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Integrative Analysis

Goal of Integrative Analysis:

Wikipedia. Data integration “involves combining data residing in
different sources and providing users with a unified view of these
data. This process becomes significant in a variety of situations,
which include both commercial and scientific*.

System Biology. Integrative Analysis: Analysis of heterogeneous
types of data from inter-platform technologies.

Goal. Combine multiple types of data:

» Contribute to a better understanding of biological mechanism.
> Have the potential to improve the diagnosis and treatments of
complex diseases.



Example: Data definition

p q
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- n observations - n observations
- p variables - q variables




Example: Data definition

p q

X Y

- n observations - n observations
- p variables - q variables

> “Omics.” Y matrix: gene expression, X matrix: SNP (single
nucleotide polymorphism). Many others such as proteomic,
metabolomic data.

> “neuroimaging”. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

> “neuroimaging genetics.” Y matrix: fMRI (Fusion of functional
magnetic resonance imaging), X matrix: SNP

» “Ecology/Environment.” Y matrix: Water quality variables , X
matrix: Landscape variables



Data: Constraints and Aims

» Main constraint: situation with p > n



Group structures within the data

> Natural example: Categorical variables which is a group of
dummies variables in a regression setting.
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Group structures within the data

> Natural example: Categorical variables which is a group of
dummies variables in a regression setting.

» Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.

— These genes can add up to have a larger effect

< can be detected as a group (i.e., at a pathway or gene
set/module level).

We consider variables are divided into groups:

»> Example p: SNPs grouped into K genes
X =[SNP;,...+ SNP | SNPy.1, SNPy,», . .., SNPy|...|SNP4, ..., SNP,]

geney genez genek

> Example p: genes grouped into K pathways/modules (X; = gene;)

X=X, X, .., Xic | Xicats Xiwzs -5 Xn | Xiars Xisz, -, Xp]

M Mo My




Aims in regression setting:

< P > <« q >
G1 G2 GK
n Predictor matrix: Outcome matrix: | (n
- n observations - n observations
- p variables - g variables
- K groups

> Select group variables taking into account the data structures;
all the variables within a group are selected otherwise none of
them are selected

» Combine both sparsity of groups and within each group; only
relevant variables within a group are selected



Some frequentist Appoaches

> Lasso models: regression model

> use Ly and L, penalties for performing variable selection



Lasso models
Univariate model : Y =XB+¢, Y € R", B RP

> Lasso regression: sparse model with L1 penalty

n p

argmin Z(Y,- - X,-Tﬂ)2 + AZ 1B;l
BERP 5 j

argmin [|Y - XBI3 +1 |Iﬁ||1

Loss Penalty

—lasso

> Group Lasso regression: sparse model using group
structure with L penalty on group (X4 with 8, € RFv)

G G
. 2
ﬁrggg Yy — ; XgBglls + /1; \PgllBgll2

-If pg = 1 = Lasso method (||B,ll2 = \/,875 = By



Lasso models

Univariate model : Y = 2811 XgBg+e Y €RN, BeRP

> Sparse Group Lasso regression: sparse group model using
group structure combining L1 and L, penalties

G

G
min|IIY = > XgBgl + 21 > \PgllBgllz + IIBls

€RP
F g=1 g=1



Lasso model for Multivariate Y

Y=XB+E

where Y (nx q), B (p X Q)

> Sparse model: select predictors associated to the multiple

phenotype Y (n x q):

p
. 2
min Y — XB||z + /lZ 18)ll2

where B = ﬁ? ﬂf 2

By B5 ... Bp

> Implemented in glmnet ()

I=1

. Bi=(8].5..--.B))

> Sparse Group model: see e.g., Li et al. (2015), Wand et al.

(2012).



Bayesian Framework

> Univariate regression model: Y — Zg=1 XgBg ~ Np (0, (721[,,)

» Xu and Ghosh (2015): Bayesian group lasso using spike and
slab priors for group variable selection.

> Rockova and Lesafre (2014): (EM) algorithm for a hierarchical
model incorporating grouping information.

