = \text{ prior},$ $\ell = \text{ likelihood}$

Distribution path: set
$$0 = \rho_0 < \rho_1 < \cdots < \rho_{H-1} < \rho_H = 1$$
,
 $p_h(U) \propto \widetilde{\rho}(U)^{1-\rho_h} \times p(U|Y)^{\rho_h}$
 $\propto \widetilde{\rho}(U) \times r(U)^{\rho_h}$, $r(U) = \frac{\pi(U)\ell(Y|U)}{\widetilde{\rho}(U)}$

Sequential sampling. At each step h, provides

 $\mathcal{E}_h = \{(U_h^m, w_h^m)\}_m = \text{ weighted sample of } p_h$

Question. How to tune $\{\rho_h\}$ or *H* to keep each sampling step efficient?

S. Robin (INRA/AgroParisTech/univ. Paris Saclay)

SMC sampling for Poisson SBM

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

 ${}^{2}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

 $^{^1\}mathrm{To}$ avoid degeneracy. Weights set to 1 after it.

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

 $^{^{1}}$ To avoid degeneracy. Weights set to 1 after it.

 $^{^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

¹To avoid degeneracy. Weights set to 1 after it.

 $^{^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute $w_h^m = w_{h-1}^m \times (r_h^m)^{\rho_h - \rho_{h-1}}$

¹To avoid degeneracy. Weights set to 1 after it.

 $^{^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute $w_h^m = w_{h-1}^m \times (r_h^m)^{\rho_h - \rho_{h-1}}$

3. (1) if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles

 $^{^{1}}$ To avoid degeneracy. Weights set to 1 after it.

 $^{^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute $w_h^m = w_{h-1}^m \times (r_h^m)^{\rho_h - \rho_{h-1}}$

3. (1) if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles

4. (²) propagate the particles $U_h^m \sim K_h(U_h^m | U_{h-1}^m)$

 $^{^1\}mathrm{To}$ avoid degeneracy. Weights set to 1 after it.

 $^{{}^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute $w_h^m = w_{h-1}^m \times (r_h^m)^{\rho_h - \rho_{h-1}}$

3. (1) if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles

4. (²) propagate the particles $U_h^m \sim K_h(U_h^m | U_{h-1}^m)$

Stop: When ρ_h reaches 1.

 $^{^1\}mathrm{To}$ avoid degeneracy. Weights set to 1 after it.

 $^{^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Proposed algorithm

Init.: Sample $(U_0^m)_m$ iid ~ \widetilde{p} , $w_0^m = 1$

Step *h*: Using the previous sample $\mathcal{E}_{h-1} = \{(U_{h-1}^m, w_{h-1}^m)\}$

1. set ρ_h such that $cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \tau_1$

2. compute $w_h^m = w_{h-1}^m \times (r_h^m)^{\rho_h - \rho_{h-1}}$

3. (1) if $ESS_h = \overline{w}_h^2 / \overline{w_h^2} < \tau_2$, resample the particles

4. (²) propagate the particles $U_h^m \sim K_h(U_h^m | U_{h-1}^m)$

Stop: When ρ_h reaches 1.

Justification [DDJ06]. At each step h, construct a distribution for the whole particle path with marginal p_h .

¹To avoid degeneracy. Weights set to 1 after it.

 $^{{}^{2}}K_{h}$ has stationary distribution p_{h} (e.g. Gibbs sampler). Only propagation: no convergence needed

Adaptive step size

Conditional ESS: efficiency of sample \mathcal{E} from q for distribution p

$$cESS(\mathcal{E};q,p) = \frac{M\left(\sum_m W^m a^m\right)^2}{\sum_m W^m (a^m)^2}, \qquad a^m = \frac{p(U^m)}{q(U^m)}$$

→ Step 1: find next p_h s.t. sample \mathcal{E}_{h-1} is reasonably efficient.

Adaptive step size

Conditional ESS: efficiency of sample \mathcal{E} from q for distribution p

$$cESS(\mathcal{E};q,p) = \frac{M\left(\sum_{m} W^{m} a^{m}\right)^{2}}{\sum_{m} W^{m} (a^{m})^{2}}, \qquad a^{m} = \frac{p(U^{m})}{q(U^{m})}$$

→ Step 1: find next p_h s.t. sample \mathcal{E}_{h-1} is reasonably efficient.

Update formula of the weights

$$cESS(\mathcal{E}_{h-1}; p_{h-1}, p_h) = \frac{M \left[\sum_m W_{h-1}^m \left(r_{h-1}^m\right)^{\rho_h - \rho_{h-1}}\right]^2}{\sum_m W_{h-1}^m \left(r_{h-1}^m\right)^{2\rho_h - 2\rho_{h-1}}}$$

 \rightarrow can be computed for any ρ_h before sampling.

