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Heterogeneity & compositions
of random measures



Heterogeneous data

I Several applied settings characterized by data heterogeneity: multi-centre
studies, topic modelling, Genomics, ...

More generally:

I Covariate z ∈ Z

I Data (Xj,z )j≥1

Heterogeneity

For any z1 6= z2

Prob[Xi,z1 ∈ A, Xj,z2 ∈ B] 6= Prob[Xi,z1 ∈ B, Xj,z2 ∈ A]

I Which dependence between Xi,z1 and Xj,z2 ?
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Multiple samples and partial exchangeability

Z := {1, . . . , d} =⇒ X1 = (Xj,1)j≥1, . . . , Xd = (Xj,d )j≥1

Partial exchangeability

For any collection (π1, . . . , πd ) of finite permutations of N

(X1, . . . ,Xd )
d
= (π1X1, . . . , πd Xd )

I Homogeneity within each sample

Prob[X1,1 = 0, X1,2 = 1,X2,1 = 0,X2,2 = 1,X2,3 = 0]

= Prob[X1,1 = 1, X1,2 = 0,X2,1 = 1,X2,2 = 0,X2,3 = 0]

I Lack of homogeneity across different samples

Prob[X1,1 = 0,X1,2 = 1,X2,1 = 0,X2,2 = 1,X2,3 = 0]

6= Prob[X1,1 = 1,X1,2 = 0,X2,1 = 1,X2,2 = 0,X2,3 = 1]
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Hierarchical model representation

Representation theorem

{Xi : i = 1, . . . , d} is partially exchangeable if and only if

Prob[X1 ∈ A1, . . . ,Xd ∈ Ad ] =

∫
Pd
X

d∏
i=1

p(∞)
i (Ai ) Qd (dp1, . . . , dpd )

where PX is the space of probability measures on the sample space X

Case d = 2 samples

(Xi,1,Xj,2) | (p̃1, p̃2)
iid∼ p̃1 × p̃2

(p̃1, p̃2) ∼ Q2

and Q2 acts as a prior distribution on P2
X
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Compositions of random measures (d = 2)

I Choice of Q2? Compositions of random probability measures

(Xi,1,Xj,2)|(p̃1, p̃2)
iid∼ p̃1 × p̃2

p̃1, p̃2|p̃0
iid∼ Q( · |p̃0)

p̃0 ∼ Q0

I Extreme cases of dependence induced by the prior Q2

I Full exchangeability: Q2({(p1, p2) ∈ P2
X : p1 = p2}) = 1

I Maximal heterogeneity: Q2(A1 × A2) = Q∗1 (A1) Q∗∗1 (A2)

Possible compostitions through

(1) Hierarchical structure (Igor’s talk)

(2) Nested structure
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Nested structure

Nested random probabilities

If Q0 is a probability measure on PPX

p̃1, p̃2 | p̃0
iid∼ p̃0,

p̃0 ∼ Q0

Discrete case

p̃0 =
∑
j≥1

ωjδGj
Gj =

∑
h≥1

γh,j δθh,j θh,j
iid∼ P0

I (γh,1)h≥1, (γh,2)h≥1, (γh,3)h≥1, . . .

independent sequences of non–negative rv’s such that
∑

h≥1 γh,j = 1

I (ωj )j≥1⊥(Gj )j≥1 and
∑

j ωj = 1

I P0 is a non–atomic probability measure

Finally
Prob[{p̃1 = Gh} ∩ {p̃2 = Gκ} | p̃0] = ωh ωκ h, κ ≥ 1
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Latent nested processes



Latent nested construction

Work with the set MX of boundedly finite measures on X

Latent nested processes

(1) Nested component: discrete random probability measure on MX

q̃ =
∑
j≥1

ωj δmj

I mj =
∑

h≥1 Jh,j δθh,j ∈ MX

I θh,j
iid∼ P0

(2) Shared component: discrete random probability measure on X

µS =
∑
j≥1

JS
j δθS

j
∈ MX with θS

j
iid∼ P0
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Latent nested construction (ctd)

(µ1, µ2) | q̃ iid∼ q̃ ⇐⇒ Prob[{µ1 = mh} ∩ {µ2 = mκ} | q̃] = ωh ωκ

How to choose (ωj )j≥1, (Jh,j )h,j≥1, (JS
j )j≥1 to achieve

I analytical tractability

I modeling flexibility

Points of Poisson processes that induce completely random measures (CRMs)
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The role of CRMs

