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Survey on Clustering Methods
Clustering

One of the main tools for unsupervised statistical analysis

Often 1st step to simplify complex data — dividing them into
small & homogeneous groups.

Great uncertainty exists in clustering

Clusters tend to overlap.
Generative models via mixture likelihood are extremely useful &
popular. Consider yi ∈ Y ⊆ Rp

yi
iid∼ f , f (y) =

k∑
h=1

πhK(y ; θh).

Equivalently, there is a latent clustering label ci ∈ {1, . . . , k}

yi ∼ K(θci ), pr(ci = h) = πh.
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Survey on Clustering Methods
How to choose K???

Dilemma: balancing complexity vs flexibility.

Simple K – fewer parameters, easy computation.
e.g. Gaussian mixture (GMM) and its approximation (K-means).
But strong assumptions lack robustness: sub-Gaussian tails,
symmetry, elliptical contour.
Many practical problems. e.g. as n increases, slight violation to
assumption yields unbounded number of clusters (Miller and
Dunson 2018).

# of clusters in fitting GMM to 2 mildly skewed Gaussians

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 5 / 31



Survey on Clustering Methods
How to choose K???

Dilemma: balancing complexity vs flexibility.
Simple K – fewer parameters, easy computation.

e.g. Gaussian mixture (GMM) and its approximation (K-means).
But strong assumptions lack robustness: sub-Gaussian tails,
symmetry, elliptical contour.
Many practical problems. e.g. as n increases, slight violation to
assumption yields unbounded number of clusters (Miller and
Dunson 2018).

# of clusters in fitting GMM to 2 mildly skewed Gaussians

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 5 / 31



Survey on Clustering Methods
How to choose K???

Dilemma: balancing complexity vs flexibility.
Simple K – fewer parameters, easy computation.
e.g. Gaussian mixture (GMM) and its approximation (K-means).

But strong assumptions lack robustness: sub-Gaussian tails,
symmetry, elliptical contour.
Many practical problems. e.g. as n increases, slight violation to
assumption yields unbounded number of clusters (Miller and
Dunson 2018).

# of clusters in fitting GMM to 2 mildly skewed Gaussians

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 5 / 31



Survey on Clustering Methods
How to choose K???

Dilemma: balancing complexity vs flexibility.
Simple K – fewer parameters, easy computation.
e.g. Gaussian mixture (GMM) and its approximation (K-means).
But strong assumptions lack robustness: sub-Gaussian tails,
symmetry, elliptical contour.

Many practical problems. e.g. as n increases, slight violation to
assumption yields unbounded number of clusters (Miller and
Dunson 2018).

# of clusters in fitting GMM to 2 mildly skewed Gaussians

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 5 / 31



Survey on Clustering Methods
How to choose K???

Dilemma: balancing complexity vs flexibility.
Simple K – fewer parameters, easy computation.
e.g. Gaussian mixture (GMM) and its approximation (K-means).
But strong assumptions lack robustness: sub-Gaussian tails,
symmetry, elliptical contour.
Many practical problems. e.g. as n increases, slight violation to
assumption yields unbounded number of clusters (Miller and
Dunson 2018).

# of clusters in fitting GMM to 2 mildly skewed Gaussians
David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 5 / 31



Survey on Clustering Methods

More flexible K:
1. Skewed-Gaussian (Lin, Lee and Yen 2007)
2. t-kernel (Peel and McLachlan 2000)
3. Another layer of uniform mixture (Rodriguez and Walker
2014)
4. Copula (Kosmidis and Karlis 2015)

# of parameters becomes unwieldy — easy to overfit in finite n
& create intractable computation for large p.
Imagine: How many parameters do you need to handle skewness
in yi ∈ R100? How do you run MCMC on those?
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Survey on Clustering Methods

Some new solutions by ‘assumption weakening’
1. Gaussian mixture with one extra component of improper
uniform (Coretto and Hennig 2017)
2. Creating a KL-divergence ball around exact Gaussian mixture
likelihood (Miller and Dunson 2018)

Not clear on how to extend those to more complicated objects
— e.g. clustering multiple time series in brain EEG data.
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Survey on Clustering Methods

Apparently, we want some new tool that is:
Probabilistic — critical for UQ.
Simple — small # of parameters, even for complicated data.
Theoretically well justified and (almost) tuning free.
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Bayesian Distance Clustering
Why using distances? First, consider pairwise differences:
di ,i ′ = yi − y ′i

1 If yi and y ′i are in the same cluster, due to iid:

Ed r
i ,i ′ = ~0 for r = 1, 3, 5, . . .

