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1 Data

1.1 Examples

Slide 2

Health Records Data

Data: n = 85, 021 patients

Variables yi: fasting blood glucose, white blood cell count,
red blood cell count, hemoglobin, platelets, low density
lipoproteins, total cholesterol, triglycerides,
triketopurine, high density lipoproteins, serum
creatinine, serum glutamic oxaloacetic transaminase,
total bilirubin, gender, height, weight, blood pressure
and waist

Outcome: diabetes

Goal: clustering, classification & prediction

Slide 3

Zodiac Data
Data: gene-gene interactions of

n = 19, 304 genes with all other
genes.

Data on gene-gene interactions
from Zodiac (Zhu et al., 2015) with
TCGA data.
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Goal: cluster genes by distribution
of interactions (with all other
n− 1 genes).

1.2 Clustering

Slide 4

Clustering large data

Problem: clustering large (not “Big”) data, yi, i = 1, . . . , n

Random partition: exchangeable partition of
[n] ≡ {1, . . . , n} ⇔ ties under sampling from discrete
random prob measure (Kingman, 1978)

θi ∼ G and G ∼ H(G)

cluster membership si = j ⇔ θi = θ?j for jth unique
value θ?j ; BNP prior H(G), e.g. DP

→ “BNP clustering”,

Sampling model: together with yi ∼ f(yi | θi), e.g.,
normal kernel, BNP mixture:

yi ∼
∫
f(yi | θ) dG(θ) and G ∼ DP,

or any other BNP mixture model.

Slide 5

Computation: full posterior simulation becomes
challenging with n > 1000;

Variational Bayes: DP mixture (Lin, 2013 NIPS; Tank,
Foti & Fox, 2015 AISTATS) – on-line learning;

Parallelize algorithm: Williamson, Dubey & Xing (2013,
ICML) exploit representation of the DP as normalized
Ga process to parallelize inference.

Predictive recursion: Newton, Quintana & Zhang (1998)
use approximate predictive recursion, to approximate
p(yn+1 | y) under DP mixture model.
Similar idea in Wang & Dunson (2011, JCGS) who
sequentially build up clusters by assigning (i+ 1) to a
cluster in a partition of [i] (SUGS)

1



1.3 Predictive recursion clustering

Slide 6

Predictive recursion clustering (PRC)

Predictive recursion clustering: Zuanetti et al., (2018
StatComp); use predictive recursion like Newton et al.
(98),
approximating the posterior predictive
p(θi+1 | y1, . . . , yi−1) ≈ gi(θ):

gi(θ) = (1− wi)gi−1(θ) + wi
f(yi | θ)gi−1(θ)

c(yi, gi−1)
,

exact for i = 1 (and wi = 1/(1 + α)), and approx
beyond.

Clustering: gi builds up as a mixture model, which
implicitely defines a random partition (with some
computational simplifications, like dropping terms with
very small weight, etc.)

Slide 7

GE-GE Interactions

Summarize each gene histogram by Jacobi polynomials →
clustering of yi ∈ <8;
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PRC clusters. Top (more than 1% of the genes) 6 clusters:
average 25%, 50% and 75% quantiles (solid bullets) and
average 10f0i (empty circle).

Cluster 3 are the genes of interest.

2 SIGN algorithm for BNP
clustering

Slide 8

SIGN algorithm for BNP clustering

1. split data into “shards”;

2. subset posterior on
shards;

3. split clusters into shards
→ Step 2 with clusters as
the new units;

4. stop when only one shard
is left.
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Clustering of clusters

In Step 2, 3, . . .: clustering of clusters;
similar notion in Argiento et al. (2014) and
Malsiner-Walli, Frühwirth-Schnatter & Grün (2017) (for
mixture of non-Gaussian dists).

Notation: let s̃i = j if ith cluster (of original units) joins
the jth cluster of clusters.

Prior prob: exchangeable prior ⇔ p(ρ) = f(n1, . . . , nC) for
C clusters with cardinalities nc ⇒

p(s̃i = c | s̃−i) ∝ p(ρ+c)

p(ρ−i)

for any BNP prior – easy;

Transdim MCMC: Neal’s (2000) Algorithm 8 for new
singleton clusters

Slide 10

Approximation

Partition: si = k if ith unit in kth cluster;
alternatively use indicators δij = I(si = sj).

Subset posteriors: Let [n] = A ∪B denote two shards;
δA = (δij , i, j ∈ A), same for δB ,
δAB = (δij , i ∈ A, j ∈ B)

p(δ | y) ≈
q(δ | y) ≡ p(δA | yA) p(δB | yB) p(δAB | δA, δB ,y)

Summary: judge approximation by

F.1 = % pairs with |Eq(δij)− E(δij | y)| > 0.1

2



3 Simulation
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Simulations

Simulation I: simple mixture of C0 = 5 (truth) normals;
comparison with PY mixture (full MCMC) and
DBSCAN (Ester et al., 1996)

SIGN SIGN-VI PYM DBSCAN
C 4.94 (0.31) 4.90 (0.30) 5.08 (0.27) 3.64 (1.63)

MISC 0.08 (0.03) 0.09 (0.03) 0.04 (0.01) 0.41 (0.11)
MSE 0.01 (0.01) 0.01 (0.01) 0.01 (0.00) 0.49 (0.18)

MISC=misclassification rate; MSE=estimation of
cluster-specific means

Estimated partition at the end of each step: need
estimated clusters after each step; use Dahl (2006)
summary.
Alternatively, variation of information loss (SIGN-VI)
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Simulation II: two spirals
full MCMC SIGN DBSCAN
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Ĉ = 14.10(1.37) 9.28(.93) 1.98(0.14)

The reduced Ĉ under the SIGN approximation is typical.
CLusters from early steps can be merged, but never split.

