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Generative model

Assumption of a data-generating distribution µ
(n)
? for data

y1:n = y1, . . . , yn ∈ Yn

Parametric generative model

M = {µ(n)
θ : θ ∈ H}

such that sampling (generating) z1:n from µ
(n)
θ is feasible

Prior distribution π(θ) available as density and generative model

Goal: inference on parameters θ given observations y1:n



Generic ABC

Basic (summary-less) ABC posterior with density

(θ, z1:n) ∼ π(θ) µ
(n)
θ 1 (‖y1:n − z1:n‖ < ε)∫

Yn 1 (‖y1:n − z1:n‖ < ε) dz1:n
.

and ABC marginal

qε(θ) =
∫
Yn
∏n
i=1 µ(dzi|θ)1 (‖y1:n − z1:n‖ < ε)∫
Yn 1 (‖y1:n − z1:n‖ < ε) dz1:n

unbiasedly estimated by π(θ)1 (‖y1:n − z1:n‖ < ε) where
z1:n ∼ µ(n)

θ

Reminder: ABC-posterior goes to posterior as ε→ 0



Summary statistics

Since random variable ‖y1:n − z1:n‖ may have large variance,

{‖y1:n − z1:n‖ < ε}

gets rare as ε→ 0 and rarer when d ↑

When using
|η(y1:n)− η(z1:n)‖ < ε

based on (insufficient) summary statistic η, variance and
dimension decrease but q-likelihood differs from likelihood

Arbitrariness and impact of summaries, incl. curse of
dimensionality
[X et al., 2011; Fearnhead & Prangle, 2012; Li & Fearnhead, 2016]



Distances between samples

Aim: Ressort to alternate distances D between samples y1:n
and z1:n such that

D(y1:n, z1:n)

has smaller variance than

‖y1:n − z1:n‖

while induced ABC-posterior still converges to posterior when
ε→ 0



ABC with order statistics

Recall that, for univariate i.i.d. data, order statistics are
sufficient

1. sort observed and generated samples y1:n and z1:n

2. compute

‖yσy(1:n) − zσz(1:n)‖p =
(

n∑
i=1
|y(i) − z(i)|p

)1/p

for order p (e.g. 1 or 2) instead of

‖y1:n − z1:n‖ =
(

n∑
i=1
|yi − zi|p

)1/p



Toy example

I Data-generating process given by

Y1:1000 ∼ Gamma(10, 5)

I Hypothesised model:

M = {N (µ, σ2) : (µ, σ) ∈ R× R+}

I Prior µ ∼ N (0, 1) and σ ∼ Gamma(2, 1)
I ABC-Rejection sampling: 105 draws, using Euclidean

distance, on sorted vs. unsorted samples and keeping 102

draws with smallest distances
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ABC with transport distances

Distance

D(y1:n, z1:n) =
(

1
n

n∑
i=1
|y(i) − z(i)|p

)1/p

is p-Wasserstein distance between empirical cdfs

µ̂n(dy) = 1
n

n∑
i=1

δyi(dy) and ν̂n(dy) = 1
n

n∑
i=1

δzi(dy)

Rather than comparing samples as vectors, alternative
representation as empirical distributions

c© Novel ABC method, which does not require
summary statistics, available with multivariate or
dependent data
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Wasserstein distance

Ground distance ρ (x, y) 7→ ρ(x, y) on Y along with order p ≥ 1
leads to Wasserstein distance between µ, ν ∈ Pp(Y), p ≥ 1:

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
Y×Y

ρ(x, y)pdγ(x, y)
)1/p

where Γ(µ, ν) set of joints with marginals µ, ν and Pp(Y) set of
distributions µ for which Eµ[ρ(Y, y0)p] <∞ for one y0



Wasserstein distance: univariate case

1 23 123

Two empirical distributions on R with 3 atoms:

1
3

3∑
i=1

δyi and 1
3

3∑
j=1

δzj

Matrix of pair-wise costs:ρ(y1, z1)p ρ(y1, z2)p ρ(y1, z3)p
ρ(y2, z1)p ρ(y2, z2)p ρ(y2, z3)p
ρ(y3, z1)p ρ(y3, z2)p ρ(y3, z3)p





