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Three simple steps in 25 minutes (or so)

@ Step 1: Time-Varying Covariance
@ Step 2: Vector Autoregression with Time-Varying Covariance

© Step 3: Thresholded Time-Varying Parameter Vector Autoregression with Time-Varying
Covariance Matrix



Factor stochastic volatility
Suppose that yy e R t=1,..., T,

J/t ~ Nm(07 Qt)7

where
Qt - AVtA + 21_—
and
> ¥, = diag(03,,...,02%,) and V; = diag(a,szrLt, e Oiait)

> A: m x q factor loadings matrix
> AR(1) processes for the log variances (non-linear state space model)



Factor stochastic volatility
Suppose that yy e R t=1,..., T,

_Vt ~ Nm(07 Qt)7

where
Qt - AVtA + 21_—
and
> ¥, = diag(03,,...,02%,) and V; = diag(a,szrLt, e Oiait)

> A: m x q factor loadings matrix
> AR(1) processes for the log variances (non-linear state space model)

Known as the factor stochastic volatility model (see e.g. Pitt and Shephard, 1999; Aguilar
and West, 2000; Kastner et al., 2017) with latent variable representation

Et Nm(Afh Et)a ff.‘ ~ Nq(07 Vt)

> Off-diagonal entries of €2; exclusively stem from the volatilities of the g factors

> Diagonal entries of €2; are allowed to feature idiosyncratic deviations driven by the
elements of X;

> Reduces the number of free elements in Q; from m(m +1)/2 to m(q + 1)



Sparse factor models

Factor models are a sparse representation of €2 and Q1. To achieve additional sparsity, use
shrinkage priors a.k.a. penalized likelihood.
> Point mass priors

> Basic factor model (West, 2003; Carvalho et al., 2008; Frithwirth-Schnatter and Lopes,
2018)

> Bayesian dedicated factor analysis (Conti et al., 2014)

> Sparse dynamic factor models (Kaufmann and Schumacher, 2018)

> Continuous shrinkage priors, e.g. in sparse Bayesian infinite factor models
(Bhattacharya and Dunson, 2011)

> Latent thresholding approaches (Nakajima and West, 2013a; Zhou et al., 2014)
> ...



Sparse factor SV models

Use continuous shrinkage priors such as the Normal-Gamma prior (Griffin and Brown, 2010):
Niljs i ~ N (0,72/X8), N ~G(c,d), 72~G(aa).

ij

V(/\,-J-|/\J2) = 1//\J2
Excess kurtosis of Ajj is 3/a if it exists

>
>
> Shrink globally (column-wise) through )\JZ (or row-wise through A\?, industry-wise, ...)
> Adjust locally (element-wise) through 7j;: 7j; < 1 more, 7j; > 1 less shrinkage

>

Bayesian Lasso (Park and Casella, 2008) arises for a =1



Marginal factor loadings posteriors, ryue =2, r =3, m =10, T = 1000

Normal prior

Row-wise Lasso prior (a = 1)
Column-wise Lasso prior (a = 1)
Row-wise NG prior (a =0.1)
Column-wise NG prior (a = 0.1)
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Application to S&P 500 members

>

Only firms which have been listed from November 1994 onwards, resulting in m = 300
stock prices on 5001 days, ranging from 11/1/1994 to 12/31/2013.

Data was obtained from Bloomberg Terminal in January 2014.
Investigate T = 5000 demeaned percentage log-returns.

Time-varying covariance matrix with 45150 nontrivial elements on 5000 days can be
well explained by 4 factors with many factor loadings shrunken to 0.



Application to S&P 500 members

> Only firms which have been listed from November 1994 onwards, resulting in m = 300
stock prices on 5001 days, ranging from 11/1/1994 to 12/31/2013.

> Data was obtained from Bloomberg Terminal in January 2014.
> Investigate T = 5000 demeaned percentage log-returns.
> Time-varying covariance matrix with 45150 nontrivial elements on 5000 days can be

well explained by 4 factors with many factor loadings shrunken to 0.