 $\rightarrow \rho_h$ tuned to meet τ_1 , which controls the step size $\rho_h - \rho_{h-1}$ (and H)

Marginal likelihood

Denote

$$\gamma_h(U) = \widetilde{p}(U)\alpha(U)^{\rho_h}, \qquad Z_h = \int \gamma_h(U) \, \mathrm{d}U, \qquad p_h = \gamma_h(U)/Z_h$$

The marginal likelihood is given by

$$p(\mathbf{Y}) = \int \pi(U)\ell(\mathbf{Y}|U) \, \mathrm{d}U = \int \gamma_H(U) \, \mathrm{d}U = Z_H$$

which can be estimated with

$$\overline{\left(\frac{Z_H}{Z_0}\right)} = \prod_{h=1}^H \left(\overline{\frac{Z_h}{Z_{h-1}}}\right) \quad \text{where} \quad \overline{\left(\frac{Z_h}{Z_{h-1}}\right)} = \sum_m W_h^m (\alpha_h^m)^{\rho_h - \rho_{h-1}}$$

Outline

Motivating example

Variational EM inference

SMC sampling

Illustrations

Tree network

From [VPDL08].

n = 51 tree species

3 covariates (distances): taxonomy, geography, genetics

 Y_{ij} = number of shared fungal parasites

Sampling path & choice of K

Full model. All covariates

Posterior distribution of β

 $\widetilde{p}(\beta \mid \widehat{K}), \quad \widehat{p}(\beta \mid Y, \widehat{K}), \quad \widehat{p}(\beta \mid Y) = \sum_{K} \widehat{p}(K \mid Y) \widehat{p}(\beta \mid Y, K)$

Posterior distribution of β

 $\widetilde{p}(\beta \mid \widehat{K}), \quad \widehat{p}(\beta \mid Y, \widehat{K}), \quad \widehat{p}(\beta \mid Y) = \sum_{K} \widehat{p}(K \mid Y) \widehat{p}(\beta \mid Y, K)$

Correlation between estimates.	(β_1,β_2)	(β_1,β_3)	(β_2,β_3)
$\widetilde{p}(\beta)$	-0.012	0.021	0.318
$\widehat{p}(\beta \mid \mathbf{Y})$	-0.274	-0.079	-0.088

Model selection. $\widehat{P}\{x = (taxo., geo.) \mid Y\} \simeq 70\%, \quad \widehat{P}\{x = (taxo.) \mid Y\} \simeq 30\%$

Residual structure

Between group interactions $(\alpha_{k\ell}) =$ 'residuals' = not explained by the covariates.

³with increasing marginal $\overline{\phi}(u) = \int \phi(u, v) dv$ to ensure identifiability.

Residual structure

Between group interactions $(\alpha_{k\ell}) =$ 'residuals' = not explained by the covariates.

'Graphon' representation. [LRO17] Group interactions encoded as

 $\phi: \left[\mathbf{0}, \mathbf{1} \right]^2 \mapsto \mathbb{R}$

- symmetric³,
- block-wise constant,
- block width = π_k
- block height = $\alpha_{k\ell}$

³with increasing marginal $\overline{\phi}(u) = \int \phi(u, v) dv$ to ensure identifiability.

S. Robin (INRA/AgroParisTech/univ. Paris Saclay)

SMC sampling for Poisson SBM

Residual structure

Between group interactions $(\alpha_{k\ell}) =$ 'residuals' = not explained by the covariates.

'Graphon' representation. [LRO17] Group interactions encoded as

 $\phi: \left[\mathbf{0}, \mathbf{1} \right]^2 \mapsto \mathbb{R}$

- symmetric³,
- block-wise constant,
- block width = π_k
- ▶ block height = α_{kℓ}

Same representation for all K. $Y_{ij}|(U_i, U_j) \sim \mathcal{P}\left(\exp(\phi(U_i, U_j) + x_{ij}^{\mathsf{T}}\beta)\right)$

³with increasing marginal $\overline{\phi}(u) = \int \phi(u, v) \, dv$ to ensure identifiability.

S. Robin (INRA/AgroParisTech/univ. Paris Saclay)

SMC sampling for Poisson SBM

Tree network residual structure

Residual graphon.

Each particle θ^m provides an estimate of $\phi^m(u, v)$

All estimates can be averaged (over both m and K)

Tree network residual structure

Residual graphon.

