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(Harvard), and M. Gerber (Bristol)

VY o Y o
WARWICK o R



1 ABC and distance between samples
2 Wasserstein distance

3 Computational aspects

4 Asymptotics

5 Handling time series

vy
WARWICK



1 ABC and distance between
samples
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Generative model

Assumption of a data-generating distribution ui") for data

Yim =Yy Yn € V"
Parametric model
M:{ué") 0 e}

such that sampling (generating) z1., from Mén) is

Prior distribution 7 () available as density and generative model

inference on parameters # given observations y.,
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Generic ABC

Basic (summary-less) ABC posterior with density

(n)
1 (e — 21
(0, 21.n) ~ 7(0) 12 Iy — 21l <€)

fyn 1 (ly1:n — 21l <€) dz1.n

and ABC marginal

Jyn ey 1(d2i|0) 1 ([|[y1:n — 210 <€)
f)}n Hyln_zlnH <5)d21n

¢ (0) =

unbiasedly estimated by m(0)1 (||y1:n — 21| < €) where

pon ~ i

ABC-posterior goes to posterior as € — 0
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Summary statistics

Since random variable ||y1., — 21.n|| may have large variance,

{lyim — 21l < e}

gets rare as € — 0 and rarer when d 1

When using
’n(ylsn) - U(len)” <e

based on (insufficient) summary statistic 7, variance and
dimension decrease but g-likelihood differs from likelihood

Arbitrariness and impact of summaries, incl. curse of
dimensionality

[X et al., 2011; Fearnhead & Prangle, 2012; Li & Fearnhead, 2016]
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Distances between samples

Ressort to alternate distances © between samples y;.,
and zi., such that
Q(ylzrm Zl:n)

has smaller variance than

Hylzn - Zl:n”

while induced ABC-posterior still converges to posterior when
e—0

=Y o
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ABC with order statistics

Recall that, for univariate i.i.d. data, are
sufficient

1. sort observed and generated samples y1., and z1.,

2. compute

n 1/p
1Yo, (1:m) = Zos(1:m)llp = (Z Yy — Z(i)\p>
=1

for order p (e.g. 1 or 2) instead of

n 1/p
Hyl:n - Zl:n” = <Z |y1 - Zi|p>

i=1

=Y o
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Toy example

Data-generating process given by

v

Y1:1000 ~ Gamma(10, 5)

v

Hypothesised model:

M ={N(p, %) : (n,0) €eR xR}

v

Prior p ~ N (0,1) and o0 ~ Gamma(2,1)

ABC-Rejection sampling: 10° draws, using Euclidean
distance, on sorted vs. unsorted samples and keeping 102
draws with smallest distances

v
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density
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ABC with transport distances

Distance
1 n 1/p
D (Y1, 21:0) = ( > e — 26 ’p>
iz
is between empirical cdfs
1 " 1 "
- d On(dy) =~ ) 6., (dy)

Rather than comparing samples as vectors, alternative
representation as empirical distributions

=Y o
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2 Wasserstein distance
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Wasserstein distance

Ground distance p (x,y) — p(z,y) on Y along with order p > 1
leads to between p, v € Pp(Y),p > 1:

YET (V)

1/p
W, (K, V)=< inf /y Xyp(%y)pdv(%y))

where I'(i, v) set of joints with marginals p, v and P,()) set of
distributions u for which E,[p(Y, y0)?] < oo for one g
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Wasserstein distance: univariate case

1 3 2
o o °

Y

Two empirical distributions on R with 3 atoms:

Matrix of pair-wise costs:

p(yt, 21)P p(y1, 22)P  p(y1, 23)P
p(y2, 21)P p(y2, 22)P  p(y2,23)P
p(y3, 21)P  p(ys, 22)P  p(ys, z3)P

=Y o
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Wasserstein distance: univariate case

1
o

o W
oN)

Joint distribution

7,1 YL2 Y13
Y= 722 723 )
31 732 7383
with marginals (1/3 1/3 1/3), corresponds to a transport
cost of
3
> viip(yi, z)P
ij=1
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Wasserstein distance: univariate case

1 3

oN)

Y

Optimal assignment:

Y < 23
Y2 < 21
Yz < 22

corresponds to choice of joint distribution ~

0o 0 1/3
v=11/3 0o 0 |,
0 1/3 0

vy

with marginals (1/3 1/3 1/3) and cost >3, Py, 2P




Wasserstein distance

Two samples y1,...,y, and z1,..., 2,
Willins o) = — 3 ply,2)
D) = — Zi
p\Hns Vm nmijpy,]

Important special case when n = m, for which solution to the
optimization problem +* corresponds to an assignment matrix,
with only one non-zero entry per row and column, equal to n 1.