» Stingo et al. (2011): PLS approach for pathway and gene
selection using variable selection priors and Markov chain
Monte Carlo (MCMC)



Bayesian Framework

> Multivariate regression model:

G
¥ = > XgBg ~ MNpxg (Opxq. I, 3)
g=1

> Zhu et al. (2014): Bayesian generalized low rank regression
model.

> Greenlaw et al. (2016): Bayesian hierarchical modeling for
imaging genomics data. Limited to = o-QI[q.



Bayesian group lasso model with spike and slab priors

Xu and Ghosh (2015) approaches:

> spike and slab priors providing variable selection at the group
level.

» hierarchical spike and slab prior structure to select variables
both at the group level and within each group.

> Limited to univariate case.

> Doesn’t take into account group size in the penalisation part.



Multivariate Bayesian Group Lasso with Spike and Slab
prior

YIX,B,Z ~ MNpxq(XB, Z,15), (1)

Vec(BJIZ, 7, 710) " (1 = 70) Ny (0, Im, ® T2%) + modo( Vec(BY)),

5 ind mg + 1 A2
Tg~Gamma( BRIk g=1,...,G, )
2 ~1W(d, Q) (4)
o ~ Beta(a, b) (5)

where 60(Vec(Bg)) denotes a point mass at 0 € R™9, By is the
mg X q regression coefficient matrix for the group g



Calibration of 4

vvyyVvYyy

A is related to the coefficient of shrinkage.
tuned using an empirical Bayes approach.
a Monte Carlo EM algorithm is used.

the kth EM update for 1 is:

A(k) _ p+ G
»E By [121Y]

in which the posterior expectation of TS is replaced by the
Monte Carlo sample average of TS generated in the Gibbs
sample based on A1),




Median Thresholding Estimator

> In the case of a block orthogonal design matrix X (i.e.,
XTX;=0fori+j),wehavefor1<g<G

Vec(B]) = Vec ((XIXg) ' XIY)T) ~ Np.o (Vec(B]), (XIX,) ' ®5).
g 9“9 g gq g g“>g

> We showed assuming mo > 7%, then there exists t(mo) > 0, such that
the marginal posterior median of ﬁf} satisfies

Med(B[Bg) = 0 forany 1 <i<mgand1<j<gq

when ||Vec(§;)||2 <t.

» The marginal posterior median estimator of the gth group of
regression coefficients is zero when the norm of the corresponding
block least square estimator is less than a certain threshold.



Posterior median as a soft thresholding estimator

» Assuming an orthogonal design matrix X, i.e., X'X = nl, and
consider our model defined with fixed 75 (1 < g < G).
> Posterior distribution of By is a spike and slab distribution,

1-D,
Vec(Bg)IX, Y ~ (1 = Ig)Nmgq (1 — D) Vec(B[g ), Tg]lmg ® z) + lgdo(Vec(By)).

where B s g is the least squares estimator of By, Dy = ,and Iy = p(Bg = Olrest)

1+nrs

o
IQ = mg(g-1) m,
o+ (1-m0)(t2)" 2 (1+n2) % exp{(1 - Dg)nTH{="1B] JBsgl)

» The marginal posterior distribution of ,8,?} is also a spike and
slab distribution,

1-D
BIIX,Y ~ (1~ /g)N((1 - DBl ng,j) +lgdo(B)),

where Zj is the j-th diagonal element of .



Posterior median as a soft thresholding estimator

> The resulting median is a soft thresholding estimator defined by

Z,,
E;Aed,g = Med(8)I%,Y) = sgn (] ;) | (1 = Do)iBl ;1 - ‘%Qg J1- Dg] ,

+

1

where z, denotes the positive part of zand Qg = ¢~ (m).
- 279

> For a univariate response (q = 1) the matrix Z reduces to the
scalar 02, and our result matches the previous work of Xu et al
(2015).

> In the multivariate frequentist setting, Li et al. (2015) proposed
an iterative algorithm with similar soft thresholding function to
incorporate group structure in estimating the regression
estimates.



Oracle property

> Let BO,BB,,BE’Q denote the true values of B,Bg,ﬁg, respectively.

