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Partial exchangeability & measuring dependence

Beyond exchangeability

From de Finetti (1938):

But the case of exchangeability can only be considered as a limiting case:
the case in which this “ analogy ” is, in a certain sense, absolute for all
events under consideration. [..] To get from the case of exchangeability
to other cases which are more general but still tractable, we must take
up the case where we still encounter “ analogies ” among the events under
consideration, but without attaining the limiting case of exchangeability.

In applications dependence structures more general than exchangeability are
required. We focus on data collected under different experimental conditions s.t.

I Homogeneity within each experimental condition
I Heterogeneity across different experimental conditions

Examples: Topic modeling, Meta-Analysis, two-sample problems, nonparametric
regression (covariate–indexed data), time dependent data, change-point problems ...
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Partial exchangeability & measuring dependence Partial exchangeability

Partial exchangeability

The array (X1,X2) = (X1,i ,X2,j )i,j≥1 is partially exchangeable if

(X1,1, . . . ,X1,n1 ,X2,1, . . . ,X2,n2 ) d= (X1,π(1), . . . ,X1,π(n1),X2,φ(1), . . . ,X2,φ(n2))

for any n1, n2 ≥ 1 and any permutations π and φ of (1, . . . , n1) and (1, . . . , n2).

de Finetti’s representation theorem

(X1,X2) is partially exchangeable if and only if

P [X1,1 ∈ A1, . . . ,X1,n1 ∈ An1 ,X2,1 ∈ B1, . . . ,X2,n2 ∈ Bn2 ]

=
∫

P2

n1∏
i=1

P1(Ai )
n2∏

j=1

P2(Bj ) Q(dP1, dP2).

=⇒ This is the same as saying that

(X1,i ,X2,j ) | P̃1, P̃2
iid∼ P̃1 × P̃2 ∀i , j ≥ 1

(P̃1, P̃2) ∼ Q

with (P̃1, P̃2) a vector of dependent random probability measures and Q the prior.
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Partial exchangeability & measuring dependence Dependence and its extreme cases

Measuring dependence
Extreme cases of dependence induced by the prior Q

I Maximal dependence ⇐⇒ full exchangeability
i.e. Q is degenerate on the diagonal {(P1,P2) ∈P2 : P1 = P2},
namely P̃1 = P̃2 (a.s.)

I Independence ⇐⇒ P̃1 and P̃2 are (unconditionally) independent
with respect to Q.
=⇒ corresponds to maximal heterogeneity: inference on each sample
is not influenced by the observations from the other sample.

Correlation as measure of dependence

The most popular measure of dependence is correlation: since

corr(P̃1(A), P̃2(A)),
typically does not depend on A it is taken as a measure of overall dependence.
Extreme cases correspond to:

I perfect linearity, which is implied by P̃1 = P̃2 a.s.
I uncorrelation, which is implied by P̃1 ⊥⊥ P̃2

=⇒ good proxy for the desired measure of dependence!
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Dependent priors via random measures & Hierarchical NRMIs

Dependent priors via transformed random measures

Most popular approach to the definition of dependent nonparametric priors is via
dependent stick-breaking constructions introduced by MacEachern (1999, 2000)

I Pros: “simple” implementation of “conditional” algorithms;
I Cons: it is almost impossible to derive analytic expressions for quantities of

interest both marginal and conditional.

Approach based on general random measures with 3 possible strategies (and
combinations thereof) for creating dependence:

1. Hierarchical structures
First proposed by Teh, Jordan, Beal & Blei (2006) for the Dirichlet process
with stick-breaking representation: Hierarchical Dirichlet process (HDP)
=⇒ here defined for general processes and studied as transformed random
measures

2. Additive structures
First proposed by Müller, Quintana & Rosner (2004) for the Dirichlet process
with stick-breaking representation. For general normalized random measures
theory developed in Lijoi, Nipoti and P. (2014).

3. Nested structures
=⇒ Antonio’s talk!
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Dependent priors via random measures & Hierarchical NRMIs Completely random measures

Completely random measures

Completely random measures (Kingman, 1967)

A random element µ̃ taking values in the space of boundedly finite measures
M such that, for any d ≥ 1 and collection of pairwise disjoint sets A1, . . . ,Ad ,
the random variables

µ̃(A1), µ̃(A2), . . . µ̃(Ad ) are mutually independent

is said to be a completely random measure (CRM).

