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Integrative Analysis
Goal of Integrative Analysis:

Wikipedia. Data integration “involves combining data residing in
different sources and providing users with a unified view of these
data. This process becomes significant in a variety of situations,
which include both commercial and scientific“.

System Biology. Integrative Analysis: Analysis of heterogeneous
types of data from inter-platform technologies.

Goal. Combine multiple types of data:

I Contribute to a better understanding of biological mechanism.
I Have the potential to improve the diagnosis and treatments of

complex diseases.



Example: Data definition

- n observations

- p variables

X
n

- n observations

- q variables

Y
n

p q

I “Omics.” Y matrix: gene expression, X matrix: SNP (single
nucleotide polymorphism). Many others such as proteomic,
metabolomic data.

I “neuroimaging”. Y matrix: behavioral variables, X matrix: brain
activity (e.g., EEG, fMRI, NIRS)

I “neuroimaging genetics.” Y matrix: fMRI (Fusion of functional
magnetic resonance imaging), X matrix: SNP

I “Ecology/Environment.” Y matrix: Water quality variables , X
matrix: Landscape variables
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Data: Constraints and Aims

I Main constraint: situation with p > n



Group structures within the data
I Natural example: Categorical variables which is a group of

dummies variables in a regression setting.

I Genomics: genes within the same pathway have similar
functions and act together in regulating a biological system.

↪→ These genes can add up to have a larger effect

↪→ can be detected as a group (i.e., at a pathway or gene
set/module level).

We consider variables are divided into groups:

I Example p: SNPs grouped into K genes

X = [SNP1, . . . + SNPk︸                 ︷︷                 ︸
gene1

|SNPk+1,SNPk+2, . . . ,SNPh︸                              ︷︷                              ︸
gene2

| . . . |SNPl+1, . . . ,SNPp︸                 ︷︷                 ︸
geneK

]

I Example p: genes grouped into K pathways/modules (Xj = genej)

X = [X1,X2, . . . ,Xk︸           ︷︷           ︸
M1

|Xk+1,Xk+2, . . . ,Xh︸                 ︷︷                 ︸
M2

| . . . |Xl+1,Xl+2, . . . ,Xp︸               ︷︷               ︸
MK

]
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Aims in regression setting:

I Select group variables taking into account the data structures;
all the variables within a group are selected otherwise none of
them are selected

I Combine both sparsity of groups and within each group; only
relevant variables within a group are selected



Some frequentist Appoaches

I Lasso models: regression model
I use L1 and L2 penalties for performing variable selection



Lasso models
Univariate model : Y = Xβ + ε, Y ∈ <n, β ∈ <p

I Lasso regression: sparse model with L1 penalty

β̂
lasso

= argmin
β∈<p

n∑
i=1

(Yi − XT
i β)

2 + λ
p∑

j=1

|βj |

= argmin
β∈<p

||Y − Xβ||22︸       ︷︷       ︸
Loss

+λ ||β||1︸︷︷︸
Penalty

I Group Lasso regression: sparse model using group
structure with L2 penalty on group (Xg with βg ∈ R

pg )

min
β∈Rp

||Y − G∑
g=1

Xgβg ||
2
2 + λ

G∑
g=1

√
pg ||βg ||2


-If pg = 1 =⇒ Lasso method (||βg ||2 =

√
β2

g = |βg |)



Lasso models

Univariate model : Y =
∑G

g=1Xgβg + ε, Y ∈ <n, β ∈ <p

I Sparse Group Lasso regression: sparse group model using
group structure combining L1 and L2 penalties

min
β∈Rp

||Y − G∑
g=1

Xgβg ||
2
2 + λ1

G∑
g=1

√
pg ||βg ||2 + λ2||β||1





Lasso model for Multivariate Y

Y = XB + E

where Y (n × q), B (p × q)

I Sparse model: select predictors associated to the multiple
phenotype Y (n × q):

min
B

||Y − XB||2F + λ
p∑

l=1

||βl ||2



where B =


β1

1 β2
1 . . . β

q
1

β1
2 β2

2 . . . β
q
2

...
...

...
...

β1
p β2

p . . . β
q
p

 , βl = (β1
l , β

2
l , . . . , β

q
l )

I Implemented in glmnet()
I Sparse Group model: see e.g., Li et al. (2015), Wand et al.

