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It’s exciting times for econometricians . . .

I The world is changing also for empirical economists and social scientists

I New types of “big data” create interest in data science

I Interface of computer science, statistics, and social science/economics

I Apply these tools in teams of economists/social scientists/statisticians

I New ways of visualizing and presenting information for effective communication
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Data sources in modern econometrics

I Administrative data collected by national statistical agencies

I ECB (European Central Bank), Federal Reserve Banks

I Survey data such as EU-SILC (European Union Statistics on Income and Living
Conditions)

I Financial time series (Reutters)

I Scanner data in marketing

I Web scraping, text data, . . .
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Challenges caused by features of the data

I Important covariates are missing (unobserved heterogeneity), because data
often collected for a specific purpose

I Data exhibit non-standard features such as time-varying parameters (e.g. oil
price shock in the 1970s, financial crisis starting in 2008)

I Model miss-specification due to non-Gaussianity, heteroscedasticy; higher-order
dependence (volatility clusters)

I Endogeneity is a very serious issue in econometrics, because covariates are very
often correlated with the error. Ignoring endogeneity causes a bias.

I Big data can be small for the problem under investigation
I . . . and many more
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Bayesian Econometrics

Chris Sims (2007)
“Why econometrics should always and everywhere be Bayesian ”

I Coherent framework for estimation, testing/model selection, and forecasting

I Inherent aspect of learning

I Probabilistic modelling allows uncertainty quantification

I Probabilistic modelling allows a lot of flexibility
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Bayesian econometrics in the big data era

I Bayesian econometrics is breaking away from the traditional parametric paradigm.
I Bayesian econometrics is a very active area of research, using the latest technique

of Bayesian inference such as:
I Flexible, highly structured models (hierarchical Bayes, state space models,

time-varying parameter models)
I Shrinkage methods and variable selection (allow for flexibility and shrinkage at

the same time to avoid overfitting and guarantee statistical efficiency)
I Sparse Bayesian factor models (low-dimensional representations and sparse

covariance estimation)
I Mixture analysis (unobserved heterogeneity/model-based clustering)
I Bayesian nonparametric methods (semi-parametric IV models, semi-parametric

volatility models, . . . )
I . . . and many more
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A recent reference . . .

I Special issue of the Journal of Econometrics on “Complexity and Big Data in
Economics and Finance: Recent Developments from a Bayesian
Perspective” (forthcoming):

I Bayesian Econometrics using Sequential Monte Carlo [Durham and Geweke, 2018]
and self-tuning particle filters (Herbst and Schorfheide, 2018)

I Incomplete econometrics models and prediction pools (McAllin and West, 2018)
I Flexible models and fast inference for big data using shrinkage (Bitto and SFS,

2018; Kastner, 2018; Kaufmann and Schuhmacher, 2018; Koop etal, 2018)
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NRN Austrian Center for Labor Economics and Wel-
fare

I National Research Network “The Austrian Center for Labor Economics and
the Analysis of the Welfare State” (2008-2015, funded by the Austrian Science
Fund)

I Excellent data basis:
I Austrian Social Security Database (ASSD) [Zweimüller et al., 2009]
I Administrative individual register data that collects information for old-age security

benefits.
I Complete individual employment histories since 1972 for the universe of Austrian

employees:
I daily wages
I demographics (age, gender, number of children, . . . )
I employer; firm characteristics (industry, firm size, . . . )
I but important information missing: education, working hours, . . .
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Big data applications within the NRN

I Effect of labor market entry on earnings dynamics
[Frühwirth-Schnatter et al., 2012]: panel-data set of nearly 50 000 male workers
(daily observations over 20 years)

I Mothers’ long-run career patterns after first birth
[Frühwirth-Schnatter et al., 2016]: panel-data set of more than 230 000 female
workers (daily observations up to 20 years)

I Analysing plant closure effects on labour market states
[Frühwirth-Schnatter et al., 2018b]: panel-data set of more than 5 000 male
workers (daily observations up to 10 years) and a control sample

I Earnings Effects of Maternity Leave [Jacobi et al., 2016]: panel-data set of
more than 30,000 mothers (daily observations over up to 6 years)

I Effect of family size on labor market and health outcomes
[Frühwirth-Schnatter et al., 2018a]: cross-sectional data from 2009; 8 different
outcomes for about 100,000 families
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Effect of labor market entry on earnings dynamics

Effect of labor market entry on earnings dynamics:

I Data from the ASSD (Austrian Social Security Database) [Zweimüller et al., 2009]

I Cohort study: entrants into the Austrian labor market in the years 1975 to 1985
(male, Austrian citizenship, at most 25 years)