Marginal conditional variances (posterior mean, log scale)

1e-01 1e+00 1e+01 1e+02 1e+03
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5/3/2006 3/9/2007 1/15/2008 11/20/2008 9/28/2009 8/5/2010 6/13/2011 4/18/2012 2/22/2013 12/31/2013

> Substantial co-movement (generally)
> ldiosyncratic deviations (at certain stretches in time)



Median factor loadings and joint communalities (mean + 2 sd)
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Mean posterior correlations

i

12/29/20(

Works well for

> density predictions

> minimum variance portfolio constructions
(Kastner, 2018)


https://vimeo.com/217021226?autoplay=1

Three simple steps in 25 minutes (or so)

@ Step 2: Vector Autoregression with Time-Varying Covariance



The VAR model

Suppose that y; e R™ t =1,..., T, follows a zero-mean heteroskedastic VAR(p) process,

Ye = Aryi—1+ -+ Apyr—p ter, €t ~Nn(0,Q)

> Aj (j=1,...,p): mx m matrices of autoregressive coefficients



The VAR model

Suppose that y; e R™ t =1,..., T, follows a zero-mean heteroskedastic VAR(p) process,

Ye = Aryi—1+ -+ Apyr—p ter, €t ~Nn(0,Q)

> Aj (j=1,...,p): mx m matrices of autoregressive coefficients

> Xt = (Y{_1,---,¥Yi_p) and a m x mp coefficient matrix B = (Ay,..., Ap) to rewrite
the model more compactly as

Yy = Bx; +e¢, e~ Np(0,94).

(Including an intercept is straightforward but omitted here for simplicity of exposition)



Shrinking the coefficients

Dirichlet-Laplace prior (Bhattacharya et al., 2015) for b = vec(B). In what follows, we
impose the DL prior on each of the K = m?p elements of b, for j =1,..., K,

by ~ N(0,;9%()
> 1) are local scaling parameters v; ~ Exp(1/2)

>0 =(01,...,0x) €SK T ={9:9; >0,/ 9; =1}, 9 ~Dir(a,...,a)
> ( is a global shrinkage parameter ( ~ G(Ka,1/2)



Shrinking the coefficients

Dirichlet-Laplace prior (Bhattacharya et al., 2015) for b = vec(B). In what follows, we
impose the DL prior on each of the K = m?p elements of b, for j =1,..., K,

bj ~ N(0,;93¢)

> 1) are local scaling parameters v; ~ Exp(1/2)
>0 =(01,...,0x) €SK T ={9:9; >0,/ 9; =1}, 9 ~Dir(a,...,a)
> ( is a global shrinkage parameter ( ~ G(Ka,1/2)

Nice features:
> strong shrinkage with plenty of flexibility
> mimicking “real” spike and slab priors, but much lower computational burden

> implementation is simple, only requires one single structural hyperparameter a (smaller
a = stronger spike)

> good contraction guarantees in stylized models when a = K=+ with ¢ small



MCMC at a glance

> Local shrinkage parameters v;|e ~ iG(9;(/|bj|, 1), j =1,..., K via efficient and stable
rejection sampler from Hérmann and Leydold (2013), R-package GIGrvg

> Global shrinkage parameter (|e ~ GZG (K(a -1),1, ZZszl ]bj\/ﬁj), GIGrvg

> Scaling parameters ¥; by first sampling L; from L;le ~ GZG(a — 1,1,2|bj|), and then
setting ¥; = L;j/ 2K, L; (Bhattacharya et al., 2015), GIGrvg

> Conditionally “univariate” SV states and parameters of volatility processes via auxiliary

mixture sampling (Omori et al., 2007) with ASIS (Yu and Meng, 2011) via R-package
stochvol

> Factors and factor loadings: “deep interweaving” (Kastner et al., 2017) via R-package
factorstochvol

> VAR parameters, see next slide



Sampling the VAR parameters

Exploiting the data augmentation representation for the factor SV model, the model can be
cast as a system of m conditionally unrelated regression models

Z,'tZ:y,'t—A,'.ﬂ:B,'.Xt-f-’r],'t, i=1,....m, t=1,...,T

Full conditional posteriors:
Bile ~N(b,Q), Q= XX +® )", b=QiXz)

> ®; is the respective k x k diagonal submatrix of ® = ¢ x diag(19%, . .., ¥kV%)
> X;is a T x k matrix with typical row t given by X:/oit

> Z; is a T-dimensional vector with the tth element given by z; /0.



Sampling the VAR parameters

Exploiting the data augmentation representation for the factor SV model, the model can be
cast as a system of m conditionally unrelated regression models

Z,'tZ:y,'t—A,'.ﬂ:B,'.Xt-f-’r],'t, i=1,....m, t=1,...,T

Full conditional posteriors:
BlJe ~N(b:,Q), Q= (X X;+®')', b =Qi(X]2)

> ®; is the respective k x k diagonal submatrix of ® = ¢ x diag(19%, . .., ¥kV%)
> X;is a T x k matrix with typical row t given by X:/oit

> Z; is a T-dimensional vector with the tth element given by z; /0.