Wasserstein distance: univariate case

1 23 123

Joint distribution

γ =

γ1,1 γ1,2 γ1,3
γ2,1 γ2,2 γ2,3
γ3,1 γ3,2 γ3,3

 ,
with marginals (1/3 1/3 1/3), corresponds to a transport
cost of

3∑
i,j=1

γi,jρ(yi, zj)p



Wasserstein distance: univariate case

1 23 123

Optimal assignment:

y1 ←→ z3

y2 ←→ z1

y3 ←→ z2

corresponds to choice of joint distribution γ

γ =

 0 0 1/3
1/3 0 0
0 1/3 0

 ,
with marginals (1/3 1/3 1/3) and cost

∑3
i=1 ρ(y(i), z(i))p



Wasserstein distance

Two samples y1, . . . , yn and z1, . . . , zm

Wp(µ̂n, ν̂m) = 1
nm

∑
i,j

ρ(y,zj)

Important special case when n = m, for which solution to the
optimization problem γ? corresponds to an assignment matrix,
with only one non-zero entry per row and column, equal to n−1.

[Villani, 2003]



Wasserstein distance

Two samples y1, . . . , yn and z1, . . . , zm

Wp(µ̂n, ν̂m) = 1
nm

∑
i,j

ρ(y,zj)

Wasserstein distance thus represented as

Wp(y1:n, z1:n)p = inf
σ∈Sn

1
n

n∑
i=1

ρ(yi, zσ(i))p

Computing Wasserstein distance between two samples of same
size equivalent to optimal matching problem.



Wasserstein distance: bivariate case

1

2

3

1

2

3

there exists a joint distribution γ minimizing cost

3∑
i,j=1

γi,jρ(yi, zj)p

with various algorithms to compute/approximate it



Wasserstein distance

I also called Vaserštĕın, Earth Mover, Gini, Mallows,
Kantorovich, Rubinstein, &tc.

I can be defined between arbitrary distributions
I actual distance
I statistically sound:

θ̂n = arginf
θ∈H

Wp(
1
n

n∑
i=1

δyi , µθ)→ θ? = arginf
θ∈H

Wp(µ?, µθ),

at rate
√
n, plus asymptotic distribution

[Bassetti & al., 2006]



Optimal transport to Parliement



Short bio
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Computing Wasserstein distances

I when Y = R, computing Wp(µn, νn) costs O(n logn)
I when Y = Rd, exact calculation is O(n3) [Hungarian]or
O(n2.5 logn) [short-list]

For entropic regularization, with δ > 0

Wp,δ(µ̂n, ν̂n)p = inf
γ∈Γ(µ̂n,ν̂n)

{∫
Y×Y

ρ(x, y)pdγ(x, y)− δH(γ)
}
,

where H(γ) = −
∑
ij γij log γij entropy of γ, existence of

Sinkhorn’s algorithm that yields cost O(n2)
[Genevay et al., 2016]



Computing Wasserstein distances

I other approximations, like Ye et al. (2016) using Simulated
Annealing

I regularized Wasserstein not a distance, but as δ goes to
zero,

Wp,δ(µ̂n, ν̂n)→Wp(µ̂n, ν̂n)
I for δ small enough, Wp,δ(µ̂n, ν̂n) = Wp(µ̂n, ν̂n) (exact)
I in practice, δ 5% of median(ρ(yi, zj)p)i,j

[Cuturi, 2013]



Computing Wasserstein distances

I cost linear in the dimension of
observations

I distance calculations
model-independent

I other transport distances
calculated in O(n logn), based
on different generalizations of
“sorting” (swapping, Hilbert)

[Gerber & Chopin, 2015]
I acceleration by combination of

distances and subsampling

[source: Wikipedia]
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Transport distance via Hilbert curve

Sort multivariate data via space-filling curves, like Hilbert
space-filling curve

H : [0, 1]→ [0, 1]d

continuous mapping, with pseudo-inverse

h : [0, 1]d → [0, 1]

Compute order σ ∈ S of projected points, and compute

hp(y1:n, z1:n) =
(

1
n

n∑
i=1

ρ(yσy(i), zσz(i))p
)1/p

,

called Hilbert ordering transport distance
[Gerber & Chopin, 2015]



Transport distance via Hilbert curve

Fact: hp(y1:n, z1:n) is a distance between empirical distributions
with n atoms, for all p ≥ 1

Hence, hp(y1:n, z1:n) = 0 if and only if y1:n = zσ(1:n), for a
permutation σ, with hope to retrieve posterior as ε→ 0

Cost O(n logn) per calculation, but encompassing sampler
might be more costly than with regularized or exact
Wasserstein distances

Upper bound on corresponding Wasserstein distance, only
accurate for small dimension



Adaptive SMC with r-hit moves

Start with ε0 =∞

1. ∀k ∈ 1 : N , sample θk0 ∼ π(θ) (prior)
2. ∀k ∈ 1 : N , sample zk1:n from µ

(n)
θk

3. ∀k ∈ 1 : N , compute the distance dk0 = D(y1:n, z
k
1:n)

4. based on (θk0)Nk=1 and (dk0)Nk=1, compute ε1, s.t.
resampled particles have at least 50% unique values

At step t ≥ 1, weight wkt ∝ 1(dkt−1 ≤ εt), resample, and perform
r-hit MCMC with adaptive independent proposals

[Lee, 2012; Lee and  Latuszyński, 2014]



Toy example: bivariate Normal

100 observations from bivariate Normal with variance 1 and
covariance 0.55
Compare WABC with ABC versions based on raw Euclidean
distance and Euclidean distance between (sufficient) sample
means on 106 model simulations.



Toy example: bivariate Normal

100 observations from bivariate Normal with variance 1 and
covariance 0.55
Compare WABC with ABC versions based on raw Euclidean
distance and Euclidean distance between (sufficient) sample
means on 106 model simulations.
In terms of computing time, based on our R implementation on
an Intel Core i7-5820K (3.30GHz), each Euclidean distance
calculation takes an average 2.2 x 104 s while each Wasserstein
distance calculation takes an average 8:2 x 103s, i.e. 40 times
greater



Quantile “g-and-k” distribution

bivariate extension of the g-and-k distribution with quantile
functions

ai + bi

(
1 + 0.81− exp(−gizi(r)

1 + exp(−giz(r)

)(
1 + zi(r)2

)k
zi(r) (1)

and correlation ρ
Intractable density that can be numerically approximated

[Rayner and MacGillivray, 2002; Prangle, 2017]
Simulation by MCMC and W-ABC (sequential tolerance
exploration)



Quantile “g-and-k” distribution

(a) a1. (b) b1. (c) g1. (d) k1.

(e) a2. (f) b2. (g) g2. (h) k2.

(i) ρ. (j) g2 last
10 steps.

(k) W1 to
posterior, vs.
simulations.
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Minimum Wasserstein estimator

Under some assumptions, θ̂n exists and

lim sup
n→∞

argmin
θ∈H

Wp(µ̂n, µθ) ⊂ argmin
θ∈H

Wp(µ?, µθ),

almost surely

In particular, if θ? = argminθ∈HWp(µ?, µθ) is unique, then

θ̂n
a.s.−→ θ?



Minimum Wasserstein estimator

Under stronger assumptions, incl. well-specification,
dim(Y) = 1, and p = 1

√
n(θ̂n − θ?)

w−→ argmin
u∈H

∫
R
|G?(t)− 〈u,D?(t)〉|dt,

where G? is a µ?-Brownian bridge, and D? ∈ (L1(R))dθ satisfies∫
R
|Fθ(t)− F?(t)− 〈θ − θ?, D?(t)〉|dt = o(‖θ − θ?‖H)

[Pollard, 1980; del Barrio et al., 1999, 2005]

Hard to use for confidence intervals, but the bootstrap is an
intersting alternative.



Toy Gamma example

Data-generating process:

y1:n
i.i.d.∼ Gamma(10, 5)

Model:

M = {N (µ, σ2) : (µ, σ) ∈ R× R+}

MLE converges to
argminθ∈HKL(µ?, µθ)

MLE top, MWE bottom



Toy Gamma example

Data-generating process:

y1:n
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Model:
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Minimum expected Wasserstein estimator

θ̂n,m = argmin
θ∈H

E[D(µ̂n, µ̂θ,m)]

with expectation under distribution of sample z1:m ∼ µ(m)
θ

giving rise to µ̂θ,m = m−1∑m
i=1 δzi .



Minimum expected Wasserstein estimator

θ̂n,m = argmin
θ∈H

E[D(µ̂n, µ̂θ,m)]

with expectation under distribution of sample z1:m ∼ µ(m)
θ

giving rise to µ̂θ,m = m−1∑m
i=1 δzi .

Under further assumptions, incl. m(n)→∞ with n,

inf
θ∈H

EWp(µ̂n(ω), µ̂θ,m(n))→ inf
θ∈H
Wp(µ?, µθ)

and

lim sup
n→∞

argmin
θ∈H

EWp(µ̂n(ω), µ̂θ,m(n)) ⊂ argmin
θ∈H

Wp(µ?, µθ).



Minimum expected Wasserstein estimator

θ̂n,m = argmin
θ∈H

E[D(µ̂n, µ̂θ,m)]

with expectation under distribution of sample z1:m ∼ µ(m)
θ

giving rise to µ̂θ,m = m−1∑m
i=1 δzi .

Further, for n fixed,

inf
θ∈H

EWp(µ̂n, µ̂θ,m)→ inf
θ∈H
Wp(µ̂n, µθ)

as m→∞ and

lim sup
m→∞

argmin
θ∈H

EWp(µ̂n, µ̂θ,m) ⊂ argmin
θ∈H

Wp(µ̂n, µθ).



Quantile “g-and-k” distribution

Sampling achieved by plugging standard Normal variables into
(1) in place of z(r).
MEWE with large m can be computed to high precision

(a) MEWE: a vs
b.

(b) MEWE: g vs
κ.
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Asymptotics of WABC-posterior

I convergence to true posterior as ε→ 0
I convergence to non-Dirac as n→∞ for fixed ε

I Bayesian consistency if εn ↓ ε? at proper speed
[Frazier, X & Rousseau, 2017]

WARNING: Theoretical conditions extremely rarely open
checks in practice
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Asymptotics of WABC-posterior

For fixed n and ε→ 0, for i.i.d. data, assuming

sup
y,θ

µθ(y) <∞

y 7→ µθ(y) continuous, the Wasserstein ABC-posterior converges
to the posterior irrespective of the choice of ρ and p

Concentration as both n→∞ and ε→ ε? = inf Wp(µ?, µθ)
[Frazier et al., 2018]

Concentration on neighborhoods of θ? = arginf Wp(µ?, µθ),
whereas posterior concentrates on arginf KL(µ?, µθ)



Asymptotics of WABC-posterior

Rate of posterior concentration (and choice of εn) relates to
rate of convergence of the distance, e.g.

µ
(n)
θ

(
Wp

(
µθ,

1
n

n∑
i=1

δzi

)
> u

)
≤ c(θ)fn(u),

[Fournier & Guillin, 2015]

Rate of convergence decays with the dimension of Y, fast or
slow, depending on moments of µθ and choice of p
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µ
(n)
θ

(
Wp

(
µθ,

1
n

n∑
i=1

δzi

)
> u

)
≤ c(θ)fn(u),

[Fournier & Guillin, 2015]

Rate of convergence decays with the dimension of Y, fast or
slow, depending on moments of µθ and choice of p



Toy example: univariate

Data-generating process:
Y1:n

i.i.d.∼ Gamma(10, 5), n = 100,
with mean 2 and standard
deviation ≈ 0.63 0.0
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Theoretical model:

M = {N (µ, σ2) : (µ, σ) ∈ R× R+}

Prior: µ ∼ N (0, 1) and
σ ∼ Gamma(2, 1)
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Toy example: multivariate

Observation space: Y = R10

Model: Yi ∼ N10(θ, S), for
i ∈ 1 : 100, where Skj = 0.5|k−j| for
k, j ∈ 1 : 10
Data generated with θ? defined as
a 10-vector, chosen by drawing
standard Normal variables
Prior: θi ∼ N (0, 1) for all i ∈ 1 : 10



Toy example: multivariate

Observation space: Y = R10

Model: Yi ∼ N10(θ, S), for
i ∈ 1 : 100, where Skj = 0.5|k−j| for
k, j ∈ 1 : 10
Data generated with θ? defined as
a 10-vector, chosen by drawing
standard Normal variables
Prior: θi ∼ N (0, 1) for all i ∈ 1 : 10
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Toy example: multivariate

