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“Large n and large p" regression for observational data

Example study based on observational data from healthcare databases:
e Goal — compare two different drugs (e.g. dabigatran and warfarin)

> Efficacy of treatment? (e.g. prevention of blood clot formation)
> Risk of serious side effects? (e.g. bleeding inside brain)?
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“Large n and large p" regression for observational data

OHDSI's approach addresses “replication crisis” (we try, at least):
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“Large n and large p" regression for observational data

@ Scale of data:
» Sample size: n ~ 10° ~ 10° (e.g. n = 72,489)
» Number of features: p ~ 10* ~ 10° (e.g. p = 22,175);
pre-existing conditions, prior treatments / drugs taken, and etc.



“Large n and large p" regression for observational data

@ Scale of data:
» Sample size: n ~ 10° ~ 10° (e.g. n = 72,489)
» Number of features: p ~ 10* ~ 10° (e.g. p = 22,175);
pre-existing conditions, prior treatments / drugs taken, and etc.
@ Data characteristics:
» Design matrix X is sparse, a small fraction of non-zero entries.
> “Positive” outcome y; = 1 is rare when regressing on serious
adverse events (e.g. 192 out of 72,489)



“Large n and large p" regression for observational data

@ Two stage estimation of treatment (dabigatran) effect:
P> Propensity score estimation
— regress treatment indicator on predictors
» Doubly-robust treatment effect estimation

— regress outcome on treatment indicator
+ propensity score strata indicators + predictors
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@ Case for Bayesian approach in search of weak signals



@ calibrates hyper-parameters via their marginal likelihoods.

» vs. resampling / cross-validation methods
— suspicious quality for rare outcomes
(e.g. 192 cases out of n = 72,489 & p = 22,175)



@ calibrates hyper-parameters via their marginal likelihoods.

» vs. resampling / cross-validation methods
— suspicious quality for rare outcomes
(e.g. 192 cases out of n = 72,489 & p = 22,175)

@ tends to have better non-asymptotic properties
@ provides model selection uncertainty
> vs. post-selection inference

@ can incorporate structures behind given data
(e.g. hierarchical modeling across different hospitals)
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© Global-local shrinkage prior for sparse Bayesian regression



Global-local shrinkage prior for sparse Bayesian regression

@ Global-local shrinkage of regression coefficients 3:
» Prior of the form ;| 7,\j ~ N (0,72/\32-).
» 7 and \; are called global and local shrinkage parameters.
» T < 1, but can have ?Xj = O(1) for a small number of j's
by virtue of heavy tailed priors on \;



Global-local shrinkage prior for sparse Bayesian regression

@ Global-local shrinkage of regression coefficients 3:
» Prior of the form ;| 7,\j ~ N (0,72/\32-).
» 7 and \; are called global and local shrinkage parameters.
» T < 1, but can have ?Xj = O(1) for a small number of j's
by virtue of heavy tailed priors on \;
e Example — Bayesian bridge (Polson et al., 2014):

Aj ~ alpha-stable distribution
with index of stability «/2

m(Bj | 7) oc 7 exp(—|B;/7|)




Gibbs sampler for sparse Bayesian logistic regression

@ Computation for Bayesian logistic regression is commonly based on
the Polya-Gamma data augmentation scheme of Polson et al. (2013).

@ Through an auxiliary parameter w, the conditional likelihood of a
binary outcome y becomes

Y| X, Bw~N(x]Bw ) for yj=w ' (yi—1/2) (1)
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Gibbs sampler for sparse Bayesian logistic regression

@ Computation for Bayesian logistic regression is commonly based on
the Polya-Gamma data augmentation scheme of Polson et al. (2013).