(2012).



Bayesian Framework

I Univariate regression model: Y −
∑G

g=1Xgβg ∼ Nn

(
0, σ2In

)
I Xu and Ghosh (2015): Bayesian group lasso using spike and

slab priors for group variable selection.

I Rockova and Lesafre (2014): (EM) algorithm for a hierarchical
model incorporating grouping information.

I Stingo et al. (2011): PLS approach for pathway and gene
selection using variable selection priors and Markov chain
Monte Carlo (MCMC)



Bayesian Framework

I Multivariate regression model:

Y −
G∑

g=1

XgBg ∼ MNn×q

(
0p×q, In,Σ

)
I Zhu et al. (2014): Bayesian generalized low rank regression

model.

I Greenlaw et al. (2016): Bayesian hierarchical modeling for
imaging genomics data. Limited to Σ = σ2Iq.



Bayesian group lasso model with spike and slab priors

Xu and Ghosh (2015) approaches:

I spike and slab priors providing variable selection at the group
level.

I hierarchical spike and slab prior structure to select variables
both at the group level and within each group.

I Limited to univariate case.
I Doesn’t take into account group size in the penalisation part.



Multivariate Bayesian Group Lasso with Spike and Slab
prior

Y|X,B,Σ ∼ MNn×q(XB,Σ, In), (1)

Vec(BT
g |Σ, τg, π0) ind

∼ (1 − π0)Nmgq(0, Img ⊗ τ
2
gΣ) + π0δ0(Vec(BT

g )),
(2)

τ2
g

ind
∼ Gamma

(
mg + 1

2
,
λ2

2

)
, g = 1, . . . ,G, (3)

Σ ∼ IW(d,Q) (4)

π0 ∼ Beta(a, b) (5)

where δ0(Vec(BT
g )) denotes a point mass at 0 ∈ Rmgq, Bg is the

mg × q regression coefficient matrix for the group g



Calibration of λ

I λ is related to the coefficient of shrinkage.
I tuned using an empirical Bayes approach.
I a Monte Carlo EM algorithm is used.
I the k th EM update for λ is:

λ(k ) =

√
p + G∑G

g=1 Eλ(k−1)

[
τ2

g |Y
] ,

in which the posterior expectation of τ2
g is replaced by the

Monte Carlo sample average of τ2
g generated in the Gibbs

sample based on λ(k−1).



Median Thresholding Estimator

I In the case of a block orthogonal design matrix X (i.e.,
XT

i Xj = 0 for i , j), we have for 1 6 g 6 G

Vec(B̂T
g ) = Vec

(
((XT

gXg)−1XT
gY)T

)
∼ Nmgq

(
Vec(BT

g ), (XT
gXg)−1 ⊗ Σ

)
.

I We showed assuming π0 >
c

1+c , then there exists t(π0) > 0, such that
the marginal posterior median of βg

ij satisfies

Med(βg
ij |B̂g) = 0 for any 1 6 i 6 mg and 1 6 j 6 q

when ||Vec(B̂T
g )||2 < t .

I The marginal posterior median estimator of the gth group of
regression coefficients is zero when the norm of the corresponding
block least square estimator is less than a certain threshold.



Posterior median as a soft thresholding estimator
I Assuming an orthogonal design matrix X, i.e., XTX = nIp and

consider our model defined with fixed τ2
g (1 6 g 6 G).

I Posterior distribution of Bg is a spike and slab distribution,

Vec(BT
g )|X,Y ∼ (1 − lg)Nmgq

(
(1 − Dg)Vec(BT

LS,g),
1 − Dg

n
Img ⊗ Σ

)
+ lgδ0(Vec(BT

g )),

where BLS,g is the least squares estimator of Bg , Dg = 1
1+nτ2

g
, and lg = p(Bg = 0|rest)

lg =
π0

π0 + (1 − π0)(τ2
g)−

mg (q−1)
2 (1 + nτ2

g)−
mg
2 exp

{
(1 − Dg)nTr [Σ−1BT

LS,gBLS,g ]
}

I The marginal posterior distribution of βg
ij is also a spike and

slab distribution,

β
g
ij |X,Y ∼ (1 − lg)N

(
(1 − Dg )̂βg

LS,ij ,
1 − Dg

n
Σjj

)
+ lgδ0(βg

ij ),

where Σjj is the j-th diagonal element of Σ.