I Panel-data set of 49 279 time series; individual lengths range between 2 and 32
years (median equal to 22)
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Effect of labor market entry on earnings dynamics

Data reduction:
I gross monthly wages in May of successive years
I wage divided into 6 categories:

I 0 (zero wage)
I 1 (lowest) to 5 (highest): (population) wage distribution in each year divided

according to the quintiles
Wage careers of seven randomly selected employees:
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Research questions

I Research questions:
I Identify types of similar wage careers (“clusters”)
I Describe these types in economic terms
I Explain cluster membership (unemployment rate, skills, . . . )

I Statistical method:
I Model-based clustering based on finite mixtures of Markov chain models

[Pamminger and Frühwirth-Schnatter, 2010]
I Combined with mixtures-of-experts [Frühwirth-Schnatter et al., 2012]
I Common criteria (AIC, BIC, . . . ) to select the number of clusters
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Application to the labour market entry time series

Model selection criteria for various numbers K of clusters (H in the figure)
17

60
00

0
17

80
00

0
18

00
00

0
18

20
00

0

AIC

H

2 3 4 5

17
60

00
0

17
80

00
0

18
00

00
0

18
20

00
0

BIC

H

2 3 4 5

17
60

00
0

17
80

00
0

18
00

00
0

18
20

00
0

CLC

H

2 3 4 5

17
60

00
0

17
80

00
0

18
00

00
0

18
20

00
0

ICL−BIC

H

2 3 4 5

17
60

00
0

17
80

00
0

18
00

00
0

18
20

00
0

ICL

H

2 3 4 5

17
60

00
0

17
80

00
0

18
00

00
0

18
20

00
0

AWE

H

2 3 4 5

Economic interpretability led us to choose 4 clusters; confirmed only by AWE
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Visualizing the 4 cluster solution

Wage profiles of cluster members ranked 50th, 125th, 250th, 500th, 1000th
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Interpretation of the clustering results

Analyze unobserved heterogeneity in wage mobility, i.e. the risk and the chance of
moving between wage categories using mixtures of Markov chain models:

I Transition matrix ξk models wage mobility, e.g. the chance to earn more:

Pr(yit = j + 1|yi ,t−1 = j , Si = k) = (ξk)j,j+1,

I the risk to earn less:

Pr(yit = j − 1|yi ,t−1 = j , Si = k) = (ξk)j,j−1,

I or to earn the same: Pr(yit = j |yi ,t−1 = j , Si = k) = (ξk)j,j .
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Visualize unobserved heterogeneity in wage mobility

Posterior expectations of transition matrices ξ1, ξ2, ξ3, and ξ4
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Unobserved heterogeneity in the long rum

Posterior expectations of wage distribution πk,t = πk,0ξ
t
k in cluster k after t years
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Mixtures-of-experts approach

I Mixture-of-experts model: multinomial logit model

Pr(Si = k|xi) = F (xiβk)

I Covariates xi based on individual characteristics:
I education (unskilled, skilled, higher education)
I broad type of occupation (white collar/blue collar worker)
I the initial wage category to handle the initial condition problem

I . . . and on labour market characteristics at the time of entry:
I unemployment rate in the region
I cohort effects, expressed by a set of dummies for the year of labor market entry
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What chances have they got?

Comparing prior chances for two young men
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Policy implications

Fears caused by an algorithm used by the Public Employment Service Austria (AMS)
(gender and nationality play a role)
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Data Structure

Longitudinal data/panel data/many short time series:
I Repeated measurements yit are taken on N subjects, indexed by i = 1, . . . ,N , at a

number of points in time, typically indexed by t = 0, . . . ,Ti .
I The outcome yit is a categorical variable with M potential states labelled by
{1, . . . ,M}.

I Subsequently, yi = {yi0, . . . , yi ,Ti} denotes each individual time series, while
y = {y1, . . . , yN} refers to the whole panel.

I In addition, one may observe exogenous covariates xit of potential influence on the
distribution of the outcome variable yit .
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Model-based clustering of time series

General framework for model-based clustering of time series:
I Each individual time series yi = {yi0, . . . , yi ,Ti} is treated as a „subject” in a

clustering framework.
I Select an appropriate clustering kernel in terms of the sampling density p(yi |ϑk)

where ϑk is a group-specific parameter
I Use the framework of finite mixtures for estimation and classification using

full-blown MCMC
See [Frühwirth-Schnatter and Kaufmann, 2008], [Frühwirth-Schnatter, 2011]
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Capturing serial dependence

Dynamic clustering kernels take account of the serial dependence among the
observations {yi0, . . . , yi ,Ti}:

p(yi |Si = k) =
Ti∏

t=1
p(yit |yi ,t−1, [xit , ]ϑk).
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Panels of real-valued time series

Clustering kernel: dynamic regression model
Dynamic clustering kernels for panels with real-valued time series observations yit are
typically based on

yit = ζk + φkyi ,t−1 + xitβk + σkεit ,

where εit ∼ f (εit) and all parameters of the clustering kernel are cluster-specific,
including the variance of the error term.