Each particle θ^m provides an estimate of $\phi^m(u, v)$

All estimates can be averaged (over both m and K)

Tree network residual structure

Residual graphon.

Each particle θ^m provides an estimate of $\phi^m(u, v)$

All estimates can be averaged (over both m and K)

Interpretation.

- A remaining individual effect (some species interact more than other in average)
- A small fraction of species interact much less than expected.

SMC sampling for Poisson SBM

Social network of equid species

2 datasets [RSF⁺15].

- n = 28 zebras, n = 29 onagers
- sex and age (juvenile / adult) recorded

Social network of equid species

2 datasets [RSF⁺15].

- n = 28 zebras, n = 29 onagers
- sex and age (juvenile / adult) recorded

Model comparison.

Zebras:

$$\widehat{P}(x = (sex) | Y) \simeq 1$$

Onagers:

$$\widehat{P}(x = (\text{sex} \times \text{age}) \mid Y) \simeq 1$$

Social network of equid species

2 datasets [RSF⁺15].

- n = 28 zebras, n = 29 onagers
- sex and age (juvenile / adult) recorded

Model comparison.

Zebras:

$$\widehat{P}(x = (sex) | Y) \simeq 1$$

Onagers:

$$\widehat{P}(x = (\text{sex} \times \text{age}) \mid Y) \simeq 1$$

Onager network: residual structure

Discussion

Rational.

- ▶ Frequentist VEM side-product can be used to define an approximate posterior
- SMC sampling can start from there to the sample from the posterior

Discussion

Rational.

- ▶ Frequentist VEM side-product can be used to define an approximate posterior
- SMC sampling can start from there to the sample from the posterior

Open problems. (About dig data...)

Louis approximate prior \tilde{p} is not that bad. Still, numerous steps are needed to reach the posterior

... because of the large dimension of $U = (\theta, Z)$

- Especially true for (uselessly) large K
 - ... but VEM inference can not be trusted to choose it

References

- 🔀 Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B, 68(3):411–436, 2006.
- 📴 nnet and S. Robin. Using deterministic approximations to accelerate SMC for posterior sampling. Technical Report 1612.06928, arXiv, 2017.
- ALouis. Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society. Series B, pages 226–233, 1982.
- touche, S. Robin, and S. Ouadah. Goodness of fit of logistic regression models for random graphs. Journal of Computational and Graphical Statistics, (just-accepted), 2017.
- Mariadassou, S. Robin, and C. Vacher. Uncovering latent structure in valued graphs: a variational approach. The Annals of Applied Statistics, pages 715–742, 2010.
- Rubenstein, S. R Sundaresan, I. R Fischhoff, C. Tantipathananandh, and T. Y Berger-Wolf. Similar but different: dynamic social network analysis highlights fundamental differences between the fission-fusion societies of two equid species, the onager and Grevy's zebra. *PloS one*, 10(10):e0138645, 2015.
- Wecher, D. Piou, and M.-L. Desprez-Loustau. Architecture of an antagonistic tree/fungus network: The asymmetric influence of past evolutionary history. PLoS ONE, 3(3):1740, 2008. e1740. doi:10.1371/journal.pone.0001740.

Theoretical justification

At each step h, [DDJ06] construct a distribution for the whole particle path with marginal p_h .

• $\overline{p}_h(\theta_{0:h})$ distribution of the particle path

$$\overline{p}_{h}(\theta_{0:h}) \propto p_{h}(\theta_{h}) \prod_{k=1}^{h} L_{k}(\theta_{k-1}|\theta_{k})$$

L_h = backward kernel

$$L_h(\theta_{h-1}|\theta_h) = K_h(\theta_h|\theta_{h-1})p_h(\theta_{h-1})/p_h(\theta_h)$$

Update for the weights

$$w_h(\theta_{0:h}) = w_{h-1}(\theta_{0:h-1})\alpha(\theta_h)^{\rho_h - \rho_{h-1}}$$

Some comments

Resampling (optional step 3).

- avoids degeneracy
- set weights $w_h^m = 1$ after resampling

Propagation kernel K_h (step 4).

- with stationary distribution ph (e.g. Gibbs sampler)
- \blacktriangleright just propagation: does not change the distribution \rightarrow no convergence needed

Some comments

Resampling (optional step 3).

- avoids degeneracy
- set weights $w_h^m = 1$ after resampling

Propagation kernel K_h (step 4).

- with stationary distribution ph (e.g. Gibbs sampler)
- \blacktriangleright just propagation: does not change the distribution \rightarrow no convergence needed

Theoretical justification: [DDJ06]. At each step h, construct a distribution for the whole particle path with marginal p_h .