2 Unimodal at ~0 as long as yi is unimodal (Hodges and Lehmann
1954).

3 Intuitively, the within-cluster distances ‖di ,i ′‖ will now
concentrate at 0 (for most norms ‖.‖).
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Bayesian Distance Clustering
di ,i ′ are much easier to model than yi !

How do we obtain a ‘coherent’ likelihood for di ,i ′?
Imagine an unknown oracle likelihood, conditioned on latent
labels c(n)

L∗(y(n); c(n)) =
k∏

h=1

∏
i :ci =h

Kh(yi) =
k∏

h=1
Lh(y [h])

Transform Lh(y [h]) using y [h]
1 and (d [h]

2,1, . . . , d
[h]
nh,1)

L∗h(y [h]) = Kh(y [h]
1 )

nh∏
i=2

Gh(y [h]
i − y [h]

1 | y
[h]
1 )

= Kh
(
y [h]

1 | d
[h]
2,1, . . . , d

[h]
nh,1

)
Gh
(
d [h]

2,1, . . . , d
[h]
nh,1

)
Discard y [h]

1 (requiring heavy assumptions) by integrating it out.
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Bayesian Distance Clustering
We get a Distance Likelihood

L(y(n); c(n)) =
k∏

h=1
Gh
(
d [h]

2,1, . . . , d
[h]
nh,1

)
.

Since we don’t know the oracle, we need to specify Gh.
This is much easier to do, since we only need to worry about
covariance and tails!
Note d [h]

i ,i ′ = d [h]
i ,1 − d [h]

i ′,1, we propose an over-complete form as
the simple product:

Gh
(
d [h]

2,1, . . . , d
[h]
nh,1

)
=

nh∏
i=2

gαh
h (d [h]

i ,1 )
{ nh∏

i=3

∏
1<i ′<i

gαh
h (d [h]

i ,i ′)
}
,

=
nh∏

i=2

∏
i ′<i

gαh
h (d [h]

i ,i ′),

gh: marginal density; αh: calibration parameter (to be set later).
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Bayesian Distance Clustering
Due to linear constraint d [h]

i ,i ′ = d [h]
i ,1 − d [h]

i ′,1, covariances among d [h]
i ,i ′ ’s

are automatically induced:

Lemma
var(d [h]

i ,i ′) = 2Σ, cov(d [h]
i ,i ′ , d

[h]
i ,i ′′) = Σ for i ′ 6= i ′′, i 6= i ′, i 6= i ′′.

0.0

0.2

0.4

0.6

0.8

1.0

−1.5 −0.5 0.5 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

d21

d 31

d21

−1

0

1

d 31

−1

0

1

Density

Likelihood for 3 distances Gh(D[h]) = exp(−|d21|) exp(−|d31|) exp(−|d32|).
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Bayesian Distance Clustering

Product form makes it easy to satisfy coherence conditions:

Lemma
(Exchangeability)

L(y(n); c(n)) = L(y(n∗); c(n∗))

with (n∗) = {1∗, . . . , n∗} denoting a set of permuted indices.

Lemma
(Marginalization)

L(y(n)) =
∫
Y

L(y(n+1))dyn+1.
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Bayesian Distance Clustering

Choosing marginal gh(d [h]
i ,i ′) is straightforward, mostly based on

tail assumption and how to handle the covariance of yi .

How d [h]
i ,i ′ enters gh also determines what type of distance is used.

For example, a multivariate Gaussian density

gh(d [h]
i ,i ′) ∝ exp

(
− 1

2σ
−1
h d [h]

i ,i ′
T
S−1d [h]

i ,i ′

)

corresponds to Mahalanobis distance
∆(y [h]

i , y [h]
i ′ ) = (y [h]

i − y [h]
i ′ )TS−1(y [h]

i − y [h]
i ′ ).