Key properties

Assume µ̃ has no fixed points of discontinuity

I The realizations of a CRM are a.s. discrete i.e. µ̃( · ) =
∑∞

i=1 JiδZi ( · )
I A CRM µ̃ is uniquely characterized by its Laplace functional

E
[

e−
∫

X
g(x) µ̃(dx)

]
= e
−
∫

R+×X
[1−e−v g(x)]ν(dv,dx)

with ν indicating the Lévy intensity, which characterizes the CRM µ̃.
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Dependent priors via random measures & Hierarchical NRMIs Transformations of CRMs

CRM–based nonparametric priors

Normalized completely random measures (Regazzini, Lijoi and P., 2003)

Let µ̃ be a CRM on X such that 0 < µ̃(X) <∞ a.s. Then

P̃( · ) =
µ̃( · )
µ̃(X)

is a normalized completely random measure (NRMI=Normalized Random
Measure with Independent increments).

In the following we will consider a.s. finite homogeneous CRMs i.e.
ν(dv ,dx) = ρ(dv)cP(dx) and write µ̃ ∼ CRM(ρ, c,P) and P̃ ∼ NRMI(ρ, c,P).

Pitman–Yor process (Pitman & Yor, 1997)

A Pitman–Yor process with parameters σ ∈ (0, 1) and θ > 0 can be defined
via normalization as

P̃ =
µ̃σ,θ

µ̃σ,θ(X)
∼ PY(σ, θ; P)

where µ̃σ,θ is a suitable transformation of a specific CRM (but not a CRM).
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Dependent priors via random measures & Hierarchical NRMIs Hierarchical NRMI models

Hierarchical NRMI processes
Hierarchical NRMIs for partially exchangeable data

(X1,i ,X2,j ) | (P̃1, P̃2) iid∼ P̃1 × P̃2 ∀i , j ≥ 1

(P̃1, P̃2) | P̃0
iid∼ NRMI(ρ, c,P̃0)

P̃0 ∼ NRMI(ρ0, c0,P0)

with P0 a non–atomic measure on X.

Special cases

I Hierarchical Dirichlet process (HDP)
=⇒ NRMIs coincide with the Dirichlet process, i.e.

ρ(dv) = ρ0(dv) =
e−v

v
dv

I Hierarchical normalized stable process (HnstP)
=⇒ NRMIs coincide with the normalized stable process, i.e.

ρ(dv) =
σ

Γ(1− σ)v1+σ dv ρ0(dv) =
σ0

Γ(1− σ0)v1+σ0
dv

9 / 33



Dependent priors via random measures & Hierarchical NRMIs Hierarchical NRMI models

Hierarchical NRMI processes
Hierarchical NRMIs for partially exchangeable data

(X1,i ,X2,j ) | (P̃1, P̃2) iid∼ P̃1 × P̃2 ∀i , j ≥ 1

(P̃1, P̃2) | P̃0
iid∼ NRMI(ρ, c,P̃0)

P̃0 ∼ NRMI(ρ0, c0,P0)

with P0 a non–atomic measure on X.

Special cases

I Hierarchical Dirichlet process (HDP)
=⇒ NRMIs coincide with the Dirichlet process, i.e.

ρ(dv) = ρ0(dv) =
e−v

v
dv

I Hierarchical normalized stable process (HnstP)
=⇒ NRMIs coincide with the normalized stable process, i.e.

ρ(dv) =
σ

Γ(1− σ)v1+σ dv ρ0(dv) =
σ0

Γ(1− σ0)v1+σ0
dv

9 / 33



Dependent priors via random measures & Hierarchical NRMIs Correlation structure of hierarchical NRMIs

Correlation structure

Correlation structure for hierarchical NRMIs

corr(P̃1(A), P̃2(A))

=
{

1 + c0 c

∫∞
0 u e−cψ(u) τ2(u) du

∫∞
0 u e−c0ψ0(u) τ 2

1,0(u) du∫∞
0 u e−c0ψ0(u) τ2,0(u) du

}−1

> 0

with ψ(u) =
∫∞

0 [1− e−us ]ρ(s)ds and τq(u) =
∫∞

0 sq e−us ρ(s) ds.

Special cases

I Hierarchical Dirichlet process (HDP)

corr(P̃1(A), P̃2(A)) =
c + 1

c + 1 + c0

=⇒ corr increasing in c and decreasing in c0: if c ↑ ∞ (c0 ↑ ∞),
then corr ↑ 1 (corr ↓ 0).