» The index vector of the true model as
A= ((|Vec(By)ll2 #0),g=1,...,G),

> The index vector of the model selected by certain thresolding
estimator By as A, = (I(||Vec(Bg)ll2 # 0),g =1,...,G).

» Model selection consistency is attained if and only if
lim, P(Ap = A) =1.



Oracle property

» Under orthogonal design the median thresholding estimator
has oracle property.

> Theorem: Assume orthogonal design matrix, i.e., X™X = nlp.
Suppose Vnt5,, — oo and log(r5,)/n — 0 as n — oo, for
g=1,..., G, then the median thresholding estimator has
oracle property, that is, variable selection consistency,

lim P(AMed = A) = 1

n—oo

and asymptotic normality,

Vi (Vec(BYe) - Vec(B)) S N(0,% @1).



Gibbs Sampler: full posterior distribution

p(B, 7%, %, 0lY,X) o« p(Y[B,72 %, 7o) X p(Blr?, Z, 7o)
xp(t%) x p(Z) X p(mo),

where
p(YIB, 72, %, o) « |£"2 exp {—% Tr[(Y - xB)z (Y - XB)T]},
G

p(BIT?, %, 70) = | | P(BgleS, 2. 70),
g=1

_amg o _amg _ _mg 1 i
p(Bg|r§,z,no)oc(1 - mo)(2m)” 2 (TS) 2 |2 2 exp—{szTr[Bgz 1B;]}I[BQ¢O]
g

+mod0(Vec(Bg ),

G 2
2 gmg+1 5 qmg+1 1 A my >
P(ri.....7g) !;[u )7 () e exp| -5
p(mo) o< 73~ (1 — m)®~",

d+g+1

p(s) o 57 “F exp{—%rr(ozﬂ}



Conditional posterior distribution

Let B(5) denote the B matrix without the gth group, and X4 denote
the covarlate matrix corresponding to By, that is,

X = (X1,..., Xgo1,Xgs1s -, Xg)
where X is the design matrix corresponding to By.

» Conditional posterior distribution of Bg: spike and slab
distribution
> Conditional posterior distribution of o = &
g

> Inverse Gamma if By =0
> Inverse Gaussian if By # 0

» Conditional posterior distribution of Z: Inverse Wishart
> Conditional posterior distribution of y: Beta distribution



Multivariate Sparse Group Selection with Spike and Slab
Prior (MBSGS-SS)

» Reparametrize the coefficients matrices to tackle the two kinds
of sparsity separately:

1

Bg= V ﬁg,g=1,...,G;j=1,...,mg,

«Q ol

1 —
with V¢ = diag{zg,., . :,Tgmg}, 7gi > 0 and where By, when
nonzero, follow Vec(Bj) ~ Ninyq(0.1n, ® 5).

1
> Diagonal element of V§ control the magnitude of the elements
of By.



Multivariate Sparse Group Selection with Spike and Slab
Prior (MBSGS-SS)

> To select variables at the group level, we assume the
multivariate spike and slab prior for each Vec(B;):

Vec(B]IZ, 7, 70) ™ (1 = 70)Nimyq(0, Im, ® E) + mo6o(Vec(BY))

> Note that when 7 = 0, the j-th row of B is essentially dropped
out of the model even when By, # 0.

> So in order to choose variables within each relevant group, we
assume the following spike and slab prior for each 74;:

76 " (1=m)N*(0,8%) +m180(tg)s g=1.....G; j=1,....,my,

where N*(0, s?) denotes a normal N(0, s?) distribution
truncated below at 0.



Prior Specification

» We assume an Inverse Wishart prior for £ ~ IW(d, Q)
> We assume conjugate beta hyper-priors for 7o and .
> We use a conjugate inverse gamma prior for

s2 ~ Inverse Gamma(1, t),
> We stimate t with the Monte Carlao EM algorithm. For the k-th

EM update,

oo 1
Ejk-1) [élY]

where the posterior expectation of é is estimated from the
Gibbs samples based on k=1,



Gibbs Sampler: full posterior distribution
> Joint posterior
p(B, 72,2, 70, 711, $°[Y, X)

’
3|2 =T
<[ expy -2

[ ZXQVZBQ] ngv Bg]

G
_9amg _ _Mg =~ e q= ~
xﬂu —mo)2n)" 2 |z 2 exp{—ETr[BgZ 1135]}/[139;&0]
g=1

|

+mod0(Vec(B}))
G Mg T
ﬂl_[ (1 = m)2(2ns?)” 2exp{
=1

51”3 exp {—5 Qs )}

2

}l[‘rg, > 0] + 7 60(791)}

xal (1 — mg)%

xaS (1 - mq) 27

1

xt(s?) "2 exp {— s%}



Simulation Studies

» Comparison to Lasso, group Lasso, sparse goup Lasso for
univariate setting

>

R package glmnet and SGL

» Comparison to Lasso for Mulivariate setting

»

R package glmnet

> Bayseian approaches

| 2
>

>

BGL-SS (Bayesian Group Lasso with Spike and Slab prior)
BSGS-SS (Bayesian Sparse Group selection with spike and
slab priors)

MBGL-SS for multivariate setting

MBSGL-SS for multivariate setting

running 20000 iterations in which the first 10000 are burn-ins.



Simulation results: summary

> Simulations results suggest that the multivariate Bayesian
group lasso with spike and slab prior is strongly influenced by a
combination of different group size structures and high
correlation between predictors.

> The multivariate Bayesian sparse group selection with spike
and slab prior does not suffer in this situation.

> Most powerful method for variable selection and prediction
performance in the presence of group structure data

» All numerical results from our article could be reproduced using
our R package MBSGS available on CRAN.



Computation

> The current version of our package runs for example:

> a MBSGS-SS model in around 2 minutes

»> a MBGL-SS model in around 1 minute for a model with 20
groups of 5 variables

> for a sample size (n = 900) with 20000 iterations including
10000 for the burnin.

» Further improvements of the code such as parallelization over
the group structure are in progress to speed up the
computational time for tacking Big Data sets

> In this context of genetics studies, some further extensions of
our model are under investigation such as integrating different
group penalties given a biological prior of the pathways or
different distribution priors for each group.



Application: Aim and Data

> |dentify a parsimonious set of predictors that explains the joint
variability of gene expression in four tissues (adrenal gland, fat,
heart, and kidney).

> 770 SNPs in 29 inbred rats as a predictor matrix (n =29, p =
770)

> 29 measured expression levels in the 4 tissues as the outcome

(q=4).



Application

Correlation Summary statistics

ADR Fat Heart Kidney | Mean  Variance

ADR 1.00 046 0.44 0.70 4.72 0.07

Fat 1.00 024 0.42 8.23 0.09
Heart 1.00 0.44 8.79 1.61
Kidney 1.00 6.65 0.07

Chromosome [ 1 2 3 4 5 6 7 & O 10 11 12 13 14 15 16 17 18 19 20
74 67 63 60 39 45 52 43 31 51 21 26 33 22 15 27 18 30 34 19

Group size

» chromosome information defines the group structure of the
predictor matrix
> ran our MBGL-SS and MBSGS-SS models using this group

structure

> The multivariate lasso selects 69 SNPs which come from the
20 chromosomes.

» The MBGL-SS selects only the two first groups corresponding
to the SNPs from chromosomes 1 and 2.



Application: MBSGS-SS results, 32 SNPs from 8
chromosomes

Chromosome SNP Name | ADR Fat Heart Kidney
2 D2Rat147 000553 0.00238 - 0.00329
2 D2Rat222 000442 0.00116 - 0.00305
2 D2CebrP476s2 0.00123 - - -