[Villani, 2003]
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Wasserstein distance

Two samples y1,...,y, and z1,..., 2,
Wy (fins 7m) = —— > 0(y,25)
Um) = Z;
p\tny Vm nmi.py,]

Wasserstein distance thus represented as

Wp (Y1, 210)" = inf pr Yis 2

Computing Wasserstein distance between two samples of same
size equivalent to optimal matching problem.

=Y o
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Wasserstein distance: bivariate case

le

3

there exists a joint distribution v minimizing cost

3

Z 'Yi,jp(yi» Zj)p

i,j=1

with various algorithms to compute/approximate it
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Wasserstein distance

» also called Vaserstein, Earth Mover, Gini, Mallows,
Kantorovich, Rubinstein, &tc.

» can be defined between arbitrary distributions
» actual distance

» statistically sound:

A

) 1 & .
0, = arginf 20,,(— Zfsym/‘@) — 0, = arginf 20, (14, 1tg),
feH n:4 Oer

at rate y/n, plus asymptotic distribution
[Bassetti & al., 2006]
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Leonid Vaserstein is a Russian-American mathematician, currently Professor of
Mathematics at Penn State University. His research is focused on algebra and
dynamical systems. He is well known for providing a simple proof of the Quillen-
Suslin theorem, a result in commutative algebra, first conjectured by Jean-Pierre
Serre in 1955, and then proved by Daniel Quillen and Andrei Suslin in 1976.

Vaserstein got his Master's degree and doctorate in Moscow State University,
where he was until 1978. He then moved to Europe and United States.

The Wasserstein metric was named after him by R.L. Dobrushin in 1970.
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3 Computational aspects
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ing Wasserstein diste S
Computing Wasserstein distance

» when Y = R, computing 20, (pn, ) costs O(nlogn)

» when ) = RY, exact calculation is O(n?®) [Hungarian]or
O(n?*5logn) [short-list]

For entropic regularization, with § > 0

Wyl tn) = ot { [ playPdr(a) - sHO,
VEL (o) LYY

where H(v) = — >7,; 7ij log vij entropy of -, existence of
Sinkhorn’s algorithm that yields cost O(n?)
[Genevay et al., 2016]
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ing Wasserstein diste S
Computing Wasserstein distance

» other approximations, like Ye et al. (2016) using Simulated
Annealing

» regularized Wasserstein not a distance, but as § goes to
zZero,

QBp,é(,am ﬁn) — QIIp(/jnv ﬁn)
» for 0 small enough, 20, 5(fin, 7n) = Wp(fin, n) (exact)
» in practice, 6 5% of median(p(y;, 2;)?)i ;

[Cuturi, 2013]
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Computing Wasserstein distances
P g

» cost linear in the dimension of
observations

» distance calculations
model-independent

» other transport distances
calculated in O(nlogn), based
on different generalizations of
“sorting” (swapping, Hilbert)

[Gerber & Chopin, 201

ﬁource: Wikipedia]
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Computing Wasserstein distances
P g

» cost linear in the dimension of
observations

» distance calculations
model-independent

» other transport distances
calculated in O(nlogn), based
on different generalizations of
“sorting” (swapping, Hilbert)

[Gerber & Chopin, 201Bource: W1k1pcd1a]
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Transport distance via Hilbert curve

Sort multivariate data via space-filling curves, like

H:[0,1] — [0,1]¢

continuous mapping, with pseudo-inverse

h:[0,1]% = [0,1]

Compute order o € & of projected points, and compute

1/p
bp(ylinazln = ( Zp Yoy (i) crz(z) ) )

called
[Gerber & Chopin, 2015]
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Transport distance via Hilbert curve

hp(ylzn, 21:n) is a distance between empirical distributions

with n atoms, for all p > 1

Hence, by(y1:n, 21:n) = 0 if and only if y1., = 24(1:n), for a
permutation o, with hope to retrieve posterior as ¢ — 0

Cost O(nlogn) per calculation, but encompassing sampler
might be more costly than with regularized or exact
Wasserstein distances

Upper bound on corresponding Wasserstein distance, only
accurate for small dimension
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Adaptive SMC with r-hit moves