Posterior median as a soft thresholding estimator

I The resulting median is a soft thresholding estimator defined by

β̂
Med,g
ij = Med(βg

ij |X,Y) = sgn
(̂
β

g
LS,ij

) (1 − Dg)|̂βg
LS,ij | −

√
Σjj
√

n
Qg

√
1 − Dg


+

,

where z+ denotes the positive part of z and Qg = φ−1( 1
2(1−min( 1

2 ,lg))
).

I For a univariate response (q = 1) the matrix Σ reduces to the
scalar σ2, and our result matches the previous work of Xu et al
(2015).

I In the multivariate frequentist setting, Li et al. (2015) proposed
an iterative algorithm with similar soft thresholding function to
incorporate group structure in estimating the regression
estimates.



Oracle property

I Let B0,B0
g, β

0,g
ij denote the true values of B,Bg, β

g
ij , respectively.

I The index vector of the true model as
A = (I(||Vec(Bg)||2 , 0), g = 1, . . . ,G),

I The index vector of the model selected by certain thresolding
estimator B̂g as An = (I(||Vec(B̂g)||2 , 0), g = 1, . . . ,G).

I Model selection consistency is attained if and only if
limn P(An = A) = 1.



Oracle property

I Under orthogonal design the median thresholding estimator
has oracle property.

I Theorem: Assume orthogonal design matrix, i.e., XTX = nIp .
Suppose

√
nτ2

g,n → ∞ and log(τ2
g,n)/n → 0 as n → ∞, for

g = 1, . . . ,G, then the median thresholding estimator has
oracle property, that is, variable selection consistency,

lim
n→∞

P(AMed
n = A) = 1

and asymptotic normality,

√
n
(
Vec(B̂Med

A
) − Vec(B0

A
)
) d
→ N(0,Σ ⊗ I).



Gibbs Sampler: full posterior distribution

p(B, τ2,Σ, π0|Y,X) ∝ p(Y|B, τ2,Σ, π0) × p(B|τ2,Σ, π0)

×p(τ2) × p(Σ) × p(π0),

where
p(Y|B, τ2,Σ, π0) ∝ |Σ|−n/2 exp

{
−

1
2

Tr
[
(Y − XB)Σ−1(Y − XB)T

]}
,

p(B|τ2,Σ, π0) =
G∏

g=1

p(Bg |τ
2
g ,Σ, π0),

p(Bg |τ
2
g ,Σ, π0)∝(1 − π0)(2π)−

qmg
2 (τ2

g)−
qmg

2 |Σ|−
mg
2 exp−

 1

2τ2
g

Tr
[
BgΣ

−1BT
g

]I[Bg , 0]

+π0δ0(Vec(BT
g )),

p(τ1, . . . , τg) ∝
G∏

g=1

(λ2)
qmg+1

2 (τ2
g)

qmg+1
2 −1 exp

−λ2mg

2
τ2

g

,
p(π0) ∝ πa−1

0 (1 − π0)b−1,

p(Σ) ∝ |Σ|−
d+q+1

2 exp
{
−

1
2

Tr(QΣ−1)
}



Conditional posterior distribution

Let B(g) denote the B matrix without the gth group, and X(g) denote
the covariate matrix corresponding to B(g), that is,

X(g) = (X1, . . . ,Xg−1,Xg+1, . . . ,XG)

where Xg is the design matrix corresponding to Bg.

I Conditional posterior distribution of Bg: spike and slab
distribution

I Conditional posterior distribution of α2
g = 1

τ2
g

I Inverse Gamma if Bg = 0
I Inverse Gaussian if Bg , 0

I Conditional posterior distribution of Σ: Inverse Wishart
I Conditional posterior distribution of π0: Beta distribution



Multivariate Sparse Group Selection with Spike and Slab
Prior (MBSGS-SS)

I Reparametrize the coefficients matrices to tackle the two kinds
of sparsity separately:

Bg = V
1
2
g B̃g, g = 1, . . . ,G; j = 1, . . . ,mg,

with V
1
2
g = diag{τg1 , . . . , τgmg }, τgj > 0 and where B̃g, when

nonzero, follow Vec(B̃T
g ) ∼ Nmgq(0, Img ⊗ Σ).