@ Through an auxiliary parameter w, the conditional likelihood of a
binary outcome y becomes

il X, B,w ~ N(@{B,w ) for yi:=w " (yi—1/2) (1)
@ Correspondingly, the full conditional distribution of 3 is given by
BlwAry X ~N@ X"y @) o)
for & =X'QX + 7 2A7?
o Generating samples from (2) is the main computational bottleneck:
» O(np?) operations for computing X '2X
» O(p?) operations for the Cholesky factorization & = LLT"
» LT85 with § ~N(0,1,) = Var(L™"6) =L L' =&}



Current states of sparse Bayesian regression computations

@ Significant progress in n < p case:
» Samples from B|w, A, 7,y, X can be generated with only
O(n?p) operations (Bhattacharya et al., 2016).
» Further speed-up via approximation 4+ improved mixing of the
global shrinkage parameter through partial marginalization
(Johndrow et al., 2018).



How bad is the standard computational approach?

Experimental set-up:

o Data: X is of size 72,489 x 22,175 and is 95% sparse
y indicates the treatment by dabigatran over warfarin
y; = 1 account for 27.3% of the 72,489 cases

@ Computing environment: iMac 2015 with Intel Core i7 CPUs

@ Implementation: reasonably optimized Python code
(vectorized & optimal matrix formats used)



How bad is the standard computational approach?

Experimental set-up:

o Data: X is of size 72,489 x 22,175 and is 95% sparse
y indicates the treatment by dabigatran over warfarin
y; = 1 account for 27.3% of the 72,489 cases

@ Computing environment: iMac 2015 with Intel Core i7 CPUs

@ Implementation: reasonably optimized Python code
(vectorized & optimal matrix formats used)

Computing time:
@ 2 min 30 sec for the matrix-matrix multiplication X QX
@ 30 sec for the Cholesky factorization of ® = X TQX + 7 2A 2



How bad is the standard computational approach?

Experimental set-up:

o Data: X is of size 72,489 x 22,175 and is 95% sparse
y indicates the treatment by dabigatran over warfarin
y; = 1 account for 27.3% of the 72,489 cases

@ Computing environment: iMac 2015 with Intel Core i7 CPUs

@ Implementation: reasonably optimized Python code
(vectorized & optimal matrix formats used)

Computing time:
@ 2 min 30 sec for the matrix-matrix multiplication X QX
@ 30 sec for the Cholesky factorization of ® = X TQX + 7 2A 2
@ In total, 15 hours for 300 iterations of the Gibbs sampler.



How bad is the standard computational approach?

Compare with arguably the most popular sparse regression tool: glmnet

Loaded glmnet 2.0-13

Warning message:
package ‘glmnet’ was built under R version 3.4.2

> runtime <- system.time(
+ propensity_score_fit <—(cv.glmnet(x, Factor(yi) family="binomial', standardize=FALSE)

+)
> print(runtime)

user  system( elapsed
4938.046  22.916 4947.26.



How bad is the standard computational approach?

With the new algorithm, Bayesian method is competitive with glmnet.

Top 10 coefficients

1
0
-1
«Q
In [2]1{ n_burnin = 0
...4_n_post_burnin = 300 -2
...t thin =1
.: reg_exponent = .5
:oinit = { -3
‘intercept': log_odds(np.mean(y))
‘tau': .01, 0 50 100 150 200 250 300
.t ‘lambda': np.ones(X.shape[1]), MCMC iterations
)

: bridge = BayesBridge(y, X, link='logit')
: start_time = time.time()
: mcmc_output = bridge.gibbs(

n_burnin, n_post_burnin, thin, reg_exponent, init,
(mvnormfmethod:'pcg'? seed=0
el )
.t print(time.time() - start_time)
/Users/aki-nishimura/Dropbox/Documents_Academic/Scalable Bayes variable s

b idge.py:121: UserWarning: The numbers of trials were not specified.
4895.219202041626
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© Conjugate gradient (CG) sampler for multivariate Gaussians



Conjugate gradient sampler for multivariate Gaussians

The problem of generating a sample from (3) can be recast as that of
solving a linear system via the algorithm below:

B~N@'X'Qy, &) for @ = X'QX +7 2A2 (3)

Algorithm (Nishimura & Suchard, 2018)

The following procedure generates a sample 3 from the distribution (3):
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Conjugate gradient sampler for multivariate Gaussians

The problem of generating a sample from (3) can be recast as that of
solving a linear system via the algorithm below:

B~N@'X'Qy, &) for @ = X'QX +7 2A2 (3)

Algorithm (Nishimura & Suchard, 2018)

The following procedure generates a sample 3 from the distribution (3):

O Generate b ~ N(XTQy, <I>) by sampling independent Gaussian
vectors 7 ~ N (0, I,,) and 6 ~ N(0, I,) and then setting

b=X"Qu+ X'QY2n4+7A716 (4)
@ Solve the following linear system for 3
®3=0> (5)
so that Var(3) = Var(®~'b) = & 'Var(b)® ..




Conjugate gradient (CG) for solving linear system ®3 = b

o CG is an jterative method for solving a positive definite system.

@ Given an initial guess By, CG generates a sequence {3 }=12.... of
increasingly accurate approximations to the solution.
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CG is an jterative method for solving a positive definite system.
Given an initial guess By, CG generates a sequence {3} }4=12.... of
increasingly accurate approximations to the solution.
Cost of update By — Bi1 is dominated by the operation v — ®v.
Note: the operation v — ®wv requires no explicit formation of ®
» Multiplication by ® = XTQX +772A 2 can be carried out via
v — Xv, w — X"w, and some element-wise multiplications.

» Memory advantage: X TQX are often much denser than X.
(e.g. 74.5 GB of memory to allocate p x p matrix when p = 10°)



Conjugate gradient (CG) for solving linear system ®3 = b

CG is an jterative method for solving a positive definite system.
Given an initial guess By, CG generates a sequence {3} }4=12.... of
increasingly accurate approximations to the solution.
Cost of update By — Bi1 is dominated by the operation v — ®v.
Note: the operation v — ®wv requires no explicit formation of ®
» Multiplication by ® = X"QX + 772A 2 can be carried out via
v — Xv, w — X"w, and some element-wise multiplications.
» Memory advantage: X TQX are often much denser than X.
(e.g. 74.5 GB of memory to allocate p x p matrix when p = 10°)
CG yields an exact solution in p iterations

» In the worst case, the number of required arithmetic operations
is comparable to that a direct method.
» But it is possible to achieve 3, ~ 8 = ® b for k < p.



lllustration of the CG Gaussian sampler

e Dabigatran vs. warfarin comparison data (n = 72,489, p = 22,175)
o Compare CG iterates B;'s to 3 = ®'b for b ~ N (X Qy, ®).



lllustration of the CG Gaussian sampler

e Dabigatran vs. warfarin comparison data (n = 72,489, p = 22,175)
o Compare CG iterates B;'s to 3 = ®'b for b ~ N (X Qy, ®).
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@ Preconditioning for rapid CG convergence in sparse regression
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Preconditioning CG to accelerate its convergence

@ Direct application of CG rarely leads to a rapid convergence.
o CG is typically applied to a preconditioned system
®3=>b for ®=M"'"?®M /?andb=M""?b (6)
with a positive definite preconditioner matrix M .

@ Key considerations when designing a preconditioner:

» Convergence rate of CG applied to the preconditioned system.
» One-time cost of computing M ; better be less than inverting ®.

“Finding a good preconditioner to solve a given sparse linear

system is often viewed as a combination of art and science.”
Saad (2003)



Convergence theory of CG: rule of thumb

@ Two most famous results on CG convergence rates — not the most
useful ones (Nishimura & Suchard, 2018).
@ Following rule of thumb is more useful:
» CG converges quickly if the eigenvalues of ® are “clustered.”
> if not too many, large eigenvalues cause little delay in
convergence.
P> small eigenvalues tend to delay convergence longer.



lllustration of the CG convergence

Relative computational time

0% 9% 17% 25%
10? —— residual norm
————— normalized error . . .
10-2 o withJacobi Figure: .C.om.parlson of jcwo.
s preconditioning strategies in
107 sparse Bayesian logistic
10-8 regression context
(n=172,489 & p = 22,175).
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1/2 .
@ Normalized error: { Z{ (Br — )} with 532 %E[ﬂf]y,X]

@ Norm of the precond|t|oned residual p~1/2||7||2 as a stopping criteria



lllustration of the CG convergence
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The magic preconditioner for sparse Bayesian regression
problem for ® = X'QX +772A"2is ... (drum roll) ...
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Preconditioner for sparse Bayesian regression

The magic preconditioner for sparse Bayesian regression
problem for ® = X'QX +772A"2is ... (drum roll) ...

M =727 (7)

...isn't it ...too simple? (= boring = unpublishable?)



Prior preconditioner: made for sparse Bayesian regression

e Fancier (general-purpose) preconditioners exist: successive
over-relaxation, incomplete Cholesky, sparse approximate inverse, etc.

@ But they stand no chance against the proposed prior preconditioner
M =772A7% = Var(B| 1, A\, w) !

@ Jacobi's M = diag(®) is reasonable, but is significantly inferior.
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Prior preconditioner: made for sparse Bayesian regression

Fancier (general-purpose) preconditioners exist: successive
over-relaxation, incomplete Cholesky, sparse approximate inverse, etc.

But they stand no chance against the proposed prior preconditioner

M =772A7% = Var(B| 1, A\, w) !

Jacobi's M = diag(®) is reasonable, but is significantly inferior.

Mathematically, prior-preconditioning is equivalent to sampling from
—1p—1
TTAT BT A w Yy, X
@ Exploits the fundamental feature of sparse Bayesian regression:

the prior dominates the likelihood — and hence the posterior
looks like the prior — except for a small number of directions

@ See Nishimura & Suchard (2018) for mathematically precise theory.
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Speed-up relative to the direct linear algebra Gibbs sampler

@ Propensity score estimation

» 1,500 iterations in 7.04 (vs 77.4) hours — 11 times speed-up
@ Doubly robust treatment effect estimation

» 2,000 iteration for 4.36 (vs 107) hour — 25 times speed-up



Propensity scores & difference in population
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Propensity scores & difference in population
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Effect of dabigatran over warfarin
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@ Sparse Bayesian regression for survival outcomes



Sparse Bayesian regression for log-concave likelihood

e Conditional distribution of 3| A, 7,y, X typically has no closed-form
expression but is log-concave with predictable Hessian structures.
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Sparse Bayesian regression for log-concave likelihood

e Conditional distribution of 3| A, 7,y, X typically has no closed-form
expression but is log-concave with predictable Hessian structures.

e Hamiltonian Monte Carlo (HMC) is particularly well-suited to
log-concave distributions:

1/2

» computational cost is O(pl/‘l(%) ) where M and m are the

upper and lower bound on eigenvalues of the log-density Hessian
(Mangoubi and Smith, 2017).
@ Running HMC in practice requires knowing M and m:

> efficient computation by Lancoz iteration through a small
number of matrix-vector multiplications.



Table of Contents

@ Summary



Summary & Discussion

@ Prior-preconditioned CG speeds up the conditional updates of 3,
removing the computational bottleneck of sparse Bayesian regression.
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> approximations to the target covariance make for preconditioners.
P covariance structures are related from one iteration to another.



Summary & Discussion

@ Prior-preconditioned CG speeds up the conditional updates of 3,
removing the computational bottleneck of sparse Bayesian regression.
@ lterative methods are promising approaches for accelerating MCMC
involving high-dimensional (conditionally) Gaussian distribution
because:
P sparsity in X is natively exploited.
> approximations to the target covariance make for preconditioners.
P covariance structures are related from one iteration to another.

@ Upcoming: sparse Bayesian regression with log-concave likelihoods.
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https://github.com/aki-nishimura/bayes-bridge

The End

Thank you!
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