I P = {(Jj ,mj ) : j ≥ 1} sequence of points in R+ ×MX such that

card(P ∩ A) ∼ Po(ν(A)) ν(A) =

∫
A
ρ(s) ds c H(dm)

and ωj = Jj/
∑

j Jj

I Pj = {(Jh,j , θh,j ) : h ≥ 1} sequence of points in R+ ×X such that

card(Pj ∩ A) ∼ Po(ν0(A)) ν0(A) =

∫
A
ρ0(s) ds c0 P0(dx)

I PS = {(JS
j , θ

S
j ) : j ≥ 1} sequence of points in R+ ×X such that

card(PS ∩ A) ∼ Po(νS(A)) νS(A) =

∫
A
ρ0(s) ds γc0 P0(dx)



The role of CRMs

I P = {(Jj ,mj ) : j ≥ 1} sequence of points in R+ ×MX such that

card(P ∩ A) ∼ Po(ν(A)) ν(A) =

∫
A
ρ(s) ds c H(dm)

and ωj = Jj/
∑

j Jj

I Pj = {(Jh,j , θh,j ) : h ≥ 1} sequence of points in R+ ×X such that

card(Pj ∩ A) ∼ Po(ν0(A)) ν0(A) =

∫
A
ρ0(s) ds c0 P0(dx)

I PS = {(JS
j , θ

S
j ) : j ≥ 1} sequence of points in R+ ×X such that

card(PS ∩ A) ∼ Po(νS(A)) νS(A) =

∫
A
ρ0(s) ds γc0 P0(dx)



The role of CRMs

I P = {(Jj ,mj ) : j ≥ 1} sequence of points in R+ ×MX such that

card(P ∩ A) ∼ Po(ν(A)) ν(A) =

∫
A
ρ(s) ds c H(dm)

and ωj = Jj/
∑

j Jj

I Pj = {(Jh,j , θh,j ) : h ≥ 1} sequence of points in R+ ×X such that

card(Pj ∩ A) ∼ Po(ν0(A)) ν0(A) =

∫
A
ρ0(s) ds c0 P0(dx)

I PS = {(JS
j , θ

S
j ) : j ≥ 1} sequence of points in R+ ×X such that

card(PS ∩ A) ∼ Po(νS(A)) νS(A) =

∫
A
ρ0(s) ds γc0 P0(dx)



Latent nested processes

Homogeneous CRMs: the measures

µ =
∑
j≥1

Jj δmj mj =
∑
h≥1

Jh,j δθh,j µS =
∑
j≥1

JS
j δθS

j

are completely random and we use the notation

µ ∼ CRM(ρ, c; H) mj
iid∼ CRM(ρ0, c0; P0) µS ∼ CRM(ρ0, γc0; P0)

Latent nested process (Camerlenghi et al., 2018)

If (µ1, µ2)|q̃ ∼ q̃2, the vector (p̃1, p̃2) with

p̃1 =
µ1 + µS

µ1(X) + µS(X)
p̃2 =

µ2 + µS

µ2(X) + µS(X)

is a latent nested process and denoted as (p̃1, p̃2) ∼ LNP(γ, c0, ρ0, c, ρ)
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Some special cases

γ = 0 =⇒ µS degenerates on the null measure (no shared component)

=⇒ (p̃1, p̃2) = the standard nested process

Nested Dirichlet process (Rodríguez et al., 2008)

If ρ0(s) = e−s

s = ρ(s) and (p̃1, p̃2) ∼ LNP(0, c0, ρ0, c, ρ) then

(p̃1, p̃2) = nested Dirichlet process

Latent nested stable process (Camerlenghi et al., 2018)

For σ and σ0 in (0, 1), let

ρ0(s) =
σ0

Γ(1− σ0)
s−1−σ0 , ρ(s) =

σ

Γ(1− σ)
s−1−σ

and (p̃1, p̃2) ∼ LNP(γ, c0, ρ0, c, ρ), then

(p̃1, p̃2) = latent nested stable process
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Discrete random probabilities

I µ1 and µ2 are independently drawn from

q̃ =
∑
j≥1

ωj δmj

I Conditional on µ1 = mi1 and µ2 = mi2 one has

p̃1 =
∑
h≥1

ωh,i1δθh,i1
+

∑
j≥1

ωS
j δθS

j

p̃2 =
∑
h≥1

ωh,i2δθh,i2
+

∑
j≥1

ωS
j δθS

j

I Atoms are

I group–specific (θh,i1 )h and (θh,i2 )h

I shared (θS
j )j

I In a partially exchangeable setting: ties

I within samples
I between samples



Discrete random probabilities

I µ1 and µ2 are independently drawn from

q̃ =
∑
j≥1

ωj δmj

I Conditional on µ1 = mi1 and µ2 = mi2 one has

p̃1 =
∑
h≥1

ωh,i1δθh,i1
+

∑
j≥1

ωS
j δθS

j

p̃2 =
∑
h≥1

ωh,i2δθh,i2
+

∑
j≥1

ωS
j δθS

j

I Atoms are

I group–specific (θh,i1 )h and (θh,i2 )h

I shared (θS
j )j

I In a partially exchangeable setting: ties

I within samples
I between samples



Discrete random probabilities

I µ1 and µ2 are independently drawn from

q̃ =
∑
j≥1

ωj δmj

I Conditional on µ1 = mi1 and µ2 = mi2 one has

p̃1 =
∑
h≥1

ωh,i1δθh,i1
+

∑
j≥1

ωS
j δθS

j

p̃2 =
∑
h≥1

ωh,i2δθh,i2
+

∑
j≥1

ωS
j δθS

j

I Atoms are

I group–specific (θh,i1 )h and (θh,i2 )h

I shared (θS
j )j

I In a partially exchangeable setting: ties

I within samples
I between samples



Discrete random probabilities

I µ1 and µ2 are independently drawn from

q̃ =
∑
j≥1

ωj δmj

I Conditional on µ1 = mi1 and µ2 = mi2 one has

p̃1 =
∑
h≥1

ωh,i1δθh,i1
+

∑
j≥1

ωS
j δθS

j

p̃2 =
∑
h≥1

ωh,i2δθh,i2
+

∑
j≥1

ωS
j δθS

j

I Atoms are

I group–specific (θh,i1 )h and (θh,i2 )h

I shared (θS
j )j

I In a partially exchangeable setting: ties

I within samples
I between samples



Partially exchangeable samples

(Xi,1,Xj,2) | (p̃1, p̃2)
ind∼ p̃1 × p̃2

(p̃1, p̃2) ∼ LNP(γ, c0, ρ0, c, ρ)

I Two samples X1 = {X1,1, . . . ,XN1,1} and X2 = {X1,2, . . . ,XN2,2}

I Random partition ΨN of [N] = {1, . . . ,N1 + N2} induced by X1 and X2 into

I k1 clusters C1,1, . . . ,Ck1,1 specific to X1 with card(Cj,1) = nj,1

I k2 clusters C1,2, . . . ,Ck2,2 specific to X2 with card(Cj,2) = nj,2

I k0 shared clusters C1, . . . ,Ck0 with card(Cj ) = qj,1 + qj,2

Partially exchangeable partition probability function (pEPPF)

Π
(N)
k (n,n2,q1,q2) = Prob(ΨN = C)
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Partition probability function

The partition probability function corresponding to exchangeability (p̃1 = p̃2)

Φ
(N)
k,γ(n1,n2,q1,q2) = function of (c0, ρ0)

pEPPF (Camerlenghi et al., 2018)

If (X1,X2) is partially exchangeable from (p̃1, p̃2) ∼ LNP(γ, c0, ρ0, c, ρ), then

Π
(N)
k (n1,n2,q1,q2) = π∗1 Φ

(N)
k,γ(n1,n2,q1,q2)+(1−π∗1 )

∑
(∗)

Iγ(n1,n2,q1,q2; ζ∗)

where the sum (∗) runs over all vectors ζ∗ ∈ {0, 1}k1+k2 .

I The probability π∗1 is determined by (c, ρ)

I The function Iγ is determined by (c0, ρ0)

I The sum (∗) can be evaluated in some cases, otherwise one may sample ζ∗
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Testing distributional
homogeneity



Posterior probability of exchangeability across samples

Prob[p̃1 = p̃2 | data] =
π∗1 Φk,γ(n1,n2,q1,q2)

Π
(N)
k (n1,n2,q1,q2)

⇒ The standard nested process case is recovered with γ → 0 and

lim
γ→0

Iγ(n1,n2,q1,q2; ζ∗) > 0 ⇐⇒ k0 = 0

⇒ Even with a single shared cluster across samples, i.e. k0 > 0, one has

lim
γ→0

Prob[p̃1 = p̃2 | data] = 1

i.e. the posterior degenerates on exchangeability across samples.

⇒ For any γ > 0, ζ∗ and (k1, k2, k0) one can show that

Iγ(n1,n2,q1,q2; ζ∗) > 0

and the dependence structure does not degenerate to exchangeability even if
shared clusters are recorded, i.e.

Prob[p̃1 6= p̃2 | data] > 0 ∀k0 ≥ 0
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Latent nested σ–stable process

σ–stable partition probability function

If (p̃1, p̃2) is a latent nested σ–stable process, then

Π
(N)
k (n,m,q1,q2) =

σk−1
0 Γ(k)

Γ(N)
ξσ0

{
1− σ + σ γk0

B(k1σ0, k2σ0)

B(N1,N2)

×
∫ 1

0

∏k1
i=1(1 + γwni−σ0 )

∏k2
j=1(1 + γ(1− w)mj−σ0 ){

γ + wσ0 + (1− w)σ0

}k Beta(dw ; k1σ0, k2σ0)
}

where ξσ0 =
∏

(1− σ0)card(Cj )−1

⇒ Prior probability of full exchangeability: π∗1 = P[p̃1 = p̃2] = 1− σ

⇒
σk−1

0 Γ(k)

Γ(N)
ξσ0 = PPF in the fully exchangeable case
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I Posterior probability of full exchangeability:

π∗1 (x1, x2) := Prob[p̃1 = p̃2 | data] =
1− σ

1− σ + σf (γ, k0)

f is an increasing function of γ, for any k0 ≥ 0 and

f (0, k0) = 0 if k0 > 0

I γ > 0, for any k0 ≥ 0
π∗1 (x1, x2) < 1

I γ = 0

⇒ if k0 = 0 (no shared clusters), then

π∗1 (x1, x2) < 1

⇒ if k0 > 0 (at least one shared cluster), then

π∗1 (x1, x2) = 1
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Illustrations



Mixture model for density estimation

I θ ∈ Θ ⊂ Rd latent variables

I x 7→ h(x ;θ) density on X, i.e. for any θ

h( · ;θ) > 0
∫
X

h(x ;θ) dx = 1

Mixture model

(Xi,1,Xj,2) | (θi,1,θj,2)
ind∼ h( · ;θi,1) × h( · ;θj,2)

(θi,1,θj,2) | (p̃1, p̃2)
iid∼ p̃1 × p̃2

(p̃1, p̃2) ∼ LNP(γ, c0, ρ0, c, ρ)

Goals:

I Estimate the individual population densities f̃`(x) =
∫

Θ h(x ;θ) p̃`(dθ)

I Infer the clustering of the data, i.e. ]{clusters} or ]{shared clusters} or ...
I Discuss homogeneity across samples, namely full vs partial exchangeability
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Prior specification, with latent stable nested processes

I h( · ; (M,V )) is Gaussian with mean M and variance V

I Base measure is the usual normal/inverse–gamma

P0(dM, dV ) = P0,1(dV ) P0,2(dM |V )

P0,1 = Inv–Ga(s0,S0) P0,2 = N(m, τV )

I σ, σ0
iid∼ U(0, 1).

Illustrations with synthetic data

I Three simulation scenarios for X1 and X2

(I) Sample from two mixtures with a shared component having the same
weight

(II) Sample from the same distribution: homogeneity across samples

(III) Sample from two mixtures with a shared component having different

weights
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Simulated data

(I) First simulation scenario

X1 ∼
1
2

N(5, 0.6) +
1
2

N(10, 0.6) X2 ∼
1
2

N(5, 0.6) +
1
2

N(0, 0.6).

Comparison between

I LNP(0, c0, ρ0, c, ρ)

⇒ µS = 0 almost surely
⇒ p̃` = µ`/µ`(X) for each ` = 1, 2, where

(µ1, µ2) | q̃ iid∼ q̃ & q̃ = µ̃/µ̃(MX)

⇒ If there are shared values among

θ1 = {(Mi,1,Vi,1) : i = 1, . . . ,N1} and θ2 = {(Mj,2,Vj,2) : j = 1, . . . ,N2}

then the posterior degenerates on {(p1, p2) ∈ PX : p1 = p2}

I LNP(γ, c0, ρ0, c, ρ)
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then the posterior degenerates on {(p1, p2) ∈ PX : p1 = p2}

I LNP(γ, c0, ρ0, c, ρ)



Posterior of the number of clusters with N1 = N2 = 50
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Density estimates with N1 = N2 = 50
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Posterior distribution of the number of shared clusters: LNP with γ = 0 (left) and LNP
with γ > 0 (right)

I The latent nested process with γ = 0 identifies p̃1 and p̃2 as being distinct: the
posterior distribution and the number of shared components which is degenerate
at 0

I When the sample size is increased to N1 = N2 = 100, the latent nested model
with γ = 0 identifies a common component and the density estimates get worse.



Density estimates with N1 = N2 = 100
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True density and estimated density



Simulated data

(II) Second simulation scenario

X1
d
= X2 ∼

1
2

N(0, 1) +
1
2

N(5, 1).

Clustering: K1 = ]{clusters specific to X1} K2 = ]{clusters specific to X2}
K1,2 = ]{clusters shared by X1 and X2}

# comp. 0 1 2 3 4 5 6 ≥ 7
K1 0 0 0.638 0.232 0.079 0.029 0.012 0.008
K2 0 0 0.635 0.235 0.083 0.029 0.011 0.007
K1,2 0 0 0.754 0.187 0.045 0.012 0.002 0.001

Testing: Bayes factor for testing H0 : p1 = p2 vs H0 : p1 6= p2

BF =
P[p̃1 = p̃2 | data]

P[p̃1 6= p̃2 | data]

1− π∗1
π∗1

≈ 5.85



Simulated data

(II) Second simulation scenario

X1
d
= X2 ∼

1
2

N(0, 1) +
1
2

N(5, 1).

Clustering: K1 = ]{clusters specific to X1} K2 = ]{clusters specific to X2}
K1,2 = ]{clusters shared by X1 and X2}

# comp. 0 1 2 3 4 5 6 ≥ 7
K1 0 0 0.638 0.232 0.079 0.029 0.012 0.008
K2 0 0 0.635 0.235 0.083 0.029 0.011 0.007
K1,2 0 0 0.754 0.187 0.045 0.012 0.002 0.001

Testing: Bayes factor for testing H0 : p1 = p2 vs H0 : p1 6= p2

BF =
P[p̃1 = p̃2 | data]

P[p̃1 6= p̃2 | data]

1− π∗1
π∗1

≈ 5.85



Simulated data

(II) Second simulation scenario

X1
d
= X2 ∼

1
2

N(0, 1) +
1
2

N(5, 1).

Clustering: K1 = ]{clusters specific to X1} K2 = ]{clusters specific to X2}
K1,2 = ]{clusters shared by X1 and X2}

# comp. 0 1 2 3 4 5 6 ≥ 7
K1 0 0 0.638 0.232 0.079 0.029 0.012 0.008
K2 0 0 0.635 0.235 0.083 0.029 0.011 0.007
K1,2 0 0 0.754 0.187 0.045 0.012 0.002 0.001

Testing: Bayes factor for testing H0 : p1 = p2 vs H0 : p1 6= p2

BF =
P[p̃1 = p̃2 | data]

P[p̃1 6= p̃2 | data]

1− π∗1
π∗1

≈ 5.85



Simulated data

(III) Third simulation scenario

X1 ∼ 0.9 N(5, 0.6) + 0.1 N(10, 0.6) X2 ∼ 0.1 N(5, 0.6) + 0.9 N(0, 0.6).

Clustering:

# comp. 0 1 2 3 4 5 6 ≥ 7
K1 0 0 0.679 0.232 0.065 0.018 0.004 0.002
K2 0 0 0.778 0.185 0.032 0.004 0.001 0
K1,2 0 0.965 0.034 0.001 0 0 0 0

Testing: Bayes factor for testing H0 : p1 = p2

BF =
P[p̃1 = p̃2 | data]

P[p̃1 6= p̃2 | data]

1− π∗1
π∗1

≈ 0.00022
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Density estimates

Estimated (blue) and true densities (red) for X1 in Panel (a) and X2 in Panel (b).



Concluding remarks

I Dealing with d > 2 samples is more challenging

I Currently working on a hybrid hierarchical/nested model that

I allows to deal with more than 2 samples
I does not degenerate to exchangeability if at least one observation is shared

across samples

The main idea is to take an atomic base measure at the root of the nested model.
Ongoing joint work with I. Prünster and G. Rebaudo (PhD student @Bocconi)

Reference

I Camerlenghi, Dunson, L., Rodríguez & Prünster (2018). Latent nested
nonparametric priors. arXiv:1801.05048. Submitted.

THANK YOU !
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