
Regularized
Optimal Transport

https://optimaltransport.github.io/
book with Gabriel Peyré

Marco Cuturi

Joint works with G. Peyré, F. Bach, N. Bonneel, A. Genevay,
L. Chizat, A. Rolet, J. Solomon, G. Carlier, JD Benamou,

L. Nenna, M. Heitz, and many others.

2

(⌦,D)

Optimal Transport

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

2

(⌦,D)

Optimal Transport

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

2

(⌦,D)

Optimal Transport

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

2

(⌦,D)

Optimal Transport

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

3

stalingrad battle map ×

ALL IMAGES VIDEOS MAPS NEWS SHOPPING BOOKS FLIGHTS PERSONAL

Wikimedia Commons

File:Map Battle of Stalingrad-
ru.svg - Wikimedia Commons
File:Map Battle of Stalingrad-ru.svg

Images may be subject to copyright.

Visit

Emerson Kent

Map of the Battle of Stalingrad
1942-3
Map of the Battle of Stalingrad July 17, 1942 -
February 2, 1943

Images may be subject to copyright.

Visit Share

SEE MORERELATED IMAGES

https://www.google.co.jp/search?q=stalingrad+battle+map&cl…PXAhUrBcAKHch7AUAQlJcCCCMoAw#imgrc=eJuyFAf7AsrOvM: 2017/11/29 13U24
Page 1 of 2

Kantorovich Problem

3

stalingrad battle map

IMAGES VIDEOS MAPS NEWS SHOPPING BOOKS150

Pinterest

382 best World war 2 images on
Pinterest | Lego ww2, Soldiers a
WW2 Lego - American 101st Soldier - Custom Figure

Images may be subject to copyright.

Visit

Openclipart

soldier Clipart
Plastic soldiers

Images may be subject to copyright.

VisitShare

SEE MORE RELATED IMAGES

World War II Australians 20mm |

(200WWT11s) Australians, In action, in slouch hats

Share

https://www.google.co.jp/search?client=safari&hl=en-jp&biw=…ws-img..1.3.589...41.0.jxlAmFhD8pk#imgrc=AFtznxbPsgfWDM:2017/11/29 13O27
Page 1 of 2

60 90

Pinterest

382 best World war 2 images on
Pinterest | Lego ww2, Soldiers a
WW2 Lego - American 101st Soldier - Custom Figure

Images may be subject to copyright.

Visit

Openclipart

soldier Clipart
Plastic soldiers

Images may be subject to copyright.

VisitShare

SEE MORE RELATED IMAGES

World War II Australians 20mm |

(200WWT11s) Australians, In action, in slouch hats

Share

https://www.google.co.jp/search?client=safari&hl=en-jp&biw=…ws-img..1.3.589...41.0.jxlAmFhD8pk#imgrc=AFtznxbPsgfWDM:2017/11/29 13O27
Page 1 of 2

Pinterest

382 best World war 2 images on
Pinterest | Lego ww2, Soldiers a
WW2 Lego - American 101st Soldier - Custom Figure

Images may be subject to copyright.

Visit

Openclipart

soldier Clipart
Plastic soldiers

Images may be subject to copyright.

VisitShare

SEE MORE RELATED IMAGES

World War II Australians 20mm |

(200WWT11s) Australians, In action, in slouch hats

Share

https://www.google.co.jp/search?client=safari&hl=en-jp&biw=…ws-img..1.3.589...41.0.jxlAmFhD8pk#imgrc=AFtznxbPsgfWDM:2017/11/29 13O27
Page 1 of 2

120
90

90

Kantorovich Problem

3

stalingrad battle map

IMAGES VIDEOS MAPS NEWS SHOPPING BOOKS150

Pinterest

382 best World war 2 images on
Pinterest | Lego ww2, Soldiers a
WW2 Lego - American 101st Soldier - Custom Figure

Images may be subject to copyright.

Visit

Openclipart

soldier Clipart
Plastic soldiers

Images may be subject to copyright.

VisitShare

SEE MORE RELATED IMAGES

World War II Australians 20mm |

(200WWT11s) Australians, In action, in slouch hats

Share

https://www.google.co.jp/search?client=safari&hl=en-jp&biw=…ws-img..1.3.589...41.0.jxlAmFhD8pk#imgrc=AFtznxbPsgfWDM:2017/11/29 13O27
Page 1 of 2

60 90

Pinterest

382 best World war 2 images on
Pinterest | Lego ww2, Soldiers a
WW2 Lego - American 101st Soldier - Custom Figure

Images may be subject to copyright.

Visit

Openclipart

soldier Clipart
Plastic soldiers

Images may be subject to copyright.