Observation space: Y = R10

Model: Yi ∼ N10(θ, S), for
i ∈ 1 : 100, where Skj = 0.5|k−j| for
k, j ∈ 1 : 10
Data generated with θ? defined as
a 10-vector, chosen by drawing
standard Normal variables
Prior: θi ∼ N (0, 1) for all i ∈ 1 : 10

Bivariate marginal of (θ3, θ7)
approximated by SMC sampler
(posterior contours in yellow, θ?
indicated by black lines)



sum of log-Normals

Distribution of the sum of log-Normal random variables
intractable but easy to simulate

x1, . . . , xL ∼ N (γ, σ2) y =
L∑
`=1

exp(x`)

(a) MEWE of
(γ, σ).
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misspecified model

Gamma Gamma(10, 5) data fitted with a Normal model
N (γ, σ2)
approximate MEWE by sampling k = 20 independent u(i) and
minimize

θ 7→ k−1
k∑
i=1
Wp(y1:n, gm(u(i), θ))

(a) MLE of
(γ, σ).

(b) MEWE of
(γ, σ).
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Method 1 (0?): ignoring dependencies

Consider only marginal distribution
AR(1) example:

y0 ∼ N
(

0, σ2

1− φ2

)
, yt+1 ∼ N

(
φyt, σ

2
)
.

Marginally

yt ∼ N
(
0, σ2/

(
1− φ2

))
which identifies σ2/

(
1− φ2) but

not (φ, σ)
Produces a region of plausible
parameters

For n = 1, 000, generated with
φ? = 0.7 and log σ? = 0.9



Method 2: delay reconstruction

Introduce ỹt = (yt, yt−1, . . . , yt−k) for lag k, and treat ỹt as data

AR(1) example: ỹt = (yt, yt−1)
with marginal distribution

N
((

0
0

)
,

σ2

1− φ2

(
1 φ
φ 1

))
,

identifies both φ and σ
Related to Takens’ theorem in
dynamical systems literature

For
n = 1, 000, generated with φ? = 0.7
and log σ? = 0.9.



Method 3: residual reconstruction

Time series y1:n deterministic transform of θ and w1:n

Given y1:n and θ, reconstruct w1:n

Cosine example:

yt = A cos(2πωt+ φ) + σwt

wt ∼ N (0, 1)
wt = (yt −A cos(2πωt+ φ))/σ

and calculate distance between
reconstructed w1:n and Normal
sample

[Mengersen et al., 2013]



Method 3: residual reconstruction

Time series y1:n deterministic transform of θ and w1:n

Given y1:n and θ, reconstruct w1:n

Cosine example:
yt = A cos(2πωt+ φ) + σwt
n = 500 observations with
ω? = 1/80, φ? = π/4,
σ? = 1, A? = 2, under prior
U [0, 0.1] and U [0, 2π] for ω and φ,
and N (0, 1) for log σ, logA

−2.5

0.0

2.5

0 100 200 300 400 500

time

y



Cosine example with delay reconstruction, k = 3
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and with residual and delay reconstructions,
k = 1
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Method 4: curve matching

Define ỹt = (t, yt) for all t ∈ 1 : n.

Define a metric on {1, . . . , T} × Y. e.g.
ρ((t, yt), (s, zs)) = λ|t− s|+ |yt − zs|, for some λ

Use distance D to compare ỹ1:n = (t, yt)nt=1 and z̃1:n = (s, zs)ns=1

If λ� 1, optimal transport will associate each (t, yt) with (t, zt)
We get back the “vector” norm ‖y1:n − z1:n‖.

If λ = 0, time indices are ignored: identical to Method 1

For any λ > 0, there is hope to retrieve the posterior as ε→ 0



Cosine example

(a) Posteriors of ω. (b) Posteriors of φ.

(c) Posteriors of log(σ). (d) Posteriors of log(A).



Discussion

I Transport metrics can be used to compare samples
Various complexities from n3 logn to n2 to n logn

I Asymptotic guarantees as ε→ 0 for fixed n,
and as n→∞ and ε→ ε?

I Various ways of applying these ideas to time series and
maybe spatial data, maps, images. . .
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