= allows for equation by equation estimation: each draw costs O(m“p3 + Tm3p2) —as
opposed to O(mP®p3) in the naive approach (cf. Carriero et al., 2015)



Yet another approach
In typical macro data T < 200 ... even faster sampling is possible via an algorithm proposed
by Bhattacharya et al. (2016) for univariate regressions, applied to each equation:

. Sample independently u; ~ N (0, ®;) and §; ~ N (0, IT)
. Use u; and §; to construct v; = 5(;u,~ + &;

. Solve ()N(,-<I',-)~(,( + Ir)w; = (2 — v;) for w;

. Set B}, = u; + <I>,-)~(,fw,-

A~ W N =



Yet another approach
In typical macro data T < 200 ... even faster sampling is possible via an algorithm proposed
by Bhattacharya et al. (2016) for univariate regressions, applied to each equation:

1. Sample independently u; ~ N(0, ®;) and §; ~ N(0, IT)
2. Use u; and §; to construct v; = 5(;u,- + 6;
3. Solve ()N(,@,-)N(,{ + Ir)w; = (2 — v;) for w;
4. Set By = u; + ‘I’,')N(,{W,'
N+ — T=224,0factors
--- T =224, 50 factors
i 2 2 7 Tf174,01aclors
Cost is now O(m=T<p), o T T S
---- T=124,50 factors

e.g. for m = 215 we have:

...and thanks to Aki's |
now know that there is

Time [seconds]
6
I

even more room for im- .
provement (Nishimura and
Suchard, 2018; Zhanget al., e
2018)! .




Modeling the US economy
Quarterly dataset from McCracken and Ng (2016) including suggested transformations
> Ranging from 1959:Q1 to 2015:Q4, m = 215
> Component-wise standardization (zero mean, variance one)
> For presentation purposes: One lag, one factor

T T T T T T T T T T T T T
1959-09-01 1964-03-01 1968-12-01 1973-06-01 1978-03-01 1982-09-01 1987-06-01 1991-12-01 1996-09-01 2001-03-01 2005-12-01 2010-06-01 2015-03-01



Factor loadings and factor volatilities

Loadings for factor 1

Factor volatilities

00 02 04 06 08 10 12

T T T T T T T T
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Medians (cut off at +/- 0.2)
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Three simple steps in 25 minutes (or so)

© Step 3: Thresholded Time-Varying Parameter Vector Autoregression with Time-Varying
Covariance Matrix



Making the VAR coefficients time-varying |

> Especially in larger dimensional contexts (think of time-varying parameter VARs),
allowing for too much flexibility quickly leads to overfitting issues

> Questions such as “should all parameters or only a subset of parameters drift over
time?" or “do parameters evolve according to a random walk process or are their
dynamics better captured by model that implies relatively few, large breaks?” typically
arise

> Literature offers several solutions (e.g. McCulloch and Tsay, 1993; Gerlach et al., 2000;
Giordani and Kohn, 2008; Koop et al., 2009; Frithwirth-Schnatter and Wagner, 2010;
Koop and Korobilis, 2012; Koop and Korobilis, 2013; Belmonte et al., 2014; Kalli and
Griffin, 2014; Eisenstat et al., 2016; Bitto and Friihwirth-Schnatter, 2018)



Making the VAR coefficients time-varying |l

> Mixture innovation models provide a flexible means of shrinking time variation of the
latent states within a state space model
> Generally straightforward to implement and quite flexible (allows for large swings in the
parameters over certain time intervals)
> However, not feasible in large applications (think of densely parameterized time varying
parameter VAR models)
> Combine the literature on threshold and latent threshold models (Nakajima and West,
2013b; Neelon and Dunson, 2004) with the literature on mixture innovation models
(McCulloch and Tsay, 1993; Carter and Kohn, 1994; Gerlach et al., 2000; Koop and
Potter, 2007; Giordani and Kohn, 2008)
> We assume that the indicator that controls the mixture component used is determined
by the absolute period-on-period change of the states — small changes are effectively
set equal to zero
> Provides a great deal of flexibility while keeping the additional computational burden
tractable



Econometric framework

We consider the following dynamic regression model (TVP model),

Ve = xiBe + up, up ~N(0,07),
Bjt = Bj.t—1 + €je, €jr ~ N(0,9)),

where
> x; is a K x 1 vector of explanatory variables
> B:is a K x 1 vector of time varying regression coefficients

> o2 and ¥; (j =1,...,K) are innovation variances

This specification assumes that parameters evolve according to a random walk with small
movements governed by ;.