I Hierarchical normalized stable process (HnstP)

corr(P̃1(A), P̃2(A)) =
1− σ0

1− σσ0
=⇒ corr increasing in σ and decreasing in σ0: if σ ↑ 1 (σ0 ↑ 1), then
corr ↑ 1 (corr ↓ 0).
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Partition Structure & number of clusters

Induced partition structure

I Two samples X1 = {X1,1, . . . ,X1,n1} and X2 = {X2,1, . . . ,X2,n2} from partially
exchangeable sequences (X1,j )j≥1 and (X2,i )i≥1

I Hierarchical NRMI prior selects a.s. discrete random probabilities (P̃1, P̃2)
=⇒ ties within each sample and possibly also across different samples.

I Partition of [N] = {1, . . . , n1 + n2} induced by X1 and X2 into

I k1 distinct values specific to X1

I k2 distinct values specific to X2

I k0 distinct values shared by the two samples
I the corresponding frequencies are best recorded as ni = (n1,i , n2,i ) for

i = 1, . . . , k, with k2 n1,j ’s and k1 n2,j ’s being 0.

partially Exchangeable Partition Probability Function (pEPPF)

Π(N)
k (n1, . . . , nk )=E

∫
Xk

k∏
j=1

P̃n1,j
1 (dxj ) P̃n2,j

2 (dxj )

where N = n1 + n2 and k = k1 + k2 + k0.
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Partition Structure & number of clusters Chinese restaurant franchise metaphor

Chinese restaurant franchise metaphor

Observable level: customers and dishes
I There are d = 2 restaurants sharing the same menu.
I Xi,j : label of the dish served at restaurant i to customer j
I Sample information: N = n1 + n2 customers eat k = k1 + k2 + k0 distinct

dishes with frequencies n1, . . . , nk .

Latent level: tables (governed by P̃0)

I Customers eating dish j in restaurant i are further partitioned into tables.
I `i,j is the number of tables in restaurant i serving dish j whose range is
{1, . . . , ni,j} if dish j is served at restaurant i and 0 otherwise.

I `•j =
∑2

i=1 `i,j is then the total number of tables serving dish j for j = 1, . . . , k
I |`|: total number of tables in the two restaurants

Augmented partition structure
I qi,j,t : frequency of customers at restaurant i eating dish j and sitting at table t
I qi,j = (qi,j,1, . . . , qi,j,`i,j ): frequency vector of customers in restaurant i eating

dish j at each of the `i,j tables.
I By marginalizing over the tables one re-obtains the observed frequencies

ni,j = |qi,j | =
∑`i,j

t=1 qi,j,t .
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Partition Structure & number of clusters pEPPF for the general case

Partially exchangeable partition probability function
pEPPF of a hierarchical NRMI

Π(N)
k (n1, · · · , nk ) =

∑
`

∑
q

Φ(|`|)
k,0 (`•1, · · · , `•k )

2∏
i=1

Φ(ni )
¯̀i•,i

(qi,1, . . . , qi,k )

I
∑

q is a sum over all partitions

I
∑

`
is a sum over all compatible table configurations, i.e. over

`i,j ∈ {1, . . . , ni,j} with `i,j = 0 if ni,j = 0.
I Partition probability function with the constraint |qi,j | = ni,j

Φ(ni )
¯̀i•,i

(qi,1, . . . , qi,k ) =
θ

¯̀i•

Γ(ni )

∫ ∞
0

uni−1e−θψ(u)
k∏

j=1

`i,j∏
t=1

τqi,j,t (u)du.

I Φ(|`|)
k,0 (`•1, · · · , `•k ) is the EPPF associated to P̃0 ∼ NRMI(ρ, c0,P0)

Φ(|`|)
k,0 (`•1, · · · , `•k ) =

ck
0

Γ(|`|)

∫ ∞
0

u|`|−1 e−c0ψ0(u)
k∏

j=1

τ
`•j ,0

(u) du,

with ψ0(u) =
∫∞

0 [1− e−uv ] ρ0(dv) and τq,0(u) =
∫∞

0 vq e−uv ρ0(dv).
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Partition Structure & number of clusters pEPPF for the HDP & HnstP