I The most common choice are i.i.d. normal errors εit .
I To achieve robustness against outliers, the Student-t distribution is employed in

[Frühwirth-Schnatter and Kaufmann, 2006].
I To capture skewness within each cluster, [Juárez and Steel, 2010] assume that

f (εit) arises from a skew-t distribution.
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Panel data of discrete-valued time series

I Each wage career yi is a discrete valued time series - individual wage career yi of a
randomly selected employee (out of 49 279 time series)
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I yi may be regarded as multivariate categorical vector with dependence among
adjacent observations

yi = ( 1 0 1 2 0 2 2 3 3 2 4 4 5 4 5 5 )′
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Clustering categorical time series

Clustering kernel: First order Markov chain model

p(yi |Si = k , ξk) =
Ti∏

t=1
p(yit |yi ,t−1, ξk)p(yi ,0|ξk),

with initial distribution p(yi ,0|ξk) and cluster-specific transition matrix ξk :

(ξk)hj = Pr(yit = j |yi ,t−1 = h, Si = k).

I Clustering kernel captures the persistence of earning for an individual
I Implies homogeneity within each cluster and stationarity in the long run
I Mixtures of inhomogeneous Markov chain models include covariate information
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Plant closure data from ASSD Data base

I Data from the ASSD (Austrian Social Security Database) [Zweimüller et al., 2009]
I Cohort study: male workers employed in 1982–1988 in firms with more than 5

employees, at least one year of tenure
I Plant closure: an employer identifier ceases to exist, take-over or merger: more

than 50% of the employees continue under a new employer identifier
I Workers aged between 35 and 55 at time of plant closure
I Research question:

I What is the effect of plant closure on the employment career?
I Is there a difference between workers facing plant closure and those who did not?
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Plant closure data from ASSD Data base

I 5,841 workers displaced by plant closures between 1982 and 1988 (panel with
N = 5, 841 time series with Ti ≤ 40 quarterly data)

I Outcome variable yit , i = 1, . . . ,N , t = 1, . . . , 40 (t is distance from plant closure
in quarters):

1 employed
2 sick leave
3 out of labor force

(registered as unemployed or otherwise out of labor force)
4 retired (claiming government pension benefits)

I Controls: all male workers in the cohort who did not experience a plant closure
(more than 1 million workers)
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Mixture of inhomogeneous Markov chain models

I Time-inhomogeneity present both for the plant closure data as well as for the
marketing application.

I Generalized transition matrices: inhomogeneous transition matrix depending on
a history Hit [Frühwirth-Schnatter, 2011]:

Pr(yit = j |Hit , Si = k),

where Hit = {yi ,t−1, xit}.
I Typically xit is some discrete covariate, e.g. the year after plant closure:

ϑk = (πk , ξk,1, ξk,2, . . . , ξk,10)

I We could include addition information (age group, . . . ) in xit

Part II: Model-based Clustering of Time Series Plant closure data from ASSD Data base 37 / 57



Choosing K for the plant closure time series data

I Statistical model selection criteria for various numbers K of clusters:
K 2 3 4 5 6
AIC 112160.9 110381.0 109113.4 107567.6 108057.0
BIC 113575.5 112549.6 112036.0 111244.2 112487.7
AWE 114402.1 114188.3 114159.6 114539.8 116356.4

I Economic interpretability led us to choose 5 clusters; confirmed by AIC and
BIC
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Model-based clustering of plant closure data

Employment profiles of cluster members ranked 10th, 25th, 50th, 70th, 100th, 200th, 350th
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Who suffers and who doesn’t?