4 Classification
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Prediction

Density estimation: BNP clustering,

p(ρ) p(θ | ρ) p( yi | ρ,θ),

implies density estimation p(yn+1 | y).

Regression & prediction: to be useful for regression,
need conditioning in p(ρ | x), on covariates xi;
p(yn+1 | xn+1,y,x) defindes desired regression.

Augmented model: augment response to zi = (xi, yi) and
proceed as before

p(ρ) p(θ | ρ) p(xi, yi | ρ,θ).

Predictive p(xn+1, yn+1 | x,y) implies regression;
conditional regression or density regression (Park &
Dunson, 2010; M & al, 1996).

PPMx: define mroe general p(ρ | x), avoiding explicit
modeling of a covariate distribution

5 Simulation
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Simulations

Classification: AUC.
Comparison with full MCMC (“PPMx”), BART, random
forest (RF), logistic regression (LR) and SVM

Simulation III Simulation IV
SIGN 0.808 (0.067) 0.838 (0.067)
PPMx 0.824 (0.060) 0.841 (0.063)
BART 0.755 (0.062) 0.866 (0.050)

RF 0.793 (0.059) 0.838 (0.067)
LR 0.600 (0.091) 0.524 (0.073)

SVM 0.622 (0.077) 0.585 (0.077)

6 EHR
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Results

Response yi: indicator for diabetes

Covariates xi: white blood cell count (WBC), red blood
cell count (RBC), hemoglobin (HGB), platelets (PLT),
fasting blood glucose (FBG), low density lipoproteins
(LDL), total cholesterol (TC), triglycerides (Trig),
triketopurine (Trik), high density lipoproteins (HDL),
serum creatinine (SCr), serum glutamic oxaloacetic
transaminase (SGOT), and total bilirubin (TB);
sex, height, weight, blood pressure, and waist.

Data: n = 85, 021 patients

SIGN: M1 = 250 shards → 1351 local clusters;
M2 = 5 shards → 25 regional clusters;
Algorithm stops at step K = 3
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EHR – Results

AUC for classification by diabetes:

3



EHR Bank
SIGN 0.880 0.825
PPMx - -
BART 0.867 0.792

RF 0.869 0.786
LR 0.856 0.781

SVM 0.856 0.761

(“Bank” is another data set, on success of telemarketing )
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GAN

GAN: Chinese policy requires “China first” publication;
We use a “Generative Adversarial Network” (GAN)
(Goodfellow et al. 2014) to generate a hypothetical
repeat

• One network does density estimation p(xi, yi) and
predictive simulation of n fake data,
i = n+ 1, . . . , n+ n;
pass the augmented data to a second network:

• A second network tries to discriminate original
versus fake data.

• Iterate until discrimination is impossible.

We comply with Chinese law, but statistical inference is
identical

7 Variations
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Variations: Overlapping Shards

Simplification: replace clustering of clusters (and beyond)
by deterministic match and merge.

Clustering: Split data into shards with common overlap

Consensus: Merge clusters C1, C2 with m12 common

members if min
{

m12

|C1| ,
m12

|C1|

}
> λ
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Random subsets (feature allocation)

Feature allocation: Merge features F1, F2 if
feature-specific parameters are close, d(F1, F2) < λ.

+
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Example: Tumor heterogeneity

• experimental unites = mutations i = 1, . . . , n;

• features = homogeneous subclones Fj ⊆ [n],
subsets of mutations;

• Each subclone is linked with a set of weights, wj ,
for observed tissue samples,
use d(wj ,w`) to decide merging
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Double feature allocation

Double feature allocation: two sets of experimental
units, i = 1, . . . , n (e.g., patients) and s = 1, . . . , S (e.g.,
symptoms);
each feature Fj ⊆ [n] (e.g., disease) is associated with a
subset Sj ⊆ [S].

Clustering of clusters: Same – merge features F1, F2 if
feature-specific parameters S1, S2 are close,
d(S1, S2) < λ.

Example: EHR, features = ”disease”, Fj ⊆ [n], subsets of
patients;
Each disease is linked to a set Sj of symptoms,
d(Sj , S`) = |Sj ∩ S`|/|Sj ∪ S`|.
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Summary

• Model-based clustering (feature allocation, double FA)
is more flexible than purely algorithmic methods, but
computationally challenging for large n (also for large p)

• Several algorithms, using predictive recursion,
approximation, parallelization, subset posteriors
(consensus MC)

4



• Approxiamte posterior uncertainties important for
decision problems (e.g., phenotype discovery in EHR
data)

5
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