Special cases

pEEPF HDP

Π(n)
k (n1, . . . , nk ) =

θk
0∏2

i=1(θ)ni

∑
`

θ|`|

(θ0)|`|

k∏
j=1

(¯̀•j − 1)!
2∏

i=1

|s(ni,j , `i,j )|

where |s(r , s)| is the absolute value of the Stirling number of the first kind.

pEEPF hierarchical normalized stable process (HnstP)

σk−1
0 Γ(k)∏2
i=1 Γ(ni )

∑
`

σ|`|−2
∏2

i=1 Γ(¯̀i•)
Γ(|`|)

k∏
j=1

(1− σ0) ¯̀•j−1

2∏
i=1

k∏
j=1

C (ni,j , `i,j ;σ)
σ`i,j

where C (n, `;σ) is the generalized factorial coefficient.

=⇒ From the pEPPF a generalized Pólya urn scheme is obtained that can be used
within MCMC samplers for density estimation, prediction problems etc.
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Partition Structure & number of clusters The number of clusters KN

Distribution of the number of clusters KN

In order to derive the distribution of the distinct dishes KN eaten by N1 + N2
customers define:

I K ′1,N2
and K ′2,N2

are the number of tables the customers seated in the two
restaurants;

I K0,t is the number of distinct dishes (generated by P̃0) served at the t tables.

Distribution of KN for a hierarchical NRMI

P[KN = k] =
N∑

t=k

P[K0,t = k]P
[

K ′1,N1
+ K ′2,N2

= t
]

I The distributions of K0,t and of K ′1,N1
and K ′2,N2

are available once the
corresponding EPPFs are known.

I The law of KN coincides with K0,(K ′1,N1
+K ′2,N2

) i.e. the random number of dishes
served at the random number of tables K ′1,N1

+ K ′2,N2
.
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I K0,t is the number of distinct dishes (generated by P̃0) served at the t tables.

Distribution of KN for a hierarchical NRMI

P[KN = k] =
N∑

t=k

P[K0,t = k]P
[

K ′1,N1
+ K ′2,N2

= t
]

I The distributions of K0,t and of K ′1,N1
and K ′2,N2

are available once the
corresponding EPPFs are known.

I The law of KN coincides with K0,(K ′1,N1
+K ′2,N2

) i.e. the random number of dishes
served at the random number of tables K ′1,N1

+ K ′2,N2
.
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Partition Structure & number of clusters The number of clusters KN

Asymptotics for the number of clusters KN

What is the growth rate of KN as N1 and N2 diverge?

The notation Yn ' λ(n), for n→∞, means that limn Yn/λ(n) almost surely exists
and equals a finite random variable.

Asymptotics of KN for a hierarchical NRMI

Suppose K0,N ' λ0(N) and K ′i,N ' λ(N) as N → ∞. Then letting N1 =
N2 = N/2.

KN ' λ0(η λ(N/2)) as N →∞,

for some positive and finite positive random variable η.

Special cases

I Hierarchical Dirichlet process (HDP):

KN ' log log N

I Hierarchical normalized stable process (HnstP):

KN ' Nσσ0
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Partition Structure & number of clusters Marginal properties of the HPYP

Hierarchical Pitman–Yor process
All previous results carry over to the case of hierarchical Pitman–Yor processes with
minor modifications. For instance:

Correlation structure

corr(P̃1(A), P̃2(A)) =
{

1 +
1− σ
1− σ0

θ0 + σ0

θ + 1

}−1

Distribution of KN

I exact distribution

P[KN = k] =
N∑

t=k

P[K0,t = k]P
[

K ′1,N1
+ K ′2,N2

= t
]

=
N∑

t=k

∏k−1
r=1

(θ0 + rσ0)
(θ0 + 1)t−1

C (t, k;σ0)
σk

0

∑
(ζ1,ζ2)∈∆t

2∏
i=1

∏ζi−1
r=1

(θ + rσ)
(θ + 1)Ni−1

C (Ni , ζi ;σ)
σζi

I asymptotic growth KN ' Nσσ0
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Posterior characterizations of hierarchical NRMIs & HPYP General result

Posterior characterization for hierarchical NRMIs

I X∗1 , . . . ,X∗k are the distinct dishes served and T the complete table
configuration in the d = 2 restaurants.

I Let U0 be a positive r.v. with density

f0(u|X1,X2,T ) ∝ u|`|−1e−c0ψ0(u)
k∏

j=1

τ ¯̀•j ,0(u).