VisitShare

SEE MORE RELATED IMAGES

World War II Australians 20mm |

(200WWT11s) Australians, In action, in slouch hats

Share

https://www.google.co.jp/search?client=safari&hl=en-jp&biw=…ws-img..1.3.589...41.0.jxlAmFhD8pk#imgrc=AFtznxbPsgfWDM:2017/11/29 13O27
Page 1 of 2

Pinterest

382 best World war 2 images on
Pinterest | Lego ww2, Soldiers a
WW2 Lego - American 101st Soldier - Custom Figure

Images may be subject to copyright.

Visit

Openclipart

soldier Clipart
Plastic soldiers

Images may be subject to copyright.

VisitShare

SEE MORE RELATED IMAGES

World War II Australians 20mm |

(200WWT11s) Australians, In action, in slouch hats

Share

https://www.google.co.jp/search?client=safari&hl=en-jp&biw=…ws-img..1.3.589...41.0.jxlAmFhD8pk#imgrc=AFtznxbPsgfWDM:2017/11/29 13O27
Page 1 of 2

120
90

90

Kantorovich Problem

4

60 90

150120 90

90

Kantorovich Problem à la française

5

(⌦,D)

Optimal Transport

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Wasserstein on Discrete Measures

6

U(a, b)
def
= {P 2 Rn⇥m

+ |P1m = a,P T1n = b}
MXY

def
= [D(xi,yj)

p]ij

Def. Optimal Transport Problem

W p
p (µ,⌫) = min

P2U(a,b)
hP ,MXY i

Consider µ =

nX

i=1

a
i

�
xi and ⌫ =

mX

j=1

b
j

�
yj .

Solving the OT Problem

7

MXY

U(a, b)

Solving the OT Problem

7

MXY

U(a, b)

P ?

8

Early application: Earth Mover’s

8

Early application: Earth Mover’s

µ

⌫

8

Early application: Earth Mover’s

µ

⌫

dist(I1, I2) = W1(µ,⌫)[Rubner’98]

9

Word Mover’s Distance

µ
⌫

9

Word Mover’s Distance

[Kusner’15] dist(D1, D2) = W2(µ,⌫)

µ
⌫

10

Variational OT Problems in ML

Up to 2010: OT solvers
used mostly for retrieval
in databases of histograms

The field has now transitioned to OT
as a loss or fidelity term

Wp(µ,⌫) =?

argmin
µ2P(⌦)

F (Wp(µ,⌫1),Wp(µ,⌫2), . . . ,µ) =?

Wp(µ,⌫) · · ·?

“rµ”Wp(µ,⌫1) =?

Recent spike in interest for [Ambrosio’05]

“Wasserstein + Data” Problems

11

• Quantization: k-means problem [Lloyd’82]

• [McCann’95] Interpolant

• [JKO’98] PDE’s as “gradient” flows in

min
µ2P(⌦)

(1� t)W 2
2 (µ,⌫1) + tW 2

2 (µ,⌫2)

min
µ2P(Rd)

| suppµ|=k

W 2
2 (µ,⌫data)

µt+1 = argmin
µ2P(⌦)

J(µ) + �tW
p
p (µ, µt)

(P(⌦),W).

Example: Barycenters

12

⌫1

⌫2

⌫3

P(⌦)

Example: Barycenters

12

Wasserstein
Barycenter
[Agueh’11]

min
µ2P(⌦)

NX

i=1

�iW
p
p (µ,⌫i)

⌫1

⌫2

⌫3

P(⌦)

Example: Barycenters

13

� 2 ⌃3
Wasserstein mean L2 mean

Example: Barycenters

13

� 2 ⌃3
Wasserstein mean L2 mean

14 [SDPC..’15]

Ex: Barycenters for shapes

Graphics: simple testing ground for
relevance of Wasserstein geometry

14 [SDPC..’15]

Ex: Barycenters for shapes

Graphics: simple testing ground for
relevance of Wasserstein geometry

15 [PC’18]

Ex: Barycenters for shapes

16

Example: Learning with aW Loss
Dataset {(xi, yi)}, xi 2 Rp

, yi 2 Rn
+

xi

Goal is to find f✓ : Images 7! Labels

husky
snow
sled
slope
men
yi

17

min
✓2⇥

NX

i=1

L(f✓(xi), yi)

xi

husky
snow
sled
slope
men
yi

Example: Learning with aW Loss

17

min
✓2⇥

NX

i=1

L(f✓(xi), yi)

dog
driver
winter

ice

f✓(xi)

husky
snow
sled
slope
men
yi

Example: Learning with aW Loss

17

min
✓2⇥

NX

i=1

L(f✓(xi), yi)

dog
driver
winter

ice

f✓(xi)

husky
snow
sled
slope
men
yi

Example: Learning with aW Loss

[Frogner’15]
Use for L a Wasserstein type loss.