For simplicity, we will assume diagonal covariance for yi and
focus on guarantee on tail robustness.
Computation is simple via Gibbs sampling.
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Tail bound on pairwise distances
Chernoff bound on distances
Lemma
(Concentration inequality) If all y [h]

i ’s are sub-exponential with bound
parameters (νh, bh), then ‖d [h]

i ,i ′‖∞ = maxp
j=1 |d

[h]
i ,i ′,j | has

pr(‖d [h]
i ,i ′‖∞ > t) ≤ 2p exp{−t/(2bh)} for t > 2ν2

h/bh.

For p not too large, d [h]
i ,i ′ can be well approximated by a Laplace.

p-dimensional Laplace with diagonal covariance is equivalent to
using weighted-`1 distances

gh(d [h]
i ,i ′) = (2−p

p∏
j=1

σ−1
h,j ) exp

(
−

p∑
j=1
|d [h]

i ,i ′,j |/σh,j
)
.
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Information Theory on Clustering
One natural question: what we lose when discarding information in
K(y [h]

1 | .)?
A relevant information concept: Bregman divergence (Bregman
1967) between two random variables x and y

Bφ(x , y) = φ(x)− φ(y)− (x − y)′Oφ(y)
φ : dom φ→ R a strictly convex and differentiable function;
Oφ(y) the gradient of φ at y .

Generality: For any regular exponential Kh, there always exists a
Bregman re-parameterization [Banerjee et al (2005)]

Kh(yi ; θh) = exp {T (yi)′θh − ψ(θh)}κ(yi)
⇔ exp [−Bφ {T (yi), µh}] bφ{T (yi)},

T : minimal sufficient statistics for θh; µh = Eyi∼KhT (yi).
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Information Theory on Clustering

For model-based clustering, maximizing mixture likelihood ⇔
minimizing total Bregman divergence wrt the mean of T (yi):

Hy =
k∑

h=1
H [h]

y , H [h]
y =

nh∑
i=1

Bφ {T (yi), µh} .

For distance clustering, now view each distance as some form of
pairwise Bregman divergence

Hd =
k∑

h=1
H [h]

d , H [h]
d = αhλ

−1
h

nh∑
i=1

nh∑
i ′=1

Bφ

{
T (y [h]

i ),T (y [h]
i ′ )
}
.

How do they compare?
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Information Theory on Clustering
Lemma
(Expected Bregman Divergences) The model-based and distance-based
Bregman divergences have this relationship:

Ey [h]H [h]
d = (2nhαhλ

−1
h ) Ey [h]

[ nh∑
i=1

H [h]
y + Bφ{µh,T (y [h]

i )}
2

]
,

where the expectation over y [h] is taken with respect to Kh.

RHS after E: symmetrized Bregman divergence b/w T (y [h]
i ) and µh.

We can make two expected divergences equal, by setting
αh = 1/nh and learn λh adaptively from its posterior.

NO Bregman information is lost for clustering!
Although we implicitly assume T and φ are chosen in the same
way in both H [h]

d and H [h]
y , this is easy to achieve / approximate

via sensible choice of distance density.
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Information Theory on Clustering

A toy example, for h = 1, . . . , k ,

y [h]
i ∼ No(µh, σ

2
h)

with y [h]
i ∈ R.

Model-based H [h]
y = ∑

i(y
[h]
i − µh)2/σ2

h.

Distance-based H [h]
d = (2nhαhλ

−1
h )∑nh

i=1
∑nh

i ′=1(d [h]
i ,i ′)2.

When αh = 1/nh and λh = 2σ2
h,

EyH [h]
y = EyH [h]

d = n − 1

λh = 2σ2
h can be learned from the posterior because

var(d [h]
i ,i ′) = 2var(y [h]

i ).
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Data Application

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 22 / 31



Sim1: Robust to skewness
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Dashed: oracle probability. Red:
Bayes dist. clustering. Green:
Gaussian mixture (GMM)

Interestingly, at small n = 200 and increasing p, Bayesian Distance
Clustering performs even better (in adjusted Rand index) than mixture of
skewed Gaussians (the ‘true’ kernel), likely due to fewer parameters.

p Bayes Dist. Clustering Mix. of Gaussians Mix. of Skewed Gaussians
5 0.76 (0.71, 0.81) 0.55 (0.40, 0.61) 0.76 (0.72, 0.80)
10 0.72 (0.68, 0.76) 0.33(0.25, 0.46) 0.62 (0.53, 0.71)
30 0.71 (0.67, 0.76) 0.25 (0.20, 0.30) 0.43 (0.37, 0.50)
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Sim2: Easy to handle constrained data.
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(a) Data on unit
circle colored by true
cluster labels.
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(b) Point clustering
estimates from BDC.
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(c) Point clustering
estimates from a
mixture of Gaussian
model.

Figure: Clustering data from two-component mixture of von-Mises Fisher
with µ1 = (1, 0) and µ2 = (1/

√
2, 1/
√

2).

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 24 / 31



Neuroscience application: Clustering brain voxels using gene
expression.

Goal: Estimate functional partitions by segmenting the mouse
brain according to the gene expression levels, and compare with
structural partitions as defined in brain anatomy.

Data: Gene transcriptome over mid-coronal section of 41× 58
voxels, excluding the empty ones, sample size n = 1781. Each
voxel has expression levels for 3241 genes. Data are obtained
from Allen Mouse Brain Atlas (Lein et al 2007).
To avoid curse-of-dimensionality on distances: we follow
previous visualization application on the same dataset (Mahfouz
et al 2014), and extract the first p = 30 principal components as
the source data yi .

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 25 / 31



Neuroscience application: Clustering brain voxels using gene
expression.

Goal: Estimate functional partitions by segmenting the mouse
brain according to the gene expression levels, and compare with
structural partitions as defined in brain anatomy.
Data: Gene transcriptome over mid-coronal section of 41× 58
voxels, excluding the empty ones, sample size n = 1781. Each
voxel has expression levels for 3241 genes. Data are obtained
from Allen Mouse Brain Atlas (Lein et al 2007).

To avoid curse-of-dimensionality on distances: we follow
previous visualization application on the same dataset (Mahfouz
et al 2014), and extract the first p = 30 principal components as
the source data yi .

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 25 / 31



Neuroscience application: Clustering brain voxels using gene
expression.

Goal: Estimate functional partitions by segmenting the mouse
brain according to the gene expression levels, and compare with
structural partitions as defined in brain anatomy.
Data: Gene transcriptome over mid-coronal section of 41× 58
voxels, excluding the empty ones, sample size n = 1781. Each
voxel has expression levels for 3241 genes. Data are obtained
from Allen Mouse Brain Atlas (Lein et al 2007).
To avoid curse-of-dimensionality on distances: we follow
previous visualization application on the same dataset (Mahfouz
et al 2014), and extract the first p = 30 principal components as
the source data yi .

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 25 / 31



Neuroscience application: Clustering brain voxels using gene
expression.
We fit an overfitted model with k = 20 and Dirichlet-(1/20) on the
component weights. Comparing point estimates:
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(c) Functional
Partitions (clustered
by Gaussian Mixture
Model).

David Dunson (with Leo Duan) (Duke) Bayes Distance Clustering 26 / 31



Neuroscience application: Clustering brain voxels using gene
expression.
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(a) Functional Partitions:
point estimates {ĉi} by BDC
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(b) Uncertainty: pr(ci 6= ĉi )

Most uncertainty is in the inner layers of the cortical plate (upper
parts of the brain).
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Comparing point estimates against others:

Table: Comparison of label point estimates using Bayesian distance
clustering (BDC), Gaussian mixture model (GMM), spectral clustering
(SC), DBSCAN and Mixture of Factor Analyzers (MFA). The similarity
measure is computed with respect to the anatomical structure labels .

BDC GMM SC DBSCAN MFA
Adjusted Rand Index 0.49 0.31 0.45 0.43 0.43
Normalized Mutual Information 0.51 0.42 0.46 0.44 0.47
Adjusted Mutual Information 0.51 0.42 0.47 0.45 0.47
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Discussion
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Discussion

More general distances / divergences can be included: e.g.
geodesic, transport distances, etc.
So far we have focused on moderate n, as the number of
distances increases in O(n2). Interesting to develop new scalable
solution.
For high dimension data, “Dimension reduction + Clustering”
can cause loss of information. Useful to develop new distances
that preserve discriminability.
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