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Introduction

Complex statistical models ⇒ Intractable likelihood

1 f(y|θ) =
∫
f(y,u|θ)µ(du) intractable

population genetics models, coalescent process

EM algorithms, Gibbs sampling, pseudo-marginal
MCMC methods, variational approximations

2 f(y|θ) = g(y,θ)/Z(θ) and Z(θ) intractable
Markov random field

pseudo-marginal MCMC methods, variational
approximations
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Introduction

Approximate Bayesian Computation (ABC)

Simulate pseudo-datasets using the Bayesian generative
models and compare them to the observed dataset

Since the Likelihood-free rejection sampler for paramerter inference
Tavare et al. (1997) Genetics
Pritchard et al. (1999) Molecular Biology and Evolution
numerous developments:

1 regression adjustments,

2 more efficient algorithms,

3 model choice,

4 selection of the summary statistics...
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Introduction

Most popular and efficient ABC strategy: use of Machine Learn-
ing tools on the training set produced with the Bayesian
generative model (the reference table)

Fast e-free Inference of Simulation Models with Bayesian
Conditional Density Estimation
Papamakarios and Murray (2016) NIPS

Approximate the whole posterior distribution by using Mixture Den-
sity Networks (Bishop, 1994) - Gaussian mixture models with param-
eters calibrated thanks to neural networks

The number of mixture components and the number of hid-
den layers of the networks require calibration
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Introduction

Deep Learning for Population Genetic Inference
Sheehan and Song (2016) PLOS Computational Biology

Deep learning makes use of multilayer neural networks to learn a
feature-based function from the input (hundreds of correlated sum-
mary statistics) to the output (population genetic parameters of in-
terest)

Unsupervised pretraining using autoencoders very interest-
ing, but requires a lot of calibration
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Introduction

Reliable ABC model choice via random forests
Pudlo, Marin et al. (2016) Bioinformatics

Deciphering the Routes of invasion of Drosophila suzukii
by Means of ABC Random Forest
Fraimout et al. (2017) Molecular Biology and Evolution

ABC random forests for Bayesian parameter inference
Raynal, Marin et al. (2018) Bioinformatics

Learn on a huge reference table using Random Forests (RF)
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Introduction

No tuning parameter, very good properties for sparse prob-
lems and heterogeneous predictors (the summary statistics)

RF have theoretical guarantees for sparse problems
Biau (2012) JMLR
Scornet, Biau, Vert (2015) The Annals of Statistics

Sub-optimal to construct RF able to estimate everywhere in the
space of predictor variables

We are only interested in one point, the observed dataset y∗

⇒ local approaches

J.-M. Marin (Univ. Montpellier) Local tree methods 30th November 2018 7 / 21



Introduction

No tuning parameter, very good properties for sparse prob-
lems and heterogeneous predictors (the summary statistics)

RF have theoretical guarantees for sparse problems
Biau (2012) JMLR
Scornet, Biau, Vert (2015) The Annals of Statistics

Sub-optimal to construct RF able to estimate everywhere in the
space of predictor variables

We are only interested in one point, the observed dataset y∗

⇒ local approaches

J.-M. Marin (Univ. Montpellier) Local tree methods 30th November 2018 7 / 21



Introduction

Here, we focus on model choice problems

We observe y∗ and consider K statistical models M1, . . . ,MK in
competition

Prior distributions π(M =Mk) and πk(θk) on the parameters of
modelMk
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1 Classification trees and Random Forests

2 ABC model choice via Random Forests

3 Local splitting rules

4 Local weighting of the individuals

5 Local weighting of the predictors

6 Numerical results and discussion
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Classification trees

1 Binary trees
2 Each internal node splits the training

set into two daughter nodes depending
on a condition x(j) 6 s

3 Predictor j and split value s chosen to
maximise an information gain

4 Each terminal node (leaf) predicts a
model, the prediction is the majority
vote in the leaf where it ends once
passed through the tree

root

terminal internal

internal

terminal terminal

terminal
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Classification trees

Information gain

K∑
k=1

pk(1−pk)−
{
NL

Nroot

K∑
k=1

pk,L(1− pk,L) + NR

Nroot

K∑
k=1

pk,R(1− pk,R)
}

pk corresponds to the proportion of points in the root node associated
to the model k
pk,L the proportion for the left daughter node
pk,R the proportion for the right daughter node