18

Example: Generative Models

⌫data

We collect data

⌫data =
1

N

NX

i=1

�
xi

18

Example: Generative Models

⌫data

We fit a parametric
family of densities

{p✓, ✓ 2 ⇥}

We collect data

⌫data =
1

N

NX

i=1

�
xi

p✓0

e.g. ✓ = (m,⌃);p✓ = N (m,⌃)

Statistics 0.1: Density Fitting

⌫data

p✓
done!

aim for a “good” fit

Maximum Likelihood Estimation

⌫data

p✓
done!

max

✓2⇥

1

N

NX

i=1

log p✓(xi)

Maximum Likelihood Estimation

⌫data

p✓
done!

max

✓2⇥

1

N

NX

i=1

log p✓(xi)

log 0 = �1
p✓(xi) must be > 0

⌫data

p✓
done!

Equivalent to a KL projection in
the space of probability measures

{p✓, ✓ 2 ⇥}
⌫data

p✓
done!

p✓1

p✓2

min
✓2⇥

KL(⌫datakp✓)

KL

Maximum Likelihood Estimation

⌫data

p✓
done!

Equivalent to a KL projection in
the space of probability measures

{p✓, ✓ 2 ⇥}
⌫data

p✓
done!

p✓0
p✓1

p✓2

min
✓2⇥

KL(⌫datakp✓)

KL

Maximum Likelihood Estimation

p✓

22

In higher dimensional spaces…

⌫data
Ambient space: hypercube d = 30.000

23

Generative Models

⌫data

23

Generative Models
µ

latent
space

data space

⌫data

23

Generative Models
µ

latent
space

data space

⌫data

f✓ : latent space ! data space

23

Generative Models
µ

latent
space

data space

⌫data

f✓ : latent space ! data space
z

z =

2

666664

.32
.8
.34
...

.01

3

777775

23

Generative Models
µ

latent
space

data space

⌫data

f✓ : latent space ! data space
z

z =

2

666664

.32
.8
.34
...

.01

3

777775

f✓(z)

f✓

23

Generative Models
µ

latent
space

data space

⌫data

f✓ : latent space ! data space
z

z =

2

666664

.32
.8
.34
...

.01

3

777775

f✓(z)

f✓

23

Generative Models
µ

latent
space

data space

⌫data

f✓ : latent space ! data space

f✓]µ

24

Generative Models
µ

latent
space

⌫data

f✓ : latent space ! data space

data space
f✓]µ

Goal: find ✓ such that f✓]µ fits ⌫data

24

Generative Models
µ

latent
space

⌫data

f✓ : latent space ! data space

data space
f✓]µ

Goal: find ✓ such that f✓]µ fits ⌫data

25

Generative Models
µ

latent
space

⌫data

f✓ : latent space ! data space

max

✓2⇥

1

N

NX

i=1

log p✓(xi)MLE

data space

min
✓2⇥

KL(⌫datakp✓)

f✓]µ

=

26

Generative Models
µ

latent
space

⌫data

f✓ : latent space ! data space

max

✓2⇥

1

N

NX

i=1

log f✓]µ(xi)MLEMLE

data space

min
✓2⇥

KL(⌫datakf✓]µ)

f✓]µ

27

Generative Models
µ

latent
space

⌫data

f✓ : latent space ! data space

data space

Need a more flexible discrepancy

function to compare ⌫data and f✓]µ

f✓]µ

28

Workarounds?

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

29

Workarounds?

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

29

Workarounds?

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

29

Workarounds?

high classification 
accuracy

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

30

Workarounds?

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

30

Workarounds?

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

30

Workarounds?

low classification 
accuracy…  
is the goal.

• Formulation as adversarial problem [GPM…’14]

min

✓2⇥
max

classifiers g
Accuracyg ((f✓]µ,+1), (⌫data,�1))

31

Another idea?
µ

latent
space

⌫data

data
space

• Use a metric for probability measures, that can
handle measures with non-overlapping supports:

• The original GAN paper can be interpreted in  
that light using the Jensen-Shannon divergence.

min
✓2⇥

�(⌫data,p✓), notmin
✓2⇥

KL(⌫datakp✓)

�

Minimum Estimation

32

l1

�

 Generative Model Estimation

33

�

MMD GAN: Towards Deeper Understanding of
Moment Matching Network

Chun-Liang Li1,⇤ Wei-Cheng Chang1,⇤ Yu Cheng2 Yiming Yang1 Barnabás Póczos1
1 Carnegie Mellon University, 2IBM Research