2 D2Rat69 000715 001748 000730  0.00620
2 D4Uesf2 0.00054 - - -
2 D7Cebraizsd 0.00246 - 0.00050  0.00461
3 D7Cebri4C16s2 | 0.00200  0.00326 - 0.00049
4 D7Rat112 000035  0.00001 - -
4 D7Rat19 001113 0.01800  0.03680  0.01828
4 Cypllb2 000075  0.00374 - 0.00394
7 D10Ntr32 0.00123 - 0.01112  0.00143
7 D10Rat31 000031  0.00573  0.00442  0.00316
T D10Cebr3ds2 000280  0.00490  0.00821 0.00586
7 Es13 0.00539 - 0.00924  0.0041%
T D10Rat226 000415 0.00006  0.00987  0.00372
T D14Rat36 0.00036 - 0.03076 -
7 D14Cebrp312s2 | 0.00004 - 0.05427 -
10 D14Mitd 0.04963 0.05415 0.33434 0.07401
10 Di5Rat21 000937  0.00560  0.03140  0.01704
10 D180l 000149 0.00297  0.00251 0.00487
10 Ednra 0.00026 - - -
10 D2Mitl6 - 0.00077 - -
10 D2Rat70 - 0.00190 - -
10 D3Cebr2ids4 - 0.00042 - -
14 D4Rat49 - 0.00102  0.00092  0.00401
14 D7Mit6 - 0.00002 - -
14 D10Rat102 - 0.00112 - -
14 D4Rat252 - - -0.00184 -
14 Mye - - 0.00660 -
15 D10Mit3 | - - 0.00104 -
19 Di14Rat® - - 0.00058 -

19 Di4Rat52 - - 0.00361 -




Application: results

» SNP D14Mit (from chromosome 10) has been previously
identified

> Highest estimate (0.334) for the heart tissue

> the posterior standard deviation of the regression parameter for
each selected non-zero median estimate was in the range 0.11
to 0.64.

> SNP D14Mit3 estimate was 0.334 with posterior standard
deviation 0.639

> Importance of chromosomes could be investigated using an
estimate of the probability of inclusion

Chromosome 1 2 3 4 b 6 T 8 9 10
EPI 0.00 100 100 100 072 000 1.00 000 0.00 1.00
Chromosome 11 12 13 14 15 16 17 18 19 20

EPI 083 012 046 100 0093 088 079 059 0.80 040




Concluding remarks: summary

| 2

>

Bayesian methods for group-sparse modeling in the context of
a multivariate correlated response variable.

Our models are based on spike and slab type priors which
facilitate variable selection.

Importance to include the group size information in the
shrinkage part of our model.

We have shown that the posterior median estimator could both
select and estimate the regression coefficients.

Simulation results suggest very good performance of the
posterior median estimator for variable selection and prediction
error.

This estimator obtains similar results as the highest probability
model in terms of true and false positive rates.
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Extension to Pleotropic mapping for genome-wide
association studies using group variable selection

> Pleiotropy: genetic variants which affect multiple different
complex diseases

» Example: genetic variants which affect both Breast and Thyroid
cancer.

> Results from GWAS suggest that complex diseases are often
affected by many variants with small effects (known as

polygenicity)

> Aims:
> statistical method to leverage pleiotropic effects

> incoporate prior pathway knowledge to increase statistical
power and identify important risk variants.



Model for multiple GWAS studies

> Suppose we have data from K independent GWAS datasets,
D =D1U---UDg, where D = ({y1, X1}, - .., {¥ns Xn )

> yik € {0, 1} denotes the phenotype of the kth study
> xix € RP is the vector with corresponding p SNPs.
» Logistic regression model

yik ~ Bernoulli (g‘1 (v,-k))
Vik = Xp B
fork =1,..., K, where g(-) is the logistic link function

> B € RP the regression coefficients for the kth GWAS.

> Letp; € RK, j=1,...,p, the vector of K regression coefficients
corresponding to the jth SNP over the K GWAS.



Group Structure

» SNPs can be partitioned into G groups (genes)

> Letng,g=1,...,G the set of SNPs contained in the gth group

> Matrix of all regression coefficients as

B=(B1.....8k) = Bi.....8p)".



Frequentist Approach

» The log likelihood for the combined datasets:

K Nk
p(D|B) = Z Z L (ywBixi) where L(x)=—In(1+e™)

k=1 i=1

v

The penalised likelihood estimate

K

Nk
B=argmin{—ZZL yiBIxi) + 11lBlc,, +42||B||f21} (6)

BeRP*K -1 i

Go,1-norm penalty [Bllg,, = Zg=1 m

£o.1-norm penalty [IBllg,, = 3P, /SK_; B2 respectively.
The Go 1-norm fixes the group structure across studies and
encourages sparsity at a gene level.

