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It's exciting times for econometricians . ..

>

The world is changing also for empirical economists and social scientists

v

New types of “big data” create interest in data science

v

Interface of computer science, statistics, and social science/economics

v

Apply these tools in teams of economists/social scientists/statisticians

v

New ways of visualizing and presenting information for effective communication
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Data sources in modern econometrics

» Administrative data collected by national statistical agencies
» ECB (European Central Bank), Federal Reserve Banks

» Survey data such as EU-SILC (European Union Statistics on Income and Living
Conditions)

» Financial time series (Reutters)
» Scanner data in marketing

» Web scraping, text data, ...
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Challenges caused by features of the data

» Important covariates are missing (unobserved heterogeneity), because data
often collected for a specific purpose

» Data exhibit non-standard features such as time-varying parameters (e.g. oil
price shock in the 1970s, financial crisis starting in 2008)

» Model miss-specification due to non-Gaussianity, heteroscedasticy; higher-order
dependence (volatility clusters)

» Endogeneity is a very serious issue in econometrics, because covariates are very
often correlated with the error. Ignoring endogeneity causes a bias.

» Big data can be small for the problem under investigation

» ...and many more
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Bayesian Econometrics

“Why econometrics should always and everywhere be Bayesian "

v

Coherent framework for estimation, testing/model selection, and forecasting

v

Inherent aspect of learning

v

Probabilistic modelling allows uncertainty quantification

v

Probabilistic modelling allows a lot of flexibility
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Bayesian econometrics in the big data era

» Bayesian econometrics is breaking away from the traditional parametric paradigm.

» Bayesian econometrics is a very active area of research, using the latest technique
of Bayesian inference such as:

>

v

Flexible, highly structured models (hierarchical Bayes, state space models,
time-varying parameter models)

Shrinkage methods and variable selection (allow for flexibility and shrinkage at
the same time to avoid overfitting and guarantee statistical efficiency)

Sparse Bayesian factor models (low-dimensional representations and sparse
covariance estimation)

Mixture analysis (unobserved heterogeneity/model-based clustering)

Bayesian nonparametric methods (semi-parametric IV models, semi-parametric
volatility models, . ..)

...and many more
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A recent reference . ..

» Special issue of the Journal of Econometrics on “Complexity and Big Data in
Economics and Finance: Recent Developments from a Bayesian
Perspective” (forthcoming):

» Bayesian Econometrics using Sequential Monte Carlo [Durham and Geweke, 2018]
and self-tuning particle filters (Herbst and Schorfheide, 2018)

» Incomplete econometrics models and prediction pools (McAllin and West, 2018)

» Flexible models and fast inference for big data using shrinkage (Bitto and SFS,
2018; Kastner, 2018; Kaufmann and Schuhmacher, 2018; Koop etal, 2018)

Part |: Big data in Bayesian econometrics Econometrics and big data applications



Outline

Part |: Big data in Bayesian econometrics

» Austrian Center for Labor Economics and Welfare

Part |: Big data in Bayesian econometrics Austrian Center for Labor Economics and Welfare



NRN Austrian Center for Labor Economics and Wel- W

fare

» National Research Network “The Austrian Center for Labor Economics and
the Analysis of the Welfare State” (2008-2015, funded by the Austrian Science
Fund)

» Excellent data basis:

» Austrian Social Security Database (ASSD) [Zweimiiller et al., 2009]
» Administrative individual register data that collects information for old-age security

benefits.
» Complete individual employment histories since 1972 for the universe of Austrian
employees:
» daily wages
» demographics (age, gender, number of children, ...)
» employer; firm characteristics (industry, firm size, ...)

v

but important information missing: education, working hours, ...
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Big data applications within the NRN

» Effect of labor market entry on earnings dynamics
[Frihwirth-Schnatter et al., 2012]: panel-data set of nearly 50 000 male workers
(daily observations over 20 years)

» Mothers’ long-run career patterns after first birth
[Frihwirth-Schnatter et al., 2016]: panel-data set of more than 230 000 female
workers (daily observations up to 20 years)

» Analysing plant closure effects on labour market states
[Frihwirth-Schnatter et al., 2018b]: panel-data set of more than 5 000 male
workers (daily observations up to 10 years) and a control sample

» Earnings Effects of Maternity Leave [Jacobi et al., 2016]: panel-data set of
more than 30,000 mothers (daily observations over up to 6 years)

» Effect of family size on labor market and health outcomes
[Frihwirth-Schnatter et al., 2018a]: cross-sectional data from 2009; 8 different
outcomes for about 100,000 families
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Effect of labor market entry on earnings dynamics

Effect of labor market entry on earnings dynamics:

» Data from the ASSD (Austrian Social Security Database) [Zweimiiller et al., 2009]

» Cohort study: entrants into the Austrian labor market in the years 1975 to 1985
(male, Austrian citizenship, at most 25 years)

» Panel-data set of 49 279 time series; individual lengths range between 2 and 32
years (median equal to 22)

Effect of labor market entry on earnings dynamics
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Effect of labor market entry on earnings dynamics

Data reduction:
» gross monthly wages in May of successive years
» wage divided into 6 categories:
» 0 (zero wage)
» 1 (lowest) to 5 (highest): (population) wage distribution in each year divided
according to the quintiles

Wage careers of seven randomly selected employees:
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Research questions

» Research questions:
» ldentify types of similar wage careers (“clusters”)
» Describe these types in economic terms

» Explain cluster membership (unemployment rate, skills, .. .)

» Statistical method:

» Model-based clustering based on finite mixtures of Markov chain models
[Pamminger and Frithwirth-Schnatter, 2010]

» Combined with mixtures-of-experts [Frihwirth-Schnatter et al., 2012]

» Common criteria (AIC, BIC, ...) to select the number of clusters
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Application to the labour market entry time series

Model selection criteria for various numbers K of clusters (H in the figure)
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Economic interpretability led us to choose 4 clusters; confirmed only by AWE
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Visualizing the 4 cluster solution

Wage profiles of cluster members ranked 50th, 125th, 250th, 500th, 1000th
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Interpretation of the clustering results

Analyze unobserved heterogeneity in wage mobility, i.e. the risk and the chance of
moving between wage categories using mixtures of Markov chain models:

» Transition matrix &, models wage mobility, e.g. the chance to earn more:

Pr(ye =j + 1|yie—1 =/, Si = k) = (&k)jj+1,

» the risk to earn less:

Pr(yie =J — yie-1 =/, Si = k) = (&x)jj-1,

» or to earn the same: Pr(y; = jlyi -1 =/, S = k) = (&k); ;-
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Visualize unobserved heterogeneity in wage mobility W

Posterior expectations of transition matrices &1, &>, &3, and &,

upward (0.2721) static (0.2896)
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Unobserved heterogeneity in the long rum

Posterior expectations of wage distribution 7y ; = 7 o€} in cluster k after t years

upward

static

downward

mobile
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Mixtures-of-experts approach

» Mixture-of-experts model: multinomial logit model
PI‘(S,' = k|X,‘) = F(X,’ﬂk)

» Covariates x; based on individual characteristics:
» education (unskilled, skilled, higher education)
» broad type of occupation (white collar/blue collar worker)
» the initial wage category to handle the initial condition problem
» ... and on labour market characteristics at the time of entry:

» unemployment rate in the region
» cohort effects, expressed by a set of dummies for the year of labor market entry
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What chances have they got?

Comparing prior chances for two young men

White-collar worker with higher education Unskilled blue—collar worker
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Policy implications

Fears caused by an algorithm used by the Public Employment Service Austria (AMS)
(gender and nationality play a role)

MONTAG, 15. OKTOBER 2018

Wie der Algomthmus

den Benachteiligungen verstirkt?
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» Model-based clustering of time-series
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Data Structure

Longitudinal data/panel data/many short time series:

» Repeated measurements y;; are taken on N subjects, indexed by i =1,..., N, at a
number of points in time, typically indexed by t =0,..., T;.

» The outcome y;; is a categorical variable with M potential states labelled by
{1,...,M}.

» Subsequently, y; = {yio, ...,y 7,} denotes each individual time series, while
y = {y1,...,yn} refers to the whole panel.

» In addition, one may observe exogenous covariates x;; of potential influence on the
distribution of the outcome variable y;;.
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Model-based clustering of time series

General framework for model-based clustering of time series:
» Each individual time series y; = {yio, ...,y 1,} is treated as a ,subject” in a
clustering framework.
» Select an appropriate clustering kernel in terms of the sampling density p(y;|9«)
where 1, is a group-specific parameter
» Use the framework of finite mixtures for estimation and classification using
full-blown MCMC
See [Frihwirth-Schnatter and Kaufmann, 2008], [Frihwirth-Schnatter, 2011]

Model-based clustering of time-series
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For more details see . ..
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see [Griin, 2018] for a review of model-based clustering
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Capturing serial dependence

Dynamic clustering kernels take account of the serial dependence among the
observations {yi, ...,y 1 }:

T
p(yl|51 = k) = H p(yif|.yi,t—1> [xih](ﬂk)‘

t=1
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Panels of real-valued time series

Clustering kernel: dynamic regression model

Dynamic clustering kernels for panels with real-valued time series observations y;; are
typically based on

Vit = Ck + OwYit—1 + Xit B + Ok€ir,

where €;; ~ f(g;;) and all parameters of the clustering kernel are cluster-specific,
including the variance of the error term.

» The most common choice are i.i.d. normal errors ¢;;.

» To achieve robustness against outliers, the Student-t distribution is employed in
[Frihwirth-Schnatter and Kaufmann, 2006].

» To capture skewness within each cluster, [Judrez and Steel, 2010] assume that
f(e;) arises from a skew-t distribution.

Model-based clustering of time-series
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Panel data of discrete-valued time series

» Each wage career y; is a discrete valued time series - individual wage career y; of a
randomly selected employee (out of 49 279 time series)

» y; may be regarded as multivariate categorical vector with dependence among
adjacent observations

yi=(101202233244545T©5)
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Clustering categorical time series

Clustering kernel: First order Markov chain model

T;
p(yilSi =k, &) = [ p(vielyie—1, €x)P(iol€x),
=1

with initial distribution p(y;o|&x) and cluster-specific transition matrix &:

(&)n = Pr(yie = jlyie—1 = h, S = k). J

» Clustering kernel captures the persistence of earning for an individual
» Implies homogeneity within each cluster and stationarity in the long run
» Mixtures of inhomogeneous Markov chain models include covariate information

Model-based clustering of time-series
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» Plant closure data from ASSD Data base
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Plant closure data from ASSD Data base

Data from the ASSD (Austrian Social Security Database) [Zweimiiller et al., 2009]

v

Cohort study: male workers employed in 1982-1988 in firms with more than 5
employees, at least one year of tenure

v

Plant closure: an employer identifier ceases to exist, take-over or merger: more
than 50% of the employees continue under a new employer identifier

v

Workers aged between 35 and 55 at time of plant closure

v

v

Research question:

» What is the effect of plant closure on the employment career?
» Is there a difference between workers facing plant closure and those who did not?

Part II: Model-based Clustering of Time Series Plant closure data from ASSD Data base



Plant closure data from ASSD Data base

» 5,841 workers displaced by plant closures between 1982 and 1988 (panel with
N = 5,841 time series with T; < 40 quarterly data)

» QOutcome variable y;;, i =1,..., N, t =1,... 40 (t is distance from plant closure

in quarters):

1
2
3

4

employed

sick leave

out of labor force

(registered as unemployed or otherwise out of labor force)
retired (claiming government pension benefits)

» Controls: all male workers in the cohort who did not experience a plant closure
(more than 1 million workers)
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Mixture of inhomogeneous Markov chain models

» Time-inhomogeneity present both for the plant closure data as well as for the
marketing application.

» Generalized transition matrices: inhomogeneous transition matrix depending on
a history H;; [Frihwirth-Schnatter, 2011]:

Pl"()/it :.j|Hit7 Si = k),

where Hjy = {yi -1, Xt}
» Typically x;; is some discrete covariate, e.g. the year after plant closure:

Yk = (7h, &k1.€k25 - - - €k 10)

» We could include addition information (age group, ...) in X;
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Choosing K for the plant closure time series data

» Statistical model selection criteria for various numbers K of clusters:

K 2 3 4 5 6

AIC  112160.9 110381.0 109113.4 107567.6 108057.0
BIC 1135755 112549.6 112036.0 111244.2 112487.7
AWE 114402.1 114188.3 114159.6 114539.8 116356.4

» Economic interpretability led us to choose 5 clusters; confirmed by AIC and
BIC

Plant closure data from ASSD Data base
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Model-based clustering of plant closure data

Employment profiles of cluster members ranked 10th, 25th, 50th, 70th, 100th, 200th, 350th
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Who suffers and who doesn’t?

» Cluster 1 - The ones who really suffer: low level of attachment to the labor market,
slow/no recovery after plant closure

» Cluster 2 - The good and lucky ones: high level of attachment to the labor market,
quick recovery after plant closure

» Cluster 3 - The less lucky, less fit ones: high mobility between in and out of labor
force; low level of attachment to the labor market

» Cluster 4 - The less lucky, but fit ones: high mobility between in and out of labor
force; high level of attachment to the labor market

» Cluster 5 - The sick and tired ones: increasing chance to move to retirement, either
directly or through the channel of a sick leave
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Time-varying transition probabilities

Low-attached (21%)

P e S ade d

Highly attached (44%)

= e i e

Transition probabilities 1 — 1, 1 — 3, 3 — 1 for cluster 1 (top) and cluster 2 (bottom)
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Analysing dynamic effects

State distribution 7y ;, where

Tkt = 7rk€k,1—>t7 Ek,l—n = Ek,1—>(t—1)€ky; Ek,1—>2 =&

over distance t = 4(y — 1) + g from plant closure (quarters), for cluster k:

O employed

a sick

W out of labor force
@ retirement

° =1 =2 t=3 t=4 =8 t=12 t=16 =20 t=24 t=28 (=32 t=36 t=40 s t=1 t=2 t=3 t=4 t=8 t=12 (=16 t=20 t=24 =28 (=32 t=36 t=40
Cluster 1: low attached Cluster 2: highly attached
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Construction of a control group

» Statistical matching based on characteristics before plant closure (age,
broad occupation, location, industry, employment history in year before closure)

» Experience of a plant closure effects the state distribution 7, of displaced workers
only in the first quarter after displacement, subsequent transition behaviour is
the same as for controls.

» State probability in first quarter after (potential) plant closure is different
for controls:

ﬂ-li = (ﬂ-lf,h s 77T1i,4)7 77-[?,] = Pr(ylcl :Jlslc = k)

» T estimated for controls, supervised clustering for the transitions matrices in each
cluster k.
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Treatment effects

Difference mj , — 7y in dynamic probability to be employed, over distance t from plant
closure for cluster k:

C C
Tt = kak,l—m Tt = kak,l—n-

= ST
R L AN
T %%%%% T
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‘f- 17747770 T4 18 T 22 26 30 34 38 T 174777710 14 18 227 26 30 34 38
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Cluster 1: low attached Cluster 2: highly attached
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Mixtures-of-experts approach

» Mixture-of-experts model: multinomial logit model
Pr(S; = k|x;) = F(xiBx)

» Covariates x; based on individual characteristics:
» age at the time of plant closure (five age groups: 35-39, 40-44, 45-49, 50-55)
» levels of experience (low, medium, high)
» broad occupational status (blue versus white collar)
» income before plant closure (low, medium, high) based on the tertiles of the general
income distribution at time of plant closure

» ... and on firm characteristics:

» three categories of firm size (1-10, 11-100, and more than 100 employees)
» four broad economic sectors (service, industry, seasonal business outside of hotel
and construction, unknown)
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Prior probabilities to belong to a cluster
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B Highly attached B Highly attached
W Mobile + low-attached W Mobile + low-attached
E Mobile + highly attached B Mobile + highly attached
§ B Retiring % B Retiring
© o S o
= =
© <
£ £
T T
QO o | D w |
O o O o
© ©
i<} =}
pary o
23 =¥
o o
[ Q
< < | 2 < |
e ° Le-°
2 2
2 99 2 3
Q Q
S S
Q o Q o
= o~ = o~
L2 35-39 40-44 45-49 50-55 2 White collar Blue collar
a a

Impact of age Impact of white versus blue collar

Part II: Model-based Clustering of Time Series Plant closure data from ASSD Data base



Cluster sizes

Low-attached: 21 %

Highly attached: Low-attached: 16 % Highly attached:
44 % 55 %

Retiring: 20 % Retiring: 21 %

Mobile + low-attached: 8 %

Mobile + highly attached: 7 % Mobile + highly attached: 4 % Mobile + low-attached: 4 %

Workers experiencing plant closure Workers not experiencing plant closure
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» Business Application in Marketing
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Business Application in Marketing

» Bayes for Big Business

» Customer relationship management (CRM) (joint work with Thomas
Reutterer and Stefan Pittner):
» Loyal costumers contribute more to a firm's profitability than short-term costumers
» Analyze monthly purchases of 6601 costumers over 5 years (60 periods from Feb
2000 through Jan 2005) who are involved in a costumer loyalty program with a
higher-level clothing retails chain

» Allocate marketing budgets more profitably
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Time series observations

» Examples of evolving costumers:

Platin: 4 4 eee o L] eee -ee 4
Gold: 3 L 3 L & 2 b0 20 *8 L2 3 e ® L *
Iron: 2 2le L) ® L] 2t s2 LEREN ) & 2se @
Lead 1 L L] ® 1 eeee 1 e *
Inactive: 0 L] ® L. 0 0 *
0 5 0 5 10 15 20 25 30 0 5 10 15 2

» Market segmentation to identify loyal costumers early on

» Inhomogeneous Markov chain clustering: allow the transition matrix to evolve
over time and account for periods of inactivity
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Resulting cluster solution

4 groups of costumers, holdout analysis shows higher “hit rate” than common models
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Some thoughts about the prior

» Priors might be informative also in a big data setting (see [Celeux et al., 2018] for
high-dimensional mixtures)

» Priors should allow shrinkage to deal automatically with over-fitting models

» Blessing of informative priors: in highly overparameterised models, shrinkage is
introduced through the prior

» Objective priors are fine for regular likelihoods, but econometric models often
lead to near-boundary inference and non-regular likelihoods:

» Student-t likelihoods, finite mixtures, random-effect models, dynamic (state space)
models, IV estimation, ...

» Priors should respect the geometry of the likelihood

» Prior should down-weight regions of the parameter space that contain spurious
results

» Priors should always lead to a proper posterior (with finite moments?)
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|dentifiability and weak identifiability

» Data often are not always informative about parameters - identical or similar
likelihood values with different parameter combinations:
» IV estimation and cointegration models [Bastirk et al., 2017]
» overfitting mixtures [Frithwirth-Schnatter and Malsiner-Walli, 2018]
mixtures for discrete data [Gormley and Friihwirth-Schnatter, 2018]
factor models [Conti et al., 2014, Frithwirth-Schnatter and Lopes, 2018|

» Dealing with identification problems within a Bayesian framework:

» Posterior might be improper or posterior moments might not exist; ergodic
averages of MCMC draws useless
» diagnosing weak identifiability within MCMC [Koop et al., 2013]

v
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“Why econometrics should always and everywhere be Bayesian " |

» Consider joining the Economics, Finance, and Business (EFaB) Section of ISBA

» It's only A Fistful of Dollars, but with high probability it's an investment with high
returns

Part Ill: Open issues and future challenges 55 / 57



Thank you very much for your attention!
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