{chunlial,wchang2,yiming,bapoczos}@cs.cmu.edu chengyu@us.ibm.com

Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement
for a rather large batch size during the training. In this paper, we propose to
improve both the model expressiveness of GMMN and its computational efficiency
by introducing adversarial kernel learning techniques, as the replacement of a
fixed Gaussian kernel in the original GMMN. The new approach combines the key
ideas in both GMMN and GAN, hence we name it MMD-GAN. The new distance
measure in MMD-GAN is a meaningful loss that enjoys the advantage of weak⇤
topology and can be optimized via gradient descent with relatively small batch
sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-
10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms
GMMN, and is competitive with other representative GAN works.

1 Introduction

The essence of unsupervised learning models the underlying distribution PX of the data X . Deep
generative model [1, 2] uses deep learning to approximate the distribution of complex datasets with
promising results. However, modeling arbitrary density is a statistically challenging task [3]. In many
applications, such as caption generation [4], accurate density estimation is not even necessary since
we are only interested in sampling from the approximated distribution.

Rather than estimating the density of PX , Generative Adversarial Network (GAN) [5] starts from a
base distribution PZ over Z , such as Gaussian distribution, then trains a transformation network g

✓

such that P
✓

⇡ PX , where P
✓

is the underlying distribution of g
✓

(z) and z ⇠ PZ . During the training,
GAN-based algorithms require an auxiliary network f

�

for estimating the distance between PX
and P

✓

. Different probabilistic (pseudo) metrics have been studied [5–8] under GAN framework.

Instead of training an auxiliary network f
�

for measuring the distance between PX and P
✓

, Generative
moment matching network (GMMN) [9, 10] uses kernel maximum mean discrepancy (MMD) [11],
which is the centerpiece of nonparametric two-sample test, to determine the distribution distances.
During the training, g

✓

is trained to pass the hypothesis test (minimize MMD distance). [11] shows
even the simple Gaussian kernel enjoys the strong theoretical guarantees (Theorem 1). However, the
empirical performance of GMMN does not meet its theoretical properties. There is no promising
empirical results comparable with GAN on challenging benchmarks [12, 13]. Computationally,

⇤Equal Contribution

ar
X

iv
:1

70
5.

08
58

4v
1

 [c
s.L

G
]

24
 M

ay
 2

01
7

Training generative neural networks via Maximum Mean Discrepancy
optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z

drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-

 Generative Model Estimation

33

�

Wasserstein GAN

Martin Arjovsky

1

, Soumith Chintala

2

, and Léon Bottou

1,2

1

Courant Institute of Mathematical Sciences

2

Facebook AI Research

1 Introduction

The problem this paper is concerned with is that of unsupervised learning. Mainly,
what does it mean to learn a probability distribution? The classical answer to this
is to learn a probability density. This is often done by defining a parametric family
of densities (P✓)✓2Rd and finding the one that maximized the likelihood on our data:
if we have real data examples {x(i)}mi=1, we would solve the problem

max
✓2Rd

1

m

mX

i=1

logP✓(x
(i))

If the real data distribution Pr admits a density and P✓ is the distribution of the
parametrized density P✓, then, asymptotically, this amounts to minimizing the
Kullback-Leibler divergence KL(PrkP✓).

For this to make sense, we need the model density P✓ to exist. This is not
the case in the rather common situation where we are dealing with distributions
supported by low dimensional manifolds. It is then unlikely that the model manifold
and the true distribution’s support have a non-negligible intersection (see [1]), and
this means that the KL distance is not defined (or simply infinite).

The typical remedy is to add a noise term to the model distribution. This is why
virtually all generative models described in the classical machine learning literature
include a noise component. In the simplest case, one assumes a Gaussian noise
with relatively high bandwidth in order to cover all the examples. It is well known,
for instance, that in the case of image generation models, this noise degrades the
quality of the samples and makes them blurry. For example, we can see in the
recent paper [23] that the optimal standard deviation of the noise added to the
model when maximizing likelihood is around 0.1 to each pixel in a generated image,
when the pixels were already normalized to be in the range [0, 1]. This is a very
high amount of noise, so much that when papers report the samples of their models,
they don’t add the noise term on which they report likelihood numbers. In other
words, the added noise term is clearly incorrect for the problem, but is needed to
make the maximum likelihood approach work.

1

ar
X

iv
:1

70
1.

