Approximate Bayesian model choice as a Machine Learning problem

Pierre Pudlo

Aix-Marseille University Institut de Mathématiques de Marseille (I2M)

November 27th, 2018

Pierre Pudlo (AMU)

ABC model choice

11/27/2018 1 / 21

Joint work with

Jean-Marie Cornuet, Arnaud Estoup and Mathieu Gautier

J.-M. Marin, C.P. Robert, J. Stoehr and G. Aufort

Pierre Pudlo (AMU)

ABC model choice

2 The Machine Learning perspective on ABC

Oumerical results

Table of Contents

The Machine Learning perspective on ABC

3 Numerical results

・ロト ・回ト ・ヨト ・ヨト

Introduction

Bayesian model choice

The evidence of model \mathcal{M}

• is
$$p(\mathbf{x}|\mathscr{M}) = \int \pi(\theta|\mathscr{M}) f(\mathscr{P}|\theta,\mathscr{M}) f(\mathbf{x}|\mathscr{P},\theta,\mathscr{M}) \,\mathrm{d}\mathscr{P} \mathrm{d}\theta$$

where:

- $\bullet \ \mathscr{P}$ is the past history
- x is data collected at present
- \mathcal{M} is the model index
- θ the parameters

Prior/posterior on the collection of models

- prior probability of model *M*:
 p(*M*)
- posterior probability of model \mathcal{M} : $p(\mathcal{M}|x) \propto p(\mathcal{M})p(\mathbf{x}|\mathcal{M})$

The MAP model

 selects the model with maximum a posteriori probability

How to compute the posterior probability?

or the MAP model?

イロト イポト イヨト イヨト

11/27/2018 5 / 21

Approximate Bayesian computation (ABC)

Intractable likelihood

Case of a well-defined statistical model where the likelihood function

 $f(\mathbf{x}|\theta)$

- is (really!) not available in closed form
- cannot (easily!) be either completed or demarginalised
- cannot be (at all!) estimated by an unbiased estimator

Issue. Prohibits direct implementation of a generic MCMC algorithm like Metropolis-Hastings, Gibbs, (or EM algorithms)

In population genetics: a latent process

- of high dimension,
- including combinatorial structures
- \implies intractable likelihoods

ABC is a computational technique that only requires being able to sample from the likelihood $f(\mathbf{x}|\theta)$. Griffiths et al. (1997); Tavaré et al. (1999)

Getting approximative

- Summarising/replacing the data with (possibly insufficient) statistics
- Replacing the likelihood with a nonparametric approximation

A Model choice issue in population genetics

Data

- with samples from
 - Nigeria (YRI)
 - China (CHB)
 - England (GBR)
 - African-Americans (ASW)
- genotyped at *L* = 50,000 loci on the autosomal chromosomes

Questions?

- A single out-of-Africa colonization event? or two?
- Can ASW be explained by admixture between GBR & YRI?

Dimension of θ depends on the model

(日) (同) (日) (日)

Introduction

ABC in Astrophysics

Intractable likelihood

Case of a well-defined statistical model where the likelihood function

 $f(\mathbf{x}|\theta)$

- is (really!) not available in closed form
- cannot (easily!) be either completed or demarginalised
- cannot be (at all!) estimated by an unbiased estimator

Issue. Prohibits direct implementation of a generic MCMC algorithm like Metropolis-Hastings, Gibbs, (or EM algorithms) **In Astrophysics:** we have lots of datasets to analyse

- with the same (not that intractable) likelihood
- and the same prior
- \implies ABC speeds up the computation

Almost not approximative

- We do not summarise the data: each galaxy is represented by a vector of dimension ≈ 20 .
- Replacing the likelihood with a nonparametric approximation on simulations

<ロ> (日) (日) (日) (日) (日)

A Model choice issue in Astrophysics

Star formation history (SFH) of a galaxy

Should we had a break to account for recent variation in the SFH?

Model: a complex model that takes SFH & many other (unknown!) parameters as entry and return a simulated SED.

Data: Spectral Energy Distribution (SED) sampled at a few points (20 datapoints per galaxy)

< ロ > < 同 > < 三 > < 三

3 simulated Spectral Energy Distributions (SED)

11/27/2018 9 / 21

Table of Contents

ABC model choice

Simulation algorithm

For *i* in 1 : *N*

- Draw \mathcal{M}_i from prior probability
- Draw θ_i from prior of the model
- Draw a dataset \mathbf{x}_i from \mathcal{M}_i, θ_i

EndFor

Summarize datasets

- with a non linear S : data space $\rightarrow \mathbb{R}^d$
- to compare $S(\mathbf{x}_{obs})$ & the $S(\mathbf{x}_i) = (S_1(\mathbf{x}_i), \dots, S_d(\mathbf{x}_i))$'s

Questions?

What can be said about *M* |x_{obs} with the help of the simulations (*M_i*, x_i) drawn from the joint distribution?

Rejection ABC

- $\bullet\,$ Choose a threeshold $\varepsilon\,$
- Compute the frequency of each model among the simulations that satisfy ||S(x_i) − S(x_{obs})|| ≤ ε

How to tune ε ?

• Set ε so that the number of accepted simulations is K_{accepted}

<ロ> (日) (日) (日) (日) (日)

⇒ Looks like K-nearest neighbor method

The reference table of simulations

The Machine Learning perspective

The reference table

• A large set of *N* simulations ($\mathcal{M}_i, \mathbf{x}_i$) drawn from the Bayesian model:

 $p(\mathcal{M})\pi(\theta|\mathcal{M})f(\mathcal{P}|\theta,\mathcal{M})f(\mathbf{x}|\theta,\mathcal{M})$

Key point

- \implies Train a machine learning algorithm with the N simulations:
 - Response: the model index *M*,
 - Covariates: the summary statistics *S*(**x**).

The goal

Find the MAP model

\iff

Predict the unknown ${\mathscr M}$

• Compute the posterior pr. $p(\mathcal{M} = 1 | \mathbf{x}_{obs})$

\iff

 $\begin{array}{l} \mbox{Predict the average response} \\ \rho(\mathscr{M} = 1 | \mathbf{x}_{\rm obs}) = \\ \mathbb{E} \Big(\mathbf{1} \{ \mathscr{M} = 1 \} \big| \mathbf{x}_{\rm obs} \Big) \end{array}$

イロト イポト イヨト イヨト

Biau, Cérou, Guyader (2015): New insights into Approx. Bayesian Comput. Pudlo, Marin et al. (2016): Reliable ABC model choice via random forests

The ML perspective (continued)

- If the response is *M* which is discrete, we face a classification problem on the set of simulations
- If the response is the indicator vector $(0, \ldots, 1, 0, \ldots, 0)$, we face a regression problem

Basic ABC model choice

- Select the k closest S(x_i)'s to the observed data S(x)
- Predict *M* as the most frequent model among these selected simulations
 or
- Return the frequency of each model among these simulations (=averaging the indicator vectors)

Key point

- can be interpreted as a *k*-nearest neighbor learning method on the set of simulations
- k is the number of selected simulations at 1st stage

Other ABC algorithms from the literature

- can be interpreted as a well-known learning method on the simulations
- Eg. Beaumont's postprocessing = local linear methods
- $\implies \text{ all local or nn methods suffer from the curse of dimensionality: dim d of <math>S(\mathbf{x})$ should be small

Our use of random forest

First random forest

- We first renounce approximating the posterior probabilities
- We begin by training a random forest on the reference table of simulations
 - to predict the model index (the response)
 - based on the summary statistics (the covariates)
- This gives us an approximation of the MAP model

 $\hat{M}(\mathbf{x})$

The prior misclassification error rate

• The amount of errors made by the random forest on simulations drawn the prior distribution

the prior error rate

- It represents how difficult the two models (likelihoods & priors) are separated from each other
- It can be computed (easily) with cross-validation (or out-of-bag techniques on RF)

But does the observed data fall into a part of the data space where it is difficult to assess a model? \rightarrow Conditional error rate knowing x

The second random forest

The conditional misclassification error rate knowing x

After training the first random forest, For i in 1 : N

• compute the out-of-bag prediction $\widehat{\mathscr{M}}(\mathbf{x}_i)$ for each simulation

• set
$$Y_i = \mathbf{1}\{\widehat{\mathscr{M}}(\mathbf{x}_i) \neq \mathscr{M}_i\}$$

EndFor

Proposition

The conditional error rate = 1- posterior pr of the MAP

$$\mathbb{E}(\mathbf{1}\{\widehat{\mathscr{M}}(\mathsf{x})\neq\mathscr{M}\}|S(\mathsf{x}))=1{-}\mathbb{P}(\widehat{\mathscr{M}}(\mathsf{x})|S(\mathsf{x}))$$

Train a second random forest

- to predict Y_i knowing \mathbf{x}_i
- with L^2 -loss

Reliable because

- a univariate response Y
- based the best prediction of the MAP (the 1st random forest)
- the out-of-bag trick avoids underestimating the error (without resorting cross-validation)

Other Machine Learning Techniques

- Papamakarios G., Murray I (NIPS, 2016): Fast ε-free inference of simulation models with Bayesian conditional density estimation
- Bai Jiang, T-Y Wu, C Zheng, W H. Wong: ABC via Deep Neural Network (2017, arxiv)
- In Astrophysics, we are currently trying to use
 - Gradient Boosting Machine (XGBoost)
 - Deep Neural Network
- Instead of the RF two stages' algorithm, we train only one machine to compute directly the posterior probability of the most complex model
- With Deep NN: the main difficulty is to find a good network architecture \implies Grégoire Aufort
- Results in term of prior error rate where comparable ($\approx 10\%$)

<ロ> (日) (日) (日) (日) (日)

Table of Contents

2 The Machine Learning perspective on ABC

・ロト ・回ト ・ヨト ・ヨト

On the Human history

Method	prior error(%)
LDA	9.91
<i>k</i> -nn on <i>S</i> (x)	23.18
k-nn on LDA axes	6.29
RF	8.84
RF on <i>S</i> (x) & LDA	5.01
on a set of $N = 10,000$ simulations	
& $dim(S(\mathbf{x})) = 112$	

 Random forest (RF) is the best classifier if we complements the original summary statistics with projections of S(x_i) on the axes of a linear discriminant analysis (LDA) that aims at predicting the model

- The predicted model on the Human genetic data
 - a single out-of-Africa colonization event
 - with admixture to explain Afro-Americans
- With the second forest, the posterior error knowing the observed data ≈ 0.002
- Hence posterior probability of the MAP ≈ 0.998

 much faster algorithm than nn methods or local linear methods on a large set of simulations

イロト イヨト イヨト イヨト

ABC model choice

On the Star Formation History on $\approx 4 \times 10^4$ galaxies

Differences with the population genetic example

- one observation $\rightarrow \approx 4 \times 10^4$ observed galaxies
- $\implies \approx 4 \times 10^4 \text{ posterior probabilities to} \\ \text{compute}$
 - Once a machine learning method is trained on the simulations, computing the posterior probability of each model is relatively fast

+

- Two random forests → one Gradient Boosting Machine
- We have also computed an ABC posterior *p*-value of the most complex model

Dist. of posterior probabilities of the most complex model

Distr. of the ABC posterior *p*-values of the most complex model on all observed galaxies

- When no other inference method at our disposal, ABC is a valuable tool
- ABC is based on a set of simulations from the model(s)
- Replace the dataset x with S(x), hence replace $p(\cdot|x)$ with $p(\cdot|S(x))$
- Should be seen as a learning problem on the set of simulations
- Take care of what we want to learn and the learning method
- A package abcrf on CRAN which implements our Random Forest methodology