Start with g9 = 00

Vk € 1: N, sample 65 ~ 7(0) (prior)

(n)
ok

Vk € 1: N, compute the distance df = D (y1.n, 2¥.,)

Vk € 1: N, sample 2}, from p

=W

based on (6F)N_, and (d§)Y_,, compute €1, s.t.
resampled particles have at least 50% unique values
At step t > 1, weight wf oc 1(d}_; < &), resample, and perform

with adaptive independent proposals
[Lee, 2012; Lee and tatuszynski, 2014]
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Toy example: bivariate Normal

100 observations from bivariate Normal with variance 1 and

covariance 0.55

Compare WABC with ABC versions based on raw Euclidean
distance and Euclidean distance between (sufficient) sample

means on 10% model simulations.

4
Posterior
<]
| ; Q
3 Wasserstein § 1.00
173
. S [Euclidean
z, o
5 8 -
g .
=
- 8 010 A
Euclidean X]
1 3 |Wasserstein|
= \f\¥
0- 0.01
-1.25 -1.00 -0.75 -0.50 -0.25 1e+03 1e+04 1e+05 1e+06

04 # model simulations
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Toy example: bivariate Normal

100 observations from bivariate Normal with variance 1 and
covariance 0.55

Compare WABC with ABC versions based on raw Euclidean
distance and Euclidean distance between (sufficient) sample
means on 10% model simulations.

In terms of computing time, based on our R implementation on
an Intel Core i7-5820K (3.30GHz), each Euclidean distance
calculation takes an average 2.2 x 10* s while each Wasserstein
distance calculation takes an average 8:2 x 103s, i.e. 40 times
greater
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Quantile “g-and-k” distribution

bivariate extension of the g-and-k distribution with quantile
functions

1 —exp(— i 2i\T
i+ 0 (14087 e}g(_ihz 8) (142002) 50 )

and correlation p

Intractable density that can be numerically approximated
[Rayner and MacGillivray, 2002; Prangle, 2017]

Simulation by MCMC and W-ABC (sequential tolerance

exploration)
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Quantile “g-and-k” distribution

(i) p. () g2 last (k) 207 to
10 steps. posterior, vs.
simulations.
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4 Asymptotics
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Minimum Wasserstein estimator

Under some assumptions, 6, exists and

lim sup argmin 20, (fin,, pg) C argmln W, (s, 126)

n—oo 0cH

almost surely

In particular, if 6, = argmingeq, 20, (pux, 11g) is unique, then

A a.s,
0, — 0,
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Minimum Wasserstein estimator

Under stronger assumptions, incl. well-specification,
dim(Y) =1,and p=1

G, = 8. 2 st / G (t D, (1))|dt,
ueH
where G, is a j,-Brownian bridge, and D, € (L1 (R))% satisfies

/RlFe(t) — Fi(t) = (0 = 0x, Du(t))dt = o(]|6 — Ox][)

[Pollard, 1980; del Barrio et al., 1999, 2005]

Hard to use for confidence intervals, but the bootstrap is an
intersting alternative.
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Toy Gamma example

Data-generating process:

Yin Lig Gamma(10,5)
Model:
M ={N(p, %) : (n,0) e R x RT}

MLE converges to
argmingeq KL (s, o)

18 20 22
u

MLE top, MWE bottom

v poLw R

=Y o
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Toy Gamma example

60
> 40
Data-generating process: 5 20
iid. 0 |
Yiin Gamma(lo’ 5) 196 1.98 200 202
n
Model: 80
M= {N(p,0%) : (n,0) € R x RT} 2"
g 40
MLE converges to ) 20
argmingeqy KL (1, o) 0 -
0.60 0.61 0.62 0.63 0.64 0.6t
o
n = 10,000, MLE dashed,
MWE solidv .. _ WM.z
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Minimum expected Wasserstein estimator

én,m = argminE[D(ﬂm ﬂe,m)}
0cH
(m)

with expectation under distribution of sample 21, ~
giving rise to fig, = m ™1 37 6,
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Minimum expected Wasserstein estimator

én,m = argminE[D(lam ﬂ@,m)}
0cH
with expectation under distribution of sample z1.,, ~ uém)
giving rise to figm = m ™1 37 6,

Under further assumptions, incl. m(n) — co with n,

01275 Ewp(lan (w)’ ﬂ@,m(n)) - 012,{[ WP(M*a M@)

and

A

lim sup argmin EW,, (fin (w), fig,m(n)) C argmin Wy (uus, fig)-
n—00 0cH 0eH

=Y o

 poix R
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Minimum expected Wasserstein estimator