07
87

5v
3

 [s
ta

t.M
L]

 6
 D

ec
 2

01
7

Wasserstein Training of

Restricted Boltzmann Machines

Grégoire Montavon

Technische Universität Berlin
gregoire.montavon@tu-berlin.de

Klaus-Robert Müller

⇤

Technische Universität Berlin
klaus-robert.mueller@tu-berlin.de

Marco Cuturi

CREST, ENSAE, Université Paris-Saclay
marco.cuturi@ensae.fr

Abstract

Boltzmann machines are able to learn highly complex, multimodal, structured
and multiscale real-world data distributions. Parameters of the model are usually
learned by minimizing the Kullback-Leibler (KL) divergence from training samples
to the learned model. We propose in this work a novel approach for Boltzmann
machine training which assumes that a meaningful metric between observations is
known. This metric between observations can then be used to define the Wasserstein
distance between the distribution induced by the Boltzmann machine on the one
hand, and that given by the training sample on the other hand. We derive a
gradient of that distance with respect to the model parameters. Minimization of this
new objective leads to generative models with different statistical properties. We
demonstrate their practical potential on data completion and denoising, for which
the metric between observations plays a crucial role.

1 Introduction

Boltzmann machines [1] are powerful generative models that can be used to approximate a large
class of real-world data distributions, such as handwritten characters [9], speech segments [7], or
multimodal data [16]. Boltzmann machines share similarities with neural networks in their capability
to extract features at multiple scales, and to build well-generalizing hierarchical data representations
[15, 13]. The restricted Boltzmann machine (RBM) is a special type of Boltzmann machine composed
of one layer of latent variables, and defining a probability distribution p✓(x) over a set of d binary
observed variables whose state is represented by the binary vector x 2 {0, 1}d, and with a parameter
vector ✓ to be learned.

Given an empirical probability distribution p̂(x) = 1
N

PN
n=1 �xn where (xn)n is a list of N observa-

tions in {0, 1}d, an RBM can be trained using information-theoretic divergences (see for example
[12]) by minimizing with respect to ✓ a divergence �(p̂, p✓) between the sample empirical measure p̂
and the modeled distribution p✓. When � is for instance the KL divergence, this approach results in
the well-known Maximum Likelihood Estimator (MLE), which yields gradients for the ✓ of the form

r✓KL(p̂ k p✓) = � 1

N

NX

n=1

r✓ log p✓(xn) = �⌦r✓ log p✓(x)
↵
p̂
, (1)

where the bracket notation h·ip indicates an expectation with respect to p. Alternative choices for �
are the Bhattacharrya/Hellinger and Euclidean distances between distributions, or more generally

⇤Also with the Department of Brain and Cognitive Engineering, Korea University.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Inference in generative models using the Wasserstein distance

Espen Bernton, Mathieu Gerber, Pierre E. Jacob, Christian P. Robert

December 2016

Abstract

In purely generative models, one can simulate data given parameters but not necessarily evaluate the
likelihood. We use Wasserstein distances between empirical distributions of observed data and empirical
distributions of synthetic data drawn from such models to estimate their parameters. Previous interest
in the Wasserstein distance for statistical inference has been mainly theoretical, due to computational
limitations. Thanks to recent advances in numerical transport, the computation of these distances
has become feasible, up to controllable approximation errors. We leverage these advances to propose
point estimators and quasi-Bayesian distributions for parameter inference, first for independent data.
For dependent data, we extend the approach by using delay reconstruction techniques. We provide a
theoretical study of the proposed estimators, and adaptive Monte Carlo algorithms to approximate them.
The approach is illustrated on three examples: a quantile g-and-k distribution, a toggle switch model
from systems biology, and a Lotka-Volterra model for plankton population sizes.

1 Introduction
The likelihood function plays a central role in statistics, and arguably provides all the relevant information
for inference (Berger et al., 1988). However, for many models of interest, the likelihood cannot be evaluated,
often because it involves an intractable integral over latent variables. It might be possible to generate
synthetic data sets given parameters, in which case the model is said to be generative. This article is about
statistical inference for generative models.

Various approaches exist to perform inference for generative models. A popular approach consists in
replacing the likelihood by an approximation and aiming for either point estimators (Diggle and Gratton,
1984; Wood, 2010), or quasi-posterior distributions, leading to Approximate Bayesian Computation (ABC)
(Beaumont et al., 2002; Marin et al., 2012). Other approaches include indirect inference (Gouriéroux et al.,
1993) and the method of simulated moments (McFadden, 1989). A number of articles have studied the
justification for these methods, for instance Pakes and Pollard (1989) for simulated moments, Heggland
and Frigessi (2004) for indirect inference, Atchadé (2015); Frazier et al. (2016) for parameter inference
with ABC and Robert et al. (2011) for model choice with ