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“Large n and large p” regression for observational data

Example study based on observational data from healthcare databases:

Goal — compare two different drugs (e.g. dabigatran and warfarin)

I Efficacy of treatment? (e.g. prevention of blood clot formation)
I Risk of serious side effects? (e.g. bleeding inside brain)?

Large-scale Evidence Generation and 
Evaluation in a Network of Databases

130

Literature
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“Large n and large p” regression for observational data

OHDSI’s approach addresses “replication crisis” (we try, at least):Drawing reproducible conclusions

29,982 estimates
11,758 papers

P hacking

Publication bias



“Large n and large p” regression for observational data

Scale of data:

I Sample size: n ≈ 105 ∼ 106 (e.g. n = 72,489)
I Number of features: p ≈ 104 ∼ 105 (e.g. p = 22,175);

pre-existing conditions, prior treatments / drugs taken, and etc.

Data characteristics:

I Design matrix X is sparse, a small fraction of non-zero entries.
I “Positive” outcome yi = 1 is rare when regressing on serious

adverse events (e.g. 192 out of 72,489)
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“Large n and large p” regression for observational data

Two stage estimation of treatment (dabigatran) effect:

I Propensity score estimation
— regress treatment indicator on predictors

I Doubly-robust treatment effect estimation
— regress outcome on treatment indicator

+ propensity score strata indicators + predictors
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Why Bayes?

calibrates hyper-parameters via their marginal likelihoods.

I vs. resampling / cross-validation methods
— suspicious quality for rare outcomes

(e.g. 192 cases out of n = 72,489 & p = 22,175)

tends to have better non-asymptotic properties

provides model selection uncertainty

I vs. post-selection inference

can incorporate structures behind given data
(e.g. hierarchical modeling across different hospitals)
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Global-local shrinkage prior for sparse Bayesian regression

Global-local shrinkage of regression coefficients β:

I Prior of the form βj | τ, λj ∼ N
(
0, τ2λ2j

)
.

I τ and λj are called global and local shrinkage parameters.
I τ̂ � 1, but can have τ̂ λ̂j = O(1) for a small number of j’s

by virtue of heavy tailed priors on λj

Example — Bayesian bridge (Polson et al., 2014):

0.4 0.2 0.0 0.2 0.4

(
)

bridge
lasso

λj ∼ alpha-stable distribution
with index of stability α/2

⇔

π(βj | τ) ∝ τ−1 exp
(
−|βj/τ |α

)
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Gibbs sampler for sparse Bayesian logistic regression

Computation for Bayesian logistic regression is commonly based on
the Polya-Gamma data augmentation scheme of Polson et al. (2013).

Through an auxiliary parameter ω, the conditional likelihood of a
binary outcome y becomes

y′i |X,β,ω ∼ N (x
ᵀ
iβ, ω

−1
i ) for y′i := ω−1i (yi − 1/2) (1)

Correspondingly, the full conditional distribution of β is given by

β |ω,λ, τ,y,X ∼ N (Φ−1X
ᵀ
Ωy′,Φ−1)

for Φ =X
ᵀ
ΩX + τ−2Λ−2

(2)

Generating samples from (2) is the main computational bottleneck:

I O(np2) operations for computing X
ᵀ
ΩX

I O(p3) operations for the Cholesky factorization Φ = LL
ᵀ

I L−
ᵀ
δ with δ ∼ N (0, Ip) ⇒ Var(L−

ᵀ
δ) = L−

ᵀ
L−1 = Φ−1
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Current states of sparse Bayesian regression computations

Significant progress in n� p case:

I Samples from β |ω,λ, τ,y,X can be generated with only
O(n2p) operations (Bhattacharya et al., 2016).

I Further speed-up via approximation + improved mixing of the
global shrinkage parameter through partial marginalization
(Johndrow et al., 2018).



How bad is the standard computational approach?

Experimental set-up:

Data: X is of size 72,489× 22,175 and is 95% sparse
y indicates the treatment by dabigatran over warfarin
yi = 1 account for 27.3% of the 72,489 cases

Computing environment: iMac 2015 with Intel Core i7 CPUs

Implementation: reasonably optimized Python code
(vectorized & optimal matrix formats used)

Computing time:

2 min 30 sec for the matrix-matrix multiplication X
ᵀ
ΩX

30 sec for the Cholesky factorization of Φ =X
ᵀ
ΩX + τ−2Λ−2

In total, 15 hours for 300 iterations of the Gibbs sampler.
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How bad is the standard computational approach?

Compare with arguably the most popular sparse regression tool: glmnet



How bad is the standard computational approach?

With the new algorithm, Bayesian method is competitive with glmnet.
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Conjugate gradient sampler for multivariate Gaussians

The problem of generating a sample from (3) can be recast as that of
solving a linear system via the algorithm below:

β ∼ N (Φ−1X
ᵀ
Ωy,Φ−1) for Φ =X

ᵀ
ΩX + τ−2Λ−2 (3)

Algorithm (Nishimura & Suchard, 2018)

The following procedure generates a sample β from the distribution (3):

1 Generate b ∼ N
(
X

ᵀ
Ωy,Φ

)
by sampling independent Gaussian

vectors η ∼ N (0, In) and δ ∼ N (0, Ip) and then setting

b =X
ᵀ
Ωy +X

ᵀ
Ω1/2η + τ−1Λ−1δ (4)

2 Solve the following linear system for β

Φβ = b (5)

so that Var(β) = Var(Φ−1b) = Φ−1Var(b)Φ−1.
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Conjugate gradient (CG) for solving linear system Φβ = b

CG is an iterative method for solving a positive definite system.

Given an initial guess β0, CG generates a sequence {βk}k=1,2,... of
increasingly accurate approximations to the solution.

Cost of update βk → βk+1 is dominated by the operation v → Φv.

Note: the operation v → Φv requires no explicit formation of Φ

I Multiplication by Φ =X
ᵀ
ΩX + τ−2Λ−2 can be carried out via

v →Xv, w →X
ᵀ
w, and some element-wise multiplications.

I Memory advantage: X
ᵀ
ΩX are often much denser than X.

(e.g. 74.5 GB of memory to allocate p× p matrix when p = 105)

CG yields an exact solution in p iterations

I In the worst case, the number of required arithmetic operations
is comparable to that a direct method.

I But it is possible to achieve βk ≈ β = Φ−1b for k � p.
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Illustration of the CG Gaussian sampler

Dabigatran vs. warfarin comparison data (n = 72,489, p = 22,175)

Compare CG iterates βk’s to β = Φ−1b for b ∼ N
(
X

ᵀ
Ωy,Φ

)
.
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Figure: Error is quantified as the average of |(βk)j − βj |/ |βj |’s.
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Preconditioning CG to accelerate its convergence

Direct application of CG rarely leads to a rapid convergence.

CG is typically applied to a preconditioned system

Φ̃β̃ = b̃ for Φ̃ =M−1/2ΦM−1/2 and b̃ =M−1/2b (6)

with a positive definite preconditioner matrix M .

Key considerations when designing a preconditioner:

I Convergence rate of CG applied to the preconditioned system.
I One-time cost of computing M ; better be less than inverting Φ.

“Finding a good preconditioner to solve a given sparse linear
system is often viewed as a combination of art and science.”

Saad (2003)
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Convergence theory of CG: rule of thumb

Two most famous results on CG convergence rates — not the most
useful ones (Nishimura & Suchard, 2018).

Following rule of thumb is more useful:

I CG converges quickly if the eigenvalues of Φ are “clustered.”
I if not too many, large eigenvalues cause little delay in

convergence.
I small eigenvalues tend to delay convergence longer.



Illustration of the CG convergence
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Figure: Comparison of two
preconditioning strategies in
sparse Bayesian logistic
regression context
(n = 72,489 & p = 22,175).

Normalized error:
{1
p

∑
j

ξ̂−2j (βk − β)2j
}1/2

with ξ̂2j ≈ E[β2j |y,X]

Norm of the preconditioned residual p−1/2‖r̃k‖2 as a stopping criteria



Illustration of the CG convergence
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Preconditioner for sparse Bayesian regression

The magic preconditioner for sparse Bayesian regression
problem for Φ =X

ᵀ
ΩX + τ−2Λ−2 is . . . (drum roll) . . .

M = τ−2Λ−2 (7)

. . . isn’t it . . . too simple? (= boring = unpublishable?)
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Prior preconditioner: made for sparse Bayesian regression

Fancier (general-purpose) preconditioners exist: successive
over-relaxation, incomplete Cholesky, sparse approximate inverse, etc.

But they stand no chance against the proposed prior preconditioner

M = τ−2Λ−2 = Var(β | τ,λ,ω)−1

Jacobi’s M = diag(Φ) is reasonable, but is significantly inferior.

Mathematically, prior-preconditioning is equivalent to sampling from

τ−1Λ−1β | τ,λ,ω,y,X
Exploits the fundamental feature of sparse Bayesian regression:

the prior dominates the likelihood — and hence the posterior
looks like the prior — except for a small number of directions

See Nishimura & Suchard (2018) for mathematically precise theory.
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Speed-up relative to the direct linear algebra Gibbs sampler

Propensity score estimation

I 1,500 iterations in 7.04 (vs 77.4) hours — 11 times speed-up

Doubly robust treatment effect estimation

I 2,000 iteration for 4.36 (vs 107) hour — 25 times speed-up
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Sparse Bayesian regression for log-concave likelihood

Conditional distribution of β |λ, τ,y,X typically has no closed-form
expression but is log-concave with predictable Hessian structures.

Hamiltonian Monte Carlo (HMC) is particularly well-suited to
log-concave distributions:

I computational cost is O
(
p1/4

(
M
m

)1/2)
where M and m are the

upper and lower bound on eigenvalues of the log-density Hessian
(Mangoubi and Smith, 2017).

Running HMC in practice requires knowing M and m:

I efficient computation by Lancoz iteration through a small
number of matrix-vector multiplications.
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Summary & Discussion

Prior-preconditioned CG speeds up the conditional updates of β,
removing the computational bottleneck of sparse Bayesian regression.

Iterative methods are promising approaches for accelerating MCMC
involving high-dimensional (conditionally) Gaussian distribution
because:

I sparsity in X is natively exploited.
I approximations to the target covariance make for preconditioners.
I covariance structures are related from one iteration to another.

Upcoming: sparse Bayesian regression with log-concave likelihoods.
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The End

Thank you!


	Case for Bayesian approach in search of weak signals
	Global-local shrinkage prior for sparse Bayesian regression
	Conjugate gradient (CG) sampler for multivariate Gaussians
	Preconditioning for rapid CG convergence in sparse regression
	Numerical results / Applications
	Sparse Bayesian regression for survival outcomes
	Summary

