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Motivation

A central question of geostatistics is the prediction of spatial patterns
over a ROI using data measured at finite set of locations. —A hierarchical
Gaussian process model

When the data are not fully observed, with a suitable model, the
goodness of the spatial prediction and estimation depend on the spatial
allocation of the measurement locations [Müller, 2007], i.e.
observational/experimental design.

The design in spatial data analysis– the spatial/spatiotemporal allocation
of the data.

Gaussian v.s. non-Gaussian observation processes in spatial analysis.

We study observational designs for spatiotemporal log-Gaussian Cox
processes (LGCPs).
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LGCPs

Why LGCPs?

A LGCP arises from an inhomogeneous Poisson process with intensity λ
whose logarithm has a Gaussian process.

In terms of the spatialtemporal observation design, the key question is
when and where we should do the survey in order to learn most of the
essentials of λ(sss, t).

The interest is the saptiotemporal varies over the intensity surface.
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Denote the study region by D, and a vector of spatiotemporal covariates
by xxx = [sssT , t ] ∈ D.

The (approximate) likelihood can be written

L (y1, . . . , yn|λ(·)) = L(y1, . . . , yn|λ(xxx i ))

=
n∏

i=1

Poisson (yi |λ(xxx i )) (1)

where n is the number of observed discretized locations and yi is the
count observation at i ’th location xxx i and
log(λ(xxx)) = fff = [f (xxx1), . . . , f (xxxn)]T is a vector of latent variables at those
locations, and has a multivariate Gaussian distribution.
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The additive model for spatiotemporal Gaussian
process prior

Additive model

logλ(xxx) = f (sss, t) ∼ GP(µ(sss, t), k(sss,sss′) + k(t , t ′)). (2)

f (sss, t) = µ(sss, t) + g(sss) + h(t),

where the additive terms are mutually independent Gaussian processes.
g(sss) ∼ GP(0, k(sss,sss′)) and h(t) ∼ GP(0, k(t , t ′)).

Choices of covariance functions (e.g., Martèn, square exponential, etc.).

Laplace approximation for posterior inference.

GPstuff [Vanhatalo et al., 2013] software v.s. other alternatives.
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What is the design?
What is the problem that arises from the design?
How to evaluate the design?
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Expected utilities

We will denote by Dn = {dn} the set of all possible designs of size n in do-
main D.

The expected utility is then defined as

U(dn) =

∫
Y

∫
f
U(dn, f , y)p(f |dn, y∗)p(y |dn)df dy∗, (3)

where y∗ ∈ Y the future data.

The MC simulation.
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Spatial balance designs

The model-based optimal experimental design, simulated annealing
algorithms [Müller, 1999, Müller et al., 2004], interactive MCMC methods
[Amzal et al., 2006].
Spatial balance design sampling methods to increase expected utilities
and obtain good designs by means of good coverage rates of the survey
region.

Halton, Sobol designs, the Fibonacci lattice designs, distance based de-
signs ( simple inhibitory, inhibitory plus close pairs lattice
designs [Chipeta et al., 2016], and the space-filling design
[Nychka and Saltzman, 1998].
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Inclusion probability

An even probability.
Some locations are more informative than others.
Rejection sampling scheme, more weights to certain covariates which
are a priori expected to be more informative.
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Rejection design

The general algorithm of the rejection sampling design proceeds as following:

1 Randomly generate a location xxx∗ within the study domain (here any of
the above random or quasi-random sequence can be used);

2 Calculate an inclusion probability 0 ≤ p(xxx∗) ≤ 1
3 Accept the location with probability p(xxx∗). If accepted, set xxx j = xxx∗ and

increase j = j + 1. If rejected, keep j = j and return to step 1;

4 Repeat steps 1-3 until the size of design reaches to n.
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Two common utility functions in geostatistics

We will consider two commonly used utilities in geostatistics.
(1) The average predictive variance (APV)

⇒ L̂APV(dn) =
1
|D|

∑
y∈N n

p(y |dn)

∫
xxx∗∈D

Var{λ(xxx∗)|dn, y}d xxx∗ . (4)

The MC approximation of (APV)

L̂APV(dn) ≈ 1
M

M∑
j=1

[
1
N

∑
xxx∗∈X∗

Var{λj (xxx∗)|dn,Yj}d xxx∗

]
,

The intensity function

µ(λ(xxx∗)) = exp
(
µ(f (xxx∗)) + Var(f (xxx∗))/2

)
,

Var[λ(xxx∗)] =

[
exp(Var(f (xxx∗))− 1

]
exp
(

2µ(f (xxx∗) + Var(f (xxx∗)
)
.
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KL divergence

The mutual information

UKL(dn,Y ) = KL
(

d P(f (·)|X ,Y )||d P(f (·))

)
⇒ ÛKL(dn) =

∑
y∈N n

p(y |dn)KL
(

d P(f (·)|X , y)||d P(f (·))

)
. (5)

The Kullback-Leibler divergence (KL) [Kullback, 1987]

UKL(dn, y) =
1
2

(
log |K∗K−1

∗|y |+ tr(K−1
∗ K∗|y )

+ (µ∗ − µ∗|y )T K−1
∗ (µ∗ − µ∗|y ))− c

)
, (6)

where c is the dimension of the covariance matrices K∗|y and K∗.
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The KL divergence

The KL-divergence from the prior to the posterior

KL
(

d P(f (·)|y)||d P(f (·))

)
=

∫
log

p(y |f (·))d P(f (·))

d P(f (·))
∫

p(y |f (·))d P(f (·))
d P(f (·)|y)

=

∫
log p(y |f (·))d P(f (·)|y)− log p(y)

=

∫
log p(y | fff ) d P(fff |y)− log p(y), (7)

where p(y) =
∫

p(y |f (·))d P(f (·)) =
∫

p(y | fff )p(fff ) d fff . When X ⊂ D, we
get the last equality.
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Examples of spatiotemporal designs

A random draw from an additive GP with unimodal mean function along time
(color surface) and samples from Sobol design (n = 30).
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Poisson additive model for latent function, EAPV

The dimension of the designs, n = 100.
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Poisson additive model, EKL
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Case study

We design a survey to inform spatial distribution of fish larval areas on
Finnish coastal region in the northern Baltic Sea. The data contain several
different species, count data between year 2007-2014, and from early May
and early July (the calender days 128 -188. Ten different covariates that
include times and spatial regions.
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Map of the case study area on the Finnish coastal region. The study region
includes 229 429 very dense spatial grid cells, 20 weeks, in total 4 588 580
spatiotemporal grid cells.
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Results

Posterior inference with monotonic constraints.
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Shrink the survey region in the study.
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The crosses connected with solid lines show the Monte Carlo estimate and
the highlighted regions show the 95% credible interval of this estimate.
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a) pike perch sampling design

b) herring sampling design
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Conclusion

1 Realistic prior information can increase the expected utility of the designs
with the observations that have LGCPs.

2 The design with inclusion probability keeps randomness and inherits the
advantages from the spatial balance designs.

3 We need good/optimal designs: reduce the cost, good inference, etc.

4 This work has an arXiv version (arXiv:1808.09200).
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On going works

1 New computational algorithms to make the computation of utilities and
relatives (covariance matrix and inversion, the Cholesky decomposition)
to be feasible and efficient with Big data.

2 Bayesian optimal design, new stochastic methods based annealing
simulations to work with high dimensional cases. Study the discretized
and continuous design spaces. Good proposals for fast mixing rates of
the Markov chains.
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Thank you very much!
Merci beaucoup!
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