Posterior distribution of P̃0

µ̃0 | (X1,X2,T ,U0) d= η∗0 +
k∑

j=1

IjδX∗j

(i) η∗0 is a CRM with intensity

ν0(ds, dx) = e−U0sρ0(s)ds c0 P0(dx).

(ii) the Ij ’s are non-negative independent jumps (also independent of η∗0 )
with density

fj (s|X,T ) ∝ s ¯̀•j e−sU0ρ0(s)
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Posterior characterizations of hierarchical NRMIs & HPYP General result

I Introduce the restaurant specific latent r.v. Ui , for i = 1, 2

fi (u|X1,X2,T ) ∝ uni−1e−cψ(u)
k∏

j=1

`i,j∏
t=1

τqi,j,t (u).

Posterior distribution of (P̃1, P̃2)

(µ̃1, µ̃2)|(X1,X2,T ,U, µ̃0) d=
(
µ̃∗1 +

k∑
j=1

`1,j∑
t=1

J1,j,tδX∗j , µ̃
∗
2 +

k∑
j=1

`2,j∑
t=1

J2,j,tδX∗j

)

(i) (µ̃∗1 , µ̃∗2 ) is a vector of hierarchical CRMs with intensity

νi (ds, dx) = e−Ui sρ(s)ds c P̃∗0 (dx),

with P̃∗0 = µ̃∗0/µ̃
∗
0 (X);

(ii) the Ji,j,t ’s are non–negative independent jumps [also independent of
(µ̃1, µ̃2)] with density

fi,j,t (s) ∝ e−Ui s sqi,j,t ρ(s).

=⇒ Based on the posterior characterization it is straightforward to set up a
conditional sampling scheme (e.g. a Ferguson & Klass) for density estimation,
prediction problems etc.
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Posterior characterizations of hierarchical NRMIs & HPYP HDP posterior

HDP case

By exploiting some of the special properties of the Dirichlet process one obtains a
simple posterior characterization for the HDP.

Posterior distribution of the HDP

P̃0|(X1,X2,T ) d= P̃∗0 ∼ D(c0P0 +
k∑

j=1

¯̀•jδX∗j )

and for i = 1, 2

P̃i |(X1,X2,T , P̃∗0 ) d= P̃∗i ∼ D(cP̃∗0 +
k∑

j=1

ni,jδX∗j )
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Posterior characterizations of hierarchical NRMIs & HPYP HPY posterior

Hierarchical Pitman-Yor process

I Define V σ0
0 ∼ Ga(k + θ0/σ0, 1) and V σ

i
ind∼ Ga(¯̀i• + θ/σ, 1)

Posterior distribution

µ̃0 | (X1,X2,T ,V0) d= η∗0 +
k∑

j=1

IjδX∗j

(µ̃1, µ̃2)|(X1,X2,T ,V , µ̃0) d=
(
µ̃∗1 +

k∑
j=1

H1,jδX∗j , µ̃
∗
2 +

k∑
j=1

H2,jδX∗j

)

(i) η∗0 , µ̃1, µ̃2 are generalized gamma CRMs (independent of the jumps)
with intensities

σ0

Γ(1− σ0)
e−V0s

s1+σ0
dsP0(dx)

σ

Γ(1− σ)
e−Vi s

s1+σ ds P̃∗0 (dx) i = 1, 2

where P̃∗0 = µ̃∗0/µ̃
∗
0 (X);

(ii) Ij
ind∼ Ga(¯̀•j − σ0,V0) and Hi,j

ind∼ Ga(ni,j − `i,jσ,Vi )
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Posterior characterizations of hierarchical NRMIs & HPYP HPY posterior

Hierarchical Pitman-Yor process II

In the PY case it is possible to marginalize out the latent variables V0,V1,V2 to
obtain a quasi–conjugate posterior characterization

Posterior distribution II

P̃0|(X1,X2,T ) d=
k∑

j=1

WjδX∗j + Wk+1 P̃0,k

P̃i |(X1,X2,T , P̃∗0 ) d=
k∑

j=1

Wi,j δX∗j + Wi,ki +1 P̃i,k

with Dirichlet distributed weights

(W1, . . . ,Wk+1)∼ Dir(¯̀•1 − σ0, . . . , ¯̀•k − σ0, θ0 + kσ0)