én’m = argmin E[D(fin, fig.m)]
0cH

with expectation under distribution of sample z1.,, ~ uém)

giving rise to g, = m ™1 37 6,
Further, for n fixed,

912,}:[ EWp(lan7 ﬂ&,m) — 012?5 Wp(ﬂnv MG)
as m — oo and

lim sup argmin EW,(fin, fig,m) C argmln Wy (fin, 126)-

m—r00 0cH

=Y o

 poix R
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Quantile “g-and-k” distribution

Sampling achieved by plugging standard Normal variables into
(1) in place of z(r).
MEWE with large m can be computed to high precision

[} 10 20 3
observations

(a) MEWE: a vs (b) MEWE: g vs (c) y/n-scaled (d) Histogram of
b. K. estim. of k. data.
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Asymptotics of WABC-posterior

» convergence to true posterior as € — 0
» convergence to non-Dirac as n — oo for fixed e

» Bayesian consistency if €, | € at proper speed
[Frazier, X & Rousseau, 2017]
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Asymptotics of WABC-posterior

» convergence to true posterior as € — 0
» convergence to non-Dirac as n — oo for fixed e
» Bayesian consistency if €, | € at proper speed
[Frazier, X & Rousseau, 2017]

Theoretical conditions extremely rarely open
checks in practice
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Asymptotics of WABC-posterior

For fixed n and € — 0, for i.i.d. data, assuming

sup pg(y) < 00
y,0

y — ug(y) continuous, the Wasserstein ABC-posterior converges
to the posterior irrespective of the choice of p and p

Concentration as both n — oo and € — ¢, = inf 20, (114, 1)
[Frazier et al., 2018]

Concentration on neighborhoods of 6, = arginf 20, (u, 16),
whereas posterior concentrates on arginf KL (g, g)
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Asymptotics of WABC-posterior

Rate of posterior concentration (and choice of ¢,) relates to
rate of convergence of the distance, e.g.

M((;n) (an <u9, % 25%) > u) < c(0) fn(u),
i=1

[Fournier & Guillin, 2015]
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Asymptotics of WABC-posterior

Rate of posterior concentration (and choice of ¢,) relates to
rate of convergence of the distance, e.g.

n RS
g (mp <uo, - Z%) > U) < c(0) fu(u),
i=1
[Fournier & Guillin, 2015]

fast or
slow, depending on moments of pg and choice of p
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Toy example: univariate

Data-generating process:

Vie "R Gamma(10, 5), n = 100,
with mean 2 and standard
deviation =~ 0.63

0 10 20
step

Evolution of ¢; against t, the step
index in the adaptive SMC sampler




Toy example: univariate

Data-generating process: “
Vie "R Gamma(10, 5), n = 100,

with mean 2 and standard

deviation ~ 0.63 ool

10 20
step

Evolution of ¢; against t, the step
index in the adaptive SMC sampler

Theoretical model:

M ={N(,0%) : (u,0) € R x R*}

Prior: p ~ N(0,1) and . )
o ~ Gamma(2,1) Convergence to posterior
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Toy example: multivariate

Observation space: ) = R0
Model: Y; ~ No(0,S), for

i € 1:100, where Sy; = 0.5F=7| for
k,jel:10

Data generated with 6, defined as
a 10-vector, chosen by drawing
standard Normal variables

Prior: 6; ~ N(0,1) for alli € 1: 10
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Toy example: multivariate

Observation space: ) = R10
Model: Y; ~ No(0,S), for

i € 1:100, where Sy; = 0.5*=7/ for
k,jel:10

Data generated with 6, defined as
a 10-vector, chosen by drawing
standard Normal variables

1e+06

1e+04

# distances calculated

0 10 20 30
step

Prior: 0; ~ N(0,1) for all i € 1:10 Evolution of number of distances
calculated up to ¢, step index in
adaptive SMC sampler
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Toy example: multivariate

Observation space: )) = R10

Model: Yz ~ ./\/-10(9,5), for &

i € 1:100, where S; = 0.55=31 for

k,jel:10

Data generated with 8, defined as

a 10-vector, chosen by drawing

standard Normal variables Bivariate marginal of (63, 07)

Prior: 6; ~ N(0,1) for all i € 1:10 approximated by SMC sampler
(posterior contours in yellow, 6,
indicated by black lines)
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sum of log-Normals