The ¢, 1-norm which allows sparsity within a group.

v

v

v

v



Inference

» Inference using the alternating direction method of multipliers
algorithm (ADMM).

» Novel approach for identifying pleiotropic effects as it accounts
for gene specific and SNP specific effects using a variable
selection approach.

> The method is only capable of producing a point estimate of B
and acurrate estimation of the variance for these parameters is
not easily given.



Bayesian Logistic regression with multivariate spike and
slab prior: LogitMBGL-SS

> Lety = (y1,... ,yp)T indicate the association status for SNPs
where y; = 1 indicates that the jth SNP is associated to all K
traits.

> Spike and slab prior for the jth SNP g; € RX,

Bi. ~ (1 = )Nk (0,75V) +¥;S0(B;)
K+1 il)

2
- ~ Gamm
77 ~ Ga a( 5 %
V~IW(d,Q),
vj ~ Bernolli(ao)
ag ~ Beta(a, b)
forj=1,...,p, where 6o(B;) denotes a point mass at 0 € RK.
» Here, V e R¥*K is a covariance matrix modeling the covariance
of the SNP effect on the traits.



Extension

» Should perform well when the SNPs are independent.

» GWAS datasets: strong correlations that can occur between
SNPs within the same gene.

» Solution: reparameterise the coefficeints to handle the sparsity
at a gene grouping level and individual feature level separately.

> 7 € RP to model individual sparsity

> b e RPK with b@ = (b, ... b

b, ) where b e RX for
group sparsity.

Bi=1b?,  wherer;>0, foralljem



Bayesian Logistic regression using multivariate sparse
group selection with spike and slab priors

B =1p?,  wherer;>0, foralljerg

We assume the following multivariate spike and slab

b9 ~ (1 — ag) Np,k(0,Ip, ® V) + aodo(b'?)
7~ (1 —a)N* (0, sz) + a10o(T)),
ag ~ Beta(ay, a»)
ay ~ Beta(cy, ¢2)
s? ~ InvGamma(1, t)

forjenrgandg=1,...,G



Signal recovery:

(i) emT: Grouped multi-task penalised logistic regression
(41 > 0,42 = 0) using G, 1-norm

(i) smt: Sparse multi-task penalid penalised logistic regression
(41 = 0,22 > 0) using £2,1-norm

(iii) samT: Sparse group multi-task penalised logistic regression
(11 >0,12>0)

(iv) roaitmeaL: Bayesian logistic regression using multivariate group
lasso with spike and slab prior

(v) LoaitmBsas: Bayesian logistic regression using multivariate
sparse group selection with spike and slab prior



Results:

value of coefficient
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Results: Bayesian
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Main Conclusion on the simulation studies

>

The penalised approaches perform reasonably well in variable
selection but the reconstructed signal is underestimated.

In general, the penalised likelihood methods suffer in terms of
false negatives, selecting more variables to be nonzero than
the Bayesian methods.

The Bayesian methods perform the best in terms of signal
recovery measured by the ¢ error and variable selection
performance metrics.

The penalised likelihood approaches are computationally
efficient using alternating direction method of multipliers
algorithm

Simulation results suggest that when computationally possible
the Bayesian estimators should be used.

The multivariate Bayesian sparse group selection with spike
and slab prior performed the best in terms of signal recovery.
The Bayesian method provides a natural method for quantifying
the variability of the estimated coefficients.



What Next ?

» Application on real data: case/control studies

» Breast Cancer and Thyroide Cancer
> Thyroide Cancer (482 case, 463 control)
> Breast Cancer (1172 case, 1125 control)

> 6677 SNPs from 618 genes from 10 non-overlapping gene
pathways.
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> 6677 SNPs from 618 genes from 10 non-overlapping gene
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Looking for one postdoc position to fill for 2 years granted by “la
ligue contre le Cancer”
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