(Wi,1, . . . ,Wi,ki +1)∼ Dir(ni,1 − `i,1σ, . . . , ni,ki − `i,kiσ, θ + ¯̀i•σ) i = 1, 2

and updated PY processes

P̃0,k∼ PY(σ0, θ0 + kσ0; P0)

P̃i,k | P̃0
ind∼ PY(σ, θ + ¯̀i•σ; P̃0) i = 1, 2
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Application to genomic data

Prediction with hierarchical processes

I Conditional on observed samples X (n1) and X (n2), interest in prediction of
features related to additional future samples

X1,n1+1, . . . ,X1,n1+m1 X2,n2+1, . . . ,X2,n2+m2

I Species sampling: X1,j ’s and X2,j ’s are species labels with species shared within
and between samples and the goal is to estimate e.g.:

I the number of new distinct species that will be observed
I the probability that (ni + mi + 1)-th observation will be a new species

I Exchangeable case: closed form estimators for Gibbs–type priors (reviewed in
De Blasi et al., 2015)

I Partially exchangeable case: it is not possible to evaluate exactly inferences
=⇒ simulation algorithm based on the pEPPF

I Illustration: ESTs analyses

I Useful tool for gene identification in organisms
I ESTs are generated by randomly sequencing genes from a cDNA library,

which consist of a large and unknown number of differentially expressed
genes (typically millions) =⇒ potentially infinite.

I Only a sample corresponding to a small portion of the library is typically
available
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Application to genomic data

Citrus clementina libraries

I Samples from two libraries of citrus clementina fruits:
I FRUIT1 (‘FlavFr1’):

n1 = 1593 ESTs with k1 = 806 distinct genes (k1/n1 ≈ .51)
I FRUIT2 (‘RindPdig24’):

n2 = 900 ESTs with k2 = 687 distinct genes (k2/n2 ≈ .76)

I The two samples share 183 genes and their frequency is 520 in the
FRUIT 1 and 317 in the FRUIT 2 samples (about 1/3)

Expression level FRUIT 1 FRUIT 2 FRUITS
1 561 549 905
2 148 99 231
3 37 20 79
4 18 12 32
5 6 4 11
6 5 9
...

...
...

...
117 1 1

n 1593 900 2493
Kn 806 687 1310
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Application to genomic data

I Models: P̃1 ⊥⊥ P̃2 independent PY processes
vs

(P̃1, P̃2) hierarchical PY process

I Discovery probability decay: Probability that the (ni + mi + 1)–th observation
is “new” as the size mi of additional sample varies

(a) (separately) exchangeable (b) partially exchangeable

⇒ Borrowing of information and narrower HPD bands
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Application to genomic data

Other quantities of interest:
I # “new” distinct genes identified by additional sequencing: K X

m|n1
& K Y

m|n2

I # additionally sequenced genes coinciding with “new” ones: LX
m|n1

& LY
m|n2

P̃1 ⊥⊥ P̃2 PY processes (P̃1, P̃2) HPY process
FRUIT 1 FRUIT 2 FRUIT 1 FRUIT 2

m K̂ X
m|n1

L̂Y
m|n2

K̂ X
m|n1

L̂Y
m|n2

K̂ X
m|n1

L̂Y
m|n2

K̂ X
m|n1

L̂Y
m|n2

200 65.4 68.2 117.0 122.0 79.5 82.1 103.3 108.2
400 125.6 136.2 225.5 244.0 154.1 164.2 198.3 216.6
600 181.5 204.3 326.4 366.0 224.5 246.2 286.0 324.9

...
...

...
...

...
...

...
...

...
2000 488.1 680.8 891.3 1219.0 631.4 820.9 770.2 1083.1

In the dependent case, finer prediction is possible. For instance, considering
additional sequencing for FRUIT 1:

I for m = 600, K̂ X
m|n1

= 224.5, which is the sum of the predicted 37.6 genes new
to FRUIT 1 but already observed in FRUIT 2 and 186.9 overall new genes.

I for m = 2000, it is predicted that 96.6 genes of the 504 originally observed
only for FRUIT 2 will be detected also in the FRUIT 1 library.
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Hierarchical random mixture hazards

Analysis of survival data

Data {X1,i}n1
i=1 and {X2,j}n2

j=1 take values in X = R+ and denote survival times
subject to some censoring mechanism

I S1 = 1− F1 and S2 = 1− F2 are the survival functions
I When F` is absolutely continuous

S`(t) = exp
{
−
∫ t

0
h`(s) ds

}
h` =

F ′`
1− F`

and h` is the hazard rate function of the `-th sample

Goal

Estimate S1 and S2 or any functional of them (mean lifetime, median life-
time, ...)