I Diagonal element of V
1
2
g control the magnitude of the elements

of Bg.



Multivariate Sparse Group Selection with Spike and Slab
Prior (MBSGS-SS)

I To select variables at the group level, we assume the
multivariate spike and slab prior for each Vec(B̃T

g ):

Vec(B̃T
g |Σ, τg, π0) ind

∼ (1 − π0)Nmgq(0, Img ⊗ Σ) + π0δ0(Vec(B̃T
g ))

I Note that when τgj = 0, the j-th row of Bg is essentially dropped
out of the model even when B̃j

g , 0.
I So in order to choose variables within each relevant group, we

assume the following spike and slab prior for each τgj :

τgj
ind
∼ (1−π1)N+(0, s2)+π1δ0(τgj), g = 1, . . . ,G; j = 1, . . . ,mg,

where N+(0, s2) denotes a normal N(0, s2) distribution
truncated below at 0.



Prior Specification

I We assume an Inverse Wishart prior for Σ ∼ IW(d,Q)
I We assume conjugate beta hyper-priors for π0 and π1.
I We use a conjugate inverse gamma prior for

s2 ∼ Inverse Gamma(1, t),
I We stimate t with the Monte Carlao EM algorithm. For the k -th

EM update,

t (k ) =
1

Et (k−1)

[
1
s2 |Y

] ,
where the posterior expectation of 1

s2 is estimated from the
Gibbs samples based on t (k−1).



Gibbs Sampler: full posterior distribution
I Joint posterior

p(B̃, τ2,Σ, π0, π1, s2 |Y,X)

∝ |Σ|−n/2 exp

−1
2

Tr


Y − G∑

g=1

XgV
1
2
g B̃g

Σ−1

Y − G∑
g=1

XgV
1
2
g B̃g


T 


×

G∏
g=1

(1 − π0)(2π)−
qmg

2 |Σ|−
mg
2 exp

{
−

1
2

Tr
[
B̃gΣ

−1B̃T
g

]}
I[B̃g , 0]

+π0δ0(Vec(B̃T
g ))

×

G∏
g=1

mg∏
j=1

(1 − π1)2(2πs2)−
1
2 exp

− τ
2
gj

2s2

I[τgj > 0] + π1δ0(τgj )


×|Σ|−

d+q+1
2 exp

{
−

1
2

Tr(QΣ−1)
}

×π
a1−1
0 (1 − π0)a2−1

×π
c1−1
1 (1 − π1)c2−1

×t(s2)−2 exp
{
−

t
s2

}



Simulation Studies

I Comparison to Lasso, group Lasso, sparse goup Lasso for
univariate setting
I R package glmnet and SGL

I Comparison to Lasso for Mulivariate setting
I R package glmnet

I Bayseian approaches
I BGL-SS (Bayesian Group Lasso with Spike and Slab prior)
I BSGS-SS (Bayesian Sparse Group selection with spike and

slab priors)
I MBGL-SS for multivariate setting
I MBSGL-SS for multivariate setting
I running 20000 iterations in which the first 10000 are burn-ins.



Simulation results: summary

I Simulations results suggest that the multivariate Bayesian
group lasso with spike and slab prior is strongly influenced by a
combination of different group size structures and high
correlation between predictors.

I The multivariate Bayesian sparse group selection with spike
and slab prior does not suffer in this situation.

I Most powerful method for variable selection and prediction
performance in the presence of group structure data

I All numerical results from our article could be reproduced using
our R package MBSGS available on CRAN.



Computation

I The current version of our package runs for example:
I a MBSGS-SS model in around 2 minutes
I a MBGL-SS model in around 1 minute for a model with 20

groups of 5 variables
I for a sample size (n = 900) with 20000 iterations including

10000 for the burnin.

I Further improvements of the code such as parallelization over
the group structure are in progress to speed up the
computational time for tacking Big Data sets

I In this context of genetics studies, some further extensions of
our model are under investigation such as integrating different
group penalties given a biological prior of the pathways or
different distribution priors for each group.