Distribution of the sum of log-Normal random variables
intractable but easy to simulate

L
z1,...,xp ~N(y,02) y:Zexp(we)
/=1

density

0 25 50 75
observations

2 -1 0 i 2
y [

03-02-0.1 0.0 0.1 02 0

¥
(a) MEWE of (b) v/n-scaled (¢) v/n-scaled (d) Histogram of
(v,0). estim. of . estim. of o. data.
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misspecified model

Gamma Gamma(10,5) data fitted with a Normal model
N(v,0?)

approximate MEWE by sampling k = 20 independent u() and
minimize

k
0 — kil Z Wp(ylzn7 gm(u(l)a 0))
i=1

0.9
60
08 60
07 2> 40 >
£ 2
° 06 é é 40
05 2 20
0.4 .
0 - -
16 18 20 22 24 16 18 20 22 24 194 1% 198 200 20: ’ 0.60 0.61 0.62 0.63 0,64 0.65
v v Y [
(a) MLE of (b) MEWE of  (c) Estimators  (d) Estimators
(v,0). (v,0). of ~. of o.
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5 Handling time series
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Method 1 (07): ignoring dependencies

Marginally
v~ N (0.0 (1-0%))

which identifies 02/ (1 — ¢?) but
not (¢, o)

Produces a region of plausible
parameters

log(c)

For n = 1,000, generated with
¢« = 0.7 and log o, = 0.9
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Method 2: delay reconstruction

Gt = (Yes Y1)
with marginal distribution

(@)= 09)

identifies both ¢ and o
Related to Takens’ theorem in
dynamical systems literature

for lag k, and treat §; as data

-1.0 0.5 0.0 05 1.0
¢ For

n = 1,000, generated with ¢, = 0.7
and logo, = 0.9.
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Method 3: residual reconstruction

Time series y1., deterministic transform of 8 and wy.,

Cosine example:

yr = Acos(2mwt + @) + owy

W ~ N(O, ].)

wy = (yr — Acos(2nwt + ¢)) /o
and calculate distance between
reconstructed wi.,, and Normal

sample
[Mengersen et al., 2013]
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Method 3: residual reconstruction

Time series yi., deterministic transform of 8 and wy.,

Cosine example:

yr = Acos(2rwt + ¢) + owy .
n = 500 observations with
wy = 1/80, ¢y = /4,

ox = 1, Ay, = 2, under prior s

U[0,0.1] and U[0, 27] for w and ¢,

and N (0,1) for logo,log A TR TwT T
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Cosine example with delay reconstruction,

40
2 2
8 20 3

107 §,

O . . . . .

0.000 0.025 0.050 0.075 0.10(

w

6

4
2 2
[%2] ]
c <
(] Q
o 2 ©

0

log(A)
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and with residual and delay reconstructions,

6000

4000

density
density

2000

0 B ——
0.000 0.025 0.050 0.075 0.10(
W ]

10.0

7.5

5.0

density
density

25

1

17

0.0

-2 =Y of




Method 4: curve matching

Define g = (t,y) for allt € 1 : n.

Define a metric on {1,...,T} x V. e.g.
p((t,ye), (8, 25)) = Alt = 8| + |y — 24|, for some A

Use distance D to compare 1., = (t, )7, and Z1., = (s, 25)74

If A > 1, optimal transport will associate each (¢, y;) with (¢, z;)
We get back the “vector” norm ||y1., — 21 /|-

If A =0, time indices are ignored: identical to Method 1

For any A\ > 0, there is hope to retrieve the posterior as ¢ — 0
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Cosine example

[Euclidean 51 Euclidean
1500 u
> .
-*(%‘ 1000 é 31 [Curve matching|
é Posterior| 3 2 Posterior|
500 .l
0 01
0.011 0012 0.013 0.6 0.9 12 14
4 ¢
(a) Posteriors of w. (b) Posteriors of ¢.
6
4
2 2 4
@ @
s c
o <
T 2 [Curve matchin s
Euclidean;
0- - - : 0 - ‘ : |
2 El 0 04 06 038 10
log(c) log(A)

(¢) Posteriors of log(o). (d) Posteriors of lt‘fé'z%).»\ PS“C'{M



Discussion

» Transport metrics can be used to compare samples

Various complexities from n?logn to n? to nlogn

» Asymptotic guarantees as € — 0 for fixed n,

and as n — oo and € — &,

» Various ways of applying these ideas to time series and

maybe spatial data, maps, images. . .

= B
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