I Cluster 1 - The ones who really suffer: low level of attachment to the labor market,
slow/no recovery after plant closure

I Cluster 2 - The good and lucky ones: high level of attachment to the labor market,
quick recovery after plant closure

I Cluster 3 - The less lucky, less fit ones: high mobility between in and out of labor
force; low level of attachment to the labor market

I Cluster 4 - The less lucky, but fit ones: high mobility between in and out of labor
force; high level of attachment to the labor market

I Cluster 5 - The sick and tired ones: increasing chance to move to retirement, either
directly or through the channel of a sick leave
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Time-varying transition probabilities

Transition probabilities 1→ 1, 1→ 3, 3→ 1 for cluster 1 (top) and cluster 2 (bottom)
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Analysing dynamic effects

State distribution πk,t , where

πk,t = πkξk,1→t , ξk,1→t = ξk,1→(t−1)ξky ; ξk,1→2 := ξk1.

over distance t = 4(y − 1) + q from plant closure (quarters), for cluster k :

Cluster 1: low attached Cluster 2: highly attached
Part II: Model-based Clustering of Time Series Plant closure data from ASSD Data base 42 / 57



Construction of a control group

I Statistical matching based on characteristics before plant closure (age,
broad occupation, location, industry, employment history in year before closure)

I Experience of a plant closure effects the state distribution πh of displaced workers
only in the first quarter after displacement, subsequent transition behaviour is
the same as for controls.

I State probability in first quarter after (potential) plant closure is different
for controls:

πc
k = (πc

k,1, . . . , π
c
k,4), πc

k,j = Pr(y c
i1 = j |Sc

i = k).

I πc
k estimated for controls, supervised clustering for the transitions matrices in each

cluster k .
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Treatment effects

Difference πc
k,t − πk,t in dynamic probability to be employed, over distance t from plant

closure for cluster k :
πk,t = πkξk,1→t , πc

k,t = πc
kξk,1→t .

Cluster 1: low attached Cluster 2: highly attached
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Mixtures-of-experts approach

I Mixture-of-experts model: multinomial logit model

Pr(Si = k|xi) = F (xiβk)

I Covariates xi based on individual characteristics:
I age at the time of plant closure (five age groups: 35-39, 40-44, 45-49, 50-55)
I levels of experience (low, medium, high)
I broad occupational status (blue versus white collar)
I income before plant closure (low, medium, high) based on the tertiles of the general

income distribution at time of plant closure
I . . . and on firm characteristics:

I three categories of firm size (1-10, 11-100, and more than 100 employees)
I four broad economic sectors (service, industry, seasonal business outside of hotel

and construction, unknown)
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Prior probabilities to belong to a cluster

Impact of age Impact of white versus blue collar
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Cluster sizes

Workers experiencing plant closure Workers not experiencing plant closure
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Business Application in Marketing

I Bayes for Big Business

I Customer relationship management (CRM) (joint work with Thomas
Reutterer and Stefan Pittner):

I Loyal costumers contribute more to a firm’s profitability than short-term costumers
I Analyze monthly purchases of 6601 costumers over 5 years (60 periods from Feb

2000 through Jan 2005) who are involved in a costumer loyalty program with a
higher-level clothing retails chain

I Allocate marketing budgets more profitably
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Time series observations

I Examples of evolving costumers:

I Market segmentation to identify loyal costumers early on
I Inhomogeneous Markov chain clustering: allow the transition matrix to evolve

over time and account for periods of inactivity
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Resulting cluster solution

4 groups of costumers, holdout analysis shows higher “hit rate” than common models
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Part III
Open issues and future challenges



Some thoughts about the prior

I Priors might be informative also in a big data setting (see [Celeux et al., 2018] for
high-dimensional mixtures)

I Priors should allow shrinkage to deal automatically with over-fitting models
I Blessing of informative priors: in highly overparameterised models, shrinkage is

introduced through the prior
I Objective priors are fine for regular likelihoods, but econometric models often

lead to near-boundary inference and non-regular likelihoods:
I Student-t likelihoods, finite mixtures, random-effect models, dynamic (state space)

models, IV estimation, . . .
I Priors should respect the geometry of the likelihood
I Prior should down-weight regions of the parameter space that contain spurious
results

I Priors should always lead to a proper posterior (with finite moments?)
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Identifiability and weak identifiability

I Data often are not always informative about parameters - identical or similar
likelihood values with different parameter combinations:

I IV estimation and cointegration models [Baştürk et al., 2017]
I overfitting mixtures [Frühwirth-Schnatter and Malsiner-Walli, 2018]
I mixtures for discrete data [Gormley and Frühwirth-Schnatter, 2018]
I factor models [Conti et al., 2014, Frühwirth-Schnatter and Lopes, 2018]

I Dealing with identification problems within a Bayesian framework:
I Posterior might be improper or posterior moments might not exist; ergodic

averages of MCMC draws useless
I diagnosing weak identifiability within MCMC [Koop et al., 2013]
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EFaB

Chris Sims (2007)
“Why econometrics should always and everywhere be Bayesian ”

I Consider joining the Economics, Finance, and Business (EFaB) Section of ISBA

I It’s only A Fistful of Dollars, but with high probability it’s an investment with high
returns
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Thank you very much for your attention!
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