The threshold mixture innovation model (Huber et al., forthcoming)
By contrast, the threshold mixture innovation model (TTVP model) assumes that

ejt ~ N(O, th),
th = Sjt19_,'1 + (1 — Sjt)ﬂjo,
with ’191'1 > 19]0.

As in standard mixture innovation models, the indicators sj; are (unconditionally) Bernoulli
distributed. In contrast to those models, we however assume that

L if DG > d,

S| A, di =
jel & e & {0 if |ABy| < dj,

where d; is a coefficient-specific threshold to be estimated. Note that we “only” have one

extra parameter per equation (and the indicators are conditionally deterministic).

Can use standard MCMC with one additional griddy Gibbs (Ritter and Tanner, 1992) step
per equation.



Four illustrative examples

Consider four simple DGPs with K = 1: TVP, many, few, and no breaks. Independently for
all t, we generate x;+ ~ U(—1,1) and set 10 = 0.

In order to assess how different models perform in recovering the latent processes, we run:
> standard TVP model

> mixture innovation model estimated using the algorithm outlined in Gerlach et al.
(GCK, 2000)

> TTVP
To ease comparison between the models, we impose a similar prior setup for all models.



DGP and 0.01/0.99 posterior quantiles
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Generalization to the multivariate case

It's straightforward to generalize the framework to a TTVP-VAR-SV model:

Yt = Bityt—1+ -+ Bpty:—p + ug,

where
> By (p=1,...,P) are m x m matrices of thresholded dynamic coefficients
> up ~ N(0p, X¢) with Xy = Vi H, V] being a time-varying variance-covariance matrix

> V; is lower triangular with unit diagonal; free elements have thresholded dynamic
coefficients

> H; = diag(eh“7 ey eh’"f) with hjyy = ;i + p,-(h,'7t_1 + i) + vie, vie ~N(0,¢)

This structure imposes order-dependence but allows to estimate the model
equation-by-equation with the same techniques as before.



Forecasting the US term structure of interest rates

We use monthly Fama-Bliss zero coupon yields obtained from the CRSP database as well as
the dataset described in Giirkaynak et al. (2007). The data spans the period from 1960:M01
to 2014:M12 and the maturities included are 1, 2, 3, 4, 5, 7, and 10 years. Moreover, we
include 3 lags of the endogenous variables.



Forecasting the US term structure of interest rates

We use monthly Fama-Bliss zero coupon yields obtained from the CRSP database as well as
the dataset described in Giirkaynak et al. (2007). The data spans the period from 1960:M01
to 2014:M12 and the maturities included are 1, 2, 3, 4, 5, 7, and 10 years. Moreover, we
include 3 lags of the endogenous variables.

Competitors (all models include SV):
> Benchmark: TVP-VAR as in Primiceri (2005).

> Three constant parameter VAR models:

> Minnesota-type VAR (Doan et al., 1984)
> Normal-Gamma (NG) VAR (Huber and Feldkircher, 2018)
> VAR coupled with an SSVS prior (George et al., 2008)

> Nelson-Siegel (NS, Nelson and Siegel, 1987) VAR as in Diebold and Li (2006)
> NS-TTVP-VAR
> Random walk
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Wrap-up
Step 1: Sparse factor SV models

> "Hybrid approach” to dynamic covariance modeling, i.e. parsimony through factor structure,
plus additional shrinkage

> “Plug-and-play” friendly due to the modular nature of MCMC
Step 2: High-dimensional VARs

> Equation-by-equation estimation of VARs possible due to latent variable representation of
residual covariance matrix

> Faster algorithm(s) for sampling VAR coefficients if T < mp

> Continuous global-local shrinkage priors (DL prior and friends) help to cure the curse of
dimensionality and provide a viable alternative to Minnesota-type priors

> Multivariate SV is crucial for macro application and improves joint density predictions markedly
Step 3: TTVP
> Computationally feasible variant of a mixture innovation model

> Allows for jumps in the parameters if the conditional absolute change exceeds a threshold value
to be estimated

> Works well for term structure modeling, especially during crisis times
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