Application: Aim and Data

I Identify a parsimonious set of predictors that explains the joint
variability of gene expression in four tissues (adrenal gland, fat,
heart, and kidney).

I 770 SNPs in 29 inbred rats as a predictor matrix (n = 29, p =
770)

I 29 measured expression levels in the 4 tissues as the outcome
(q = 4).



Application

I chromosome information defines the group structure of the
predictor matrix

I ran our MBGL-SS and MBSGS-SS models using this group
structure

I The multivariate lasso selects 69 SNPs which come from the
20 chromosomes.

I The MBGL-SS selects only the two first groups corresponding
to the SNPs from chromosomes 1 and 2.



Application: MBSGS-SS results, 32 SNPs from 8
chromosomes



Application: results

I SNP D14Mit (from chromosome 10) has been previously
identified

I Highest estimate (0.334) for the heart tissue
I the posterior standard deviation of the regression parameter for

each selected non-zero median estimate was in the range 0.11
to 0.64.

I SNP D14Mit3 estimate was 0.334 with posterior standard
deviation 0.639

I Importance of chromosomes could be investigated using an
estimate of the probability of inclusion



Concluding remarks: summary

I Bayesian methods for group-sparse modeling in the context of
a multivariate correlated response variable.

I Our models are based on spike and slab type priors which
facilitate variable selection.

I Importance to include the group size information in the
shrinkage part of our model.

I We have shown that the posterior median estimator could both
select and estimate the regression coefficients.

I Simulation results suggest very good performance of the
posterior median estimator for variable selection and prediction
error.

I This estimator obtains similar results as the highest probability
model in terms of true and false positive rates.
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Extension to Pleotropic mapping for genome-wide
association studies using group variable selection

I Pleiotropy: genetic variants which affect multiple different
complex diseases

I Example: genetic variants which affect both Breast and Thyroid
cancer.

I Results from GWAS suggest that complex diseases are often
affected by many variants with small effects (known as
polygenicity)

I Aims:
I statistical method to leverage pleiotropic effects

I incoporate prior pathway knowledge to increase statistical
power and identify important risk variants.



Model for multiple GWAS studies

I Suppose we have data from K independent GWAS datasets,
D = D1 ∪ · · · ∪ DK , where Dk = ({y1, x1}, . . . , {ynk , xnk })

I yik ∈ {0, 1} denotes the phenotype of the k th study
I xik ∈ R

p is the vector with corresponding p SNPs.
I Logistic regression model

yik ∼ Bernoulli
(
g−1(νik )

)
νik = xT

ikβ·k

for k = 1, . . . ,K , where g(·) is the logistic link function
I β·k ∈ R

p the regression coefficients for the k th GWAS.
I Let βj· ∈ R

K , j = 1, . . . , p, the vector of K regression coefficients
corresponding to the jth SNP over the K GWAS.



Group Structure

I SNPs can be partitioned into G groups (genes)
I Let πg, g = 1, . . . ,G the set of SNPs contained in the gth group

with pg = |πg |.
I Matrix of all regression coefficients as

B = (β·1, . . . ,β·K ) = (β1·, . . . ,βp·)
T .



Frequentist Approach
I The log likelihood for the combined datasets:

p(D | B) =
K∑

k=1

nk∑
i=1

L
(
yikβ

T
k xik

)
where L (x) = − ln(1 + e−x )

I The penalised likelihood estimate

B̂ = argmin
B∈Rp×K

− K∑
k=1

nk∑
i=1

L
(
yikβ

T
k xik

)
+ λ1‖B‖G2,1 + λ2‖B‖`2,1

 (6)

I G2,1-norm penalty ‖B‖G2,1 =
∑G

g=1

√∑
i∈πg

∑K
j=1 β

2
ik

I `2,1-norm penalty ‖B‖`2,1 =
∑p

i=1

√∑K
k=1 β

2
ik respectively.

I The G2,1-norm fixes the group structure across studies and
encourages sparsity at a gene level.

I The `2,1-norm which allows sparsity within a group.



Inference

I Inference using the alternating direction method of multipliers
algorithm (ADMM).

I Novel approach for identifying pleiotropic effects as it accounts
for gene specific and SNP specific effects using a variable
selection approach.

I The method is only capable of producing a point estimate of B
and acurrate estimation of the variance for these parameters is
not easily given.



Bayesian Logistic regression with multivariate spike and
slab prior: LogitMBGL-SS

I Let γ = (γ1, . . . , γp)T indicate the association status for SNPs
where γj = 1 indicates that the jth SNP is associated to all K
traits.

I Spike and slab prior for the jth SNP βj· ∈ R
K ,

βj· ∼ (1 − γj)NK (0, τ2
j V) + γjδ0(βj·)

τ2
j ∼ Gamma

(
K + 1

2
,
λ

2

)
,

V ∼ IW (d,Q),

γj ∼ Bernolli(α0)

α0 ∼ Beta(a, b)

for j = 1, . . . , p, where δ0(βj) denotes a point mass at 0 ∈ RK .
I Here, V ∈ RK×K is a covariance matrix modeling the covariance

of the SNP effect on the traits.



Extension

I Should perform well when the SNPs are independent.
I GWAS datasets: strong correlations that can occur between

SNPs within the same gene.
I Solution: reparameterise the coefficeints to handle the sparsity

at a gene grouping level and individual feature level separately.
I τ ∈ Rp to model individual sparsity

I b(g) ∈ RpgK with b(g) = (b(g)T

1 , . . . ,b(g)T

pg
) where b(g)

j ∈ R
K for

group sparsity.

βj· = τjb
(g)
j , where τj > 0, for all j ∈ πg.



Bayesian Logistic regression using multivariate sparse
group selection with spike and slab priors

βj· = τjb
(g)
j , where τj > 0, for all j ∈ πg.

We assume the following multivariate spike and slab

b(g) ∼ (1 − α0)NpgK (0, Ipg ⊗ V) + α0δ0(b(g))

τj ∼ (1 − α1)N+
(
0, s2

)
+ α1δ0(τj),

α0 ∼ Beta(a1, a2)

α1 ∼ Beta(c1, c2)

s2 ∼ InvGamma(1, t)

for j ∈ πg and g = 1, . . . ,G



Signal recovery:

(i) gmt: Grouped multi-task penalised logistic regression
(λ1 > 0, λ2 = 0) using G2,1-norm

(ii) smt: Sparse multi-task penalid penalised logistic regression
(λ1 = 0, λ2 > 0 ) using `2,1-norm

(iii) sgmt: Sparse group multi-task penalised logistic regression
(λ1 > 0, λ2 > 0 )

(iv) logitmbgl: Bayesian logistic regression using multivariate group
lasso with spike and slab prior

(v) logitmbsgs: Bayesian logistic regression using multivariate
sparse group selection with spike and slab prior



Results: Frequentist
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Results: Bayesian

Study 1 Study 2
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Main Conclusion on the simulation studies
I The penalised approaches perform reasonably well in variable

selection but the reconstructed signal is underestimated.
I In general, the penalised likelihood methods suffer in terms of

false negatives, selecting more variables to be nonzero than
the Bayesian methods.

I The Bayesian methods perform the best in terms of signal
recovery measured by the `1 error and variable selection
performance metrics.

I The penalised likelihood approaches are computationally
efficient using alternating direction method of multipliers
algorithm

I Simulation results suggest that when computationally possible
the Bayesian estimators should be used.

I The multivariate Bayesian sparse group selection with spike
and slab prior performed the best in terms of signal recovery.

I The Bayesian method provides a natural method for quantifying
the variability of the estimated coefficients.



What Next ?

I Application on real data: case/control studies

I Breast Cancer and Thyroide Cancer

I Thyroide Cancer (482 case, 463 control)

I Breast Cancer (1172 case, 1125 control)

I 6677 SNPs from 618 genes from 10 non-overlapping gene
pathways.

Looking for one postdoc position to fill for 2 years granted by “la
ligue contre le Cancer”

https://lma-umr5142.univ-pau.fr/fr/vie-du-laboratoire/recrutement/
post-doctorat.html

https://lma-umr5142.univ-pau.fr/fr/vie-du-laboratoire/recrutement/post-doctorat.html
https://lma-umr5142.univ-pau.fr/fr/vie-du-laboratoire/recrutement/post-doctorat.html
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