Maximize information gain using the Gini impurity
∑K

k=1 pk(1− pk)
or the Entropy −

∑K
k=1 pk log(pk), that’s pretty much the same
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Random Forests

Grow a forest of many trees

Grow each tree on an independent bootstrap sample from the train-
ing data such that at each node:

1 Select m variables at random out of all predictors

2 Find the best split on the selected m predictors

Vote the trees to get predictions for new data

Improve on CART with respect to accuracy and stability
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Data fragmentation

Data fragmentation problem

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0.
4

0.
6

0.
8

1.
0

X1

X
2

*

A standard decision tree will
split at x(1) ≈ 0.5
⇒ loosing some interesting
datasets for the prediction of
y∗
We would like to split
according to the pertinent
predictors for y∗

J.-M. Marin (Univ. Montpellier) Local tree methods 30th November 2018 13 / 21



ABC Random Forests

Input ABC reference table involving model index and summary
statistics, table used as learning set

possibly large collection of summary statistics: from scien-
tific theory input to machine-learning alternatives

For i = 1, . . . , N
a) Generate mi from the prior π(M = m)

b) Generate θ′mi
from the prior πmi(·)

c) Generate zi from the model fmi(·|θ′mi
)

d) Calculate xi = η(zi)

Output a random forest classifier to infer model indexes ̂m(η(y∗))
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Local splitting rules

Change the information gain to the benefit of a more local one

Use y∗ to drive the splits and thus the tree construction

Uni-dimensional Kernel approach

Local information gain associated to variable j

K∑
k=1

p̃k(1−p̃k)−
{
ÑL

Ñroot

K∑
k=1

(p̃k,L(1− p̃k,L) + ÑR

Ñroot

K∑
k=1

(p̃k,R(1− p̃k,R)
}

p̃k,L =
∑

i∈LD
Khj

(
η(y∗)(j) − x(j)

i

)
Imi=k

ÑL =
∑

i∈ROOT
Khj

(
η(y∗)(j) − x(j)

i

)
Ix(j)

i ≤s
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Local splitting rules

We tried several kernels and bandwidths

That is related to

Lazy Decision Trees
Friedman et al. (1997) Proc. of the 13th National Conference on
AAAI
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Local weighting of the individuals

Case-Specific Random Forests
Xu et al. (2016) Journal of Computational and Graphical Statistics

Produce a first RF with default parameter

Deduce from that RF distances between individuals in the
training set and y∗

Produce a second RF that uses these weights to modify the
bootstrap step

We tried another possibility: identify neighbours using standard dis-
tance and then construct a RF on this set of neighbours
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Local weighting of the predictors

Produce a first RF with default parameter

Deduce from that RF the predictors that are important to
predict y∗

1 pass y∗ through each tree of the RF and count the number of
times each has been used in a splitting rule to allocate y∗

2 deduce predictors weights

Produce a second RF that uses these weights to randomly
select the predictors at each node

Weight the predictors: better cuts but increase the corre-
lation between the RF’s trees...
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Numerical results

We tried several examples, for instance, a 20-dimensional Gaussian
mixtures with 4 classes and 20 noise predictor variables

Simple enough to compute the Bayes classifier

−4 −2 0 2 4 6 8 10

−
4

−
2

0
2

4
6

8

X1

X
2
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Numerical results

3, 000 instances in the training set, sampled among the four classes
with equal probabilities
500 instances as testing set

100 trees in the forests

1 Bayes classifier: 12.6

2 RF: 22.4

3 Local splitting rule: same as RF after tuning

4 Local weighting of the individuals: same as RF after tuning

5 Local weighting of the predictors: same as RF
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Discussion

Local forest methods do not work as expected

Last year, I was invited to give a talk at a NIPS workshop on PAC-
Bayesian methods, I discussed with people about local, transduc-
tive, case-specific, lazy, instance-based... learning strategies

In a Chinese restaurant, I got a hidden message within a cake This
year, take comfort in your rituals, but be open to new experiences
I was very enthusiastic

One year latter, back to the real world.... trees methods are ex-
tremely difficult to localize

Thank you very much for your attention
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