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Introduction to quantitative genetics

• Use statistical and computational methods to study the genotype-phenotype
relationship

• Identify causal molecular markers which contributes to the phenotypic variation

• Estimate the heritability: 

• Applications: human health and medicine, animal and plant breeding
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Quantitative Trait Locus mapping and linear models

Y = Xβ + E

Hypothesis test:  β=0    VS    β ≠0

Phenotype 

Genotype at a  
marker: 
AA=1, AB=0, BB=-1

Additive genetic 
effect

The environmental 
factor  

The locus is claimed 
as a putative QTL, 
when the null 
hypothesis is 
rejected 

∼ N(0,σ 2 )



Time course data

Many biological processes 
are not static, but can 
change over time



Mice body size evolution on islands

• Study causes of the 
dramatic change in body 
size that accompanies island 
colonization (Gray et al. 
2015, Genetics)

• Study target: Gough island 
(located in South Atlantic) 
mice, are twice as the mass 
of wild mice in UK

• Genetic explanations for the   
body size differentiation? 



Varying-coefficient models

• The standard linear regression for single time point data (individuals i=1,…,n, markers j=1,..,p)

• Now for each individual, assume we have m repeated measurements over time. Naturally, we 
could extend the model as 

• In the VC model, the regression coefficient for each explanatory variable is not assumed to 
be constant, but are allowed to change over time (Hastie and Tibshirani 1993, J. R. Stat. 
Soc.). 
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Objectives 

• Smoothing (across time 
points):

-the two measurements at nearby 
time points should be more close to 
each other than the measurements 
at two further distances.
• Variable selection (across 

genetic features):
-Among thousands of molecular 
markers, choose a few markers 
that are most associated with 
the phenotypes



B-splines
•B-Splines: truncated power series defined in 
the data domain. Knots: the breakpoint

-Choosing an appropriate number of knots is 
crucial

•P-spline (Eilers and Marx 1996, Stat. Sci.):

-add a difference penalty to the likelihood
function to avoid overfitting:
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Bayesian P-splines prior

• Bayesian statistics: combine objective data with subjective prior 
knowledge       posterior probability    µ Likelihood × Prior
Likelihood: Splines model
Prior: difference penalty (to induce smoothness)

• Bayesian interpretation of the difference penalty                            :
-Random walk prior:                                                 
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Bayesian VC model

Posterior was evaluated using a Variational Bayes algorithm (Li and Sillanpää 2013, Genetics)
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Alternative model structure: Gaussian process

• Definition:

• Covariance functions fully determines the properties of the process 

• The covariance function can induce a certain degree of smoothness in 
the model

( ) (0,Cov( ( ), ( ')) MVN(0, )t GP t tb b b º C!



Link the P-splines to Gaussian process

• Recall the B-splines                        or                  (1)
• and random walk prior                                        (2)
• If in (1) and (2) we marginalize the weight parameter !, we have

• Define

• Therefore, P-Splines model is a special case of GP
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Mátern covariance function

• Distance measure: 

• Kv is a modified Bessel function 

• v degree of freedom 

• Hyper-parameters                  , and        assigned with non-informative hyper-priors
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Posterior estimation: Empirical Bayes

(1) Hyper-parameter (such as σ2 and ρ) inference by first analytically 
integrating out β:

(2) Posterior inference of β after fixing hyper-parameters:

2 2ˆ argmax ( | , , ) ( , )p pe es s=θ y X θ θ

ˆ| , , MVN( , )mβ ββ y X θ Σ!

2 1 2 1where ( ) ,   ( )T T T Tm e es s- -= + = - +β β β β β β β βC X ΧC X I y Σ C C X ΧC X I XC



Variable selection 

• Aim: detect a pasimony model M={a subset of markers have strong association with the 
phenotypes}.

• Model posterior    Marginal likelihood
P(M|y,X)          µ P(y|X, M)       × p(M)

• Marginal likelihood P(y|X, M) can be estimated by numerical integration�

• The model Prior:                                                            (p: total number of markers, q: number of 
selected markers, m: number of time points)

:   in favour of small number of variables
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Stepwise selection 

• The goal is to find an optimal model satisfying  

• We use stepwise regression, to seek       .

(i) starting from null model 
(ii) add one variable into the model which improve the model most
(iii) repeat (ii) until no variable can improve the model posterior anymore 

ˆ max[ ( | , ) ln ( )]M p p= +y X M M



Computational issue

• Evaluating the marginal likelihood P(y|X, M) can be expensive, 
because it involves an inversion of an                 matrix (n=NO. of 
individuals; m=NO. of time points):

• Complexity: O((nm)3) 

• Applying Woodbury-Sherman-Morrison lemma:

-Computational complexity now becomes O(m 3 q )
-q: number of markers selected into the model

nm× nm



Practical implementation

• On the basis of Matlab toolbox: GPstuff
(https://research.cs.aalto.fi/pml/software/gpstuff/)

• To learn more about the software, please refer to:
-Vanhatalo et al. (2013) Gpstuff: Bayesian modeling with Gaussian Processes. 
Journal of Machine Learning Research 14: 1175-1179 

• We also have a plan to develop a complementary R package for this 
method in near future

https://research.cs.aalto.fi/pml/software/gpstuff/


Case study: simulation

• A data with 
1000 
individuals, and 
453 covariates 
with 9 QTL 
simulated

• The study was 
replicated for 
50 times  



Evaluation of parameter estimation

Red curve: the true 
simulated effect

Blue curve: estimated 
effect



Evaluation of variable selection

Table A simulation study of 
50 replicates: the average 
performance of GP 
approach with different 
setting of model priors (with 
the choice of the model 
inclusion probability to be 
pi=0.5, equivalent as using 
marginal likelihood, pi=0.02 
and pi=0.05) on data sets 
with number of time points 
k=10 and k=30, respectively. 

Simulated QTL Frequency of QTL detected by GP and Bspline

n=500, m=10 n=500, m=30

ML pi=0.2 pi=0.01 ML pi=0.2 pi=0.01

35 (Chr1, 40cM)

52 (Chr1, 56cM)

1.00 1.00

1.00

1.00 1.00 1.00 1.00

1.00 0.72 1.00 1.00 1.00

78 (Chr1, 88cM) 1.00 1.00 0.30 0.98 0.88 0.76

98 (Chr2, 3.6cM) 1.00 0.98 0.10 1 0.70 0.50

118 (Chr2, 31cM) 1.00 1.00 1.00 1 1.00 1.00

174 (Chr2, 88cM) 0.50 0.44 0.00 0.98 0.84 0.00

216 (Chr3, 25cM) 1.00 1.00 0.88 1 1.00 0.96

358 (Chr4, 85cM) 0.78 0.74 0.30 0.98 0.90 0.86

433 (Chr5, 81cM) 0.78 0.76 0.32 0.90 0.86 0.78

No. of false positives 1.78 1.08 0.38 1.7 0.36 0.24



Performance of GP on incomplete phenotype data

• In GP regression, missing observations in 
the phenotype data can simply be 
marginalized out of the model. 

• The comparison of the additive genetic 
effects estimates under missing data 
scenario: with missing observations 
generated at 5, 10, 15 and 20 out of 30 
time points in all the 500 individuals, 
which corresponds to 17%, 33%, 50%, and 
67% incomplete data rates. 



Mouse body size study

• A F2 cross generated from two 
divergent lines (a Gough island 
mouse and a Mainland mouse)

• About 1100 individuals. 12000 
markers over 19 chromosomes 

• The body weight was 
measured repeated for 16 
weeks since born until mature



Results of Mouse body size study

• s
Additive genetic effects Heritability: proportion of phenotype 

variance explained by genetic factors



Manuscript

-Jarno Vanhatalo1*, Zitong Li2*, Mikko Sillanpää3 (2018) A Gaussian process model for mapping 
quantitative trait loci in functional valued traits (under revision in Bioinformatics).
1 University of Helsinki
2 University of Melbourne
3 University of Oulu
*equal contribution



Conclusion

• We proposed efficient and non-parametric Bayesian inference for analyzing 
time course quantitative genetic data.

• Smoothing and variable selection were simultaneously achieved.

• Feasible to analyze high dimensional data sets of thousands of variables and 
hundreds of time points:

-n=1000, m=30, p=10 000: 10 hours (can speed up by parallel computing)
-n=200, m=250, p=200: 20 minutes

(MAC, I5 CPU, RAM=16Gb)



Things need to improve

• The posterior uncertainty (such as credible bands) might be under-
estimated due to the use of an EP algorithm.

• Stepwise regression is greedy.

• Variable selection is sensitive to the choice of model priors, when the 
sample size is small.



Thank you very much!