I For the exchangeable case (i.e. S1 = S2), see James (2005)
I For the partially exchangeable case, we address the issue by resorting to

hCRMs

Prior for (S1, S2) ⇐⇒ Prior for (h1, h2)
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Hierarchical random mixture hazards

Hazard rates’ models

Hierarchical CRMs

Let H0 = c0P0 where P0 is some diffuse probability measure on Y and

(µ̃1, µ̃2) | µ̃0 ∼ CRM(ν̃1) × CRM(ν̃2) ν̃`(ds, dy) = ρ`(s) ds µ̃0(dy)

µ̃0 ∼ CRM(ν0) ν0(ds, dy) = ρ0(s) ds H0(dy)

Then (µ̃1, µ̃2) is termed a hierarchical completely random measure (hCRM)

Kernel mixture models

I (µ̃1, µ̃2) is a hCRM on Y and k(t, y) is a kernel on R+ × Y
I Random hazard rates h̃`(t) =

∫
Y

k(t, y) µ̃`(dy) for ` = 1, 2
I Partially exchangeable survival times {X1,i}n1

i=1 and {X2,j}n2
j=1

P
[

Xi,1 > t1, Xj,2 > t2

∣∣∣ (µ̃1, µ̃2)
]

= exp
{
−

2∑
`=1

∫ t

0
h̃`(s) ds

}
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Hierarchical random mixture hazards Posterior characterization

I Likelihood: with K`(y) =
∑ni

j=1

∫ Xi,j

0 k(t, y) dt

L (µ1, µ2; X) =
2∏

i=1

exp
{
−
∫
Y

Ki (y)µi (dy)
} ni∏

j=1

∫
Y

k(Xi,j ; y) µi (dy)

I Augmented likelihood: introduce latent variables Yi,j generated by a discrete
random probability measure

L ∗(µ1, µ2; X,Y ) =
2∏

i=1

exp
{
−
∫
Y

Ki (y)µi (dy)
} ni∏

j=1

k(Xi,j ; Yi,j ) µi (dYi,j )

Posterior characterization

The posterior of (µ̃1, µ̃2), given the data X and the latents Y , equals the
distribution of the random measure vector(

µ∗1 +
k1∑

j=1

J∗j,1 δY ∗j,1 , µ
∗
2 +

k2∑
j=1

J∗j,2 δY ∗j,2

)
I (µ∗1 , µ∗2 ) is a hierarchical CRM with updated marginal Lévy intensities
I jumps J∗j,` are independent and with known density

=⇒ The model can be modified so to include censored observations and also other
covariates, i.e. a semiparametric Cox proportional hazards type of specification
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covariates, i.e. a semiparametric Cox proportional hazards type of specification
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Illustration: Estimation of the survival functions S1 & S2

Simulation study: 2 samples of size n1 = n2 = 100 generated from Weibull
distributions with different parameters chosen s.t. the survival functions cross and
do not satisfy the assumption of proportional hazards
=⇒ dependent hierarchical model is able to distinguish the two survival functions

Figure: Estimated and true survival functions
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Concluding remarks

Concluding remarks

I The study of nonparametric models for non–exchangeable data is analytically
challenging but not impossible!

I The availability of the pEPPF allows to study important quantities such as the
number of clusters KN , which have an intuitive interpretation. Combined with
closed form results on the correlation structure, methodological guidelines on
the choice of the parameters can be deduced.

I The posterior characterizations for hierarchical NRMIs and hierarchical hazard
rates are the first completely explicit posterior representations in the partially
exchangeable case.

I Thanks to the distributional results derivation of marginal and conditional
sampling schemes is quite straightforward.

I In general, CRM–based dependent priors look promising: conditionally on a
suitable latent structure, they typically display distributional properties
reminiscent of those available in the exchangeable case

I Technique for deriving marginal properties and posterior distributions is
general and needs only adaptations depending on the specific transformations
of the CRMs. For instance, it works for mixture hazards with hierarchical
dependence and for nested processes (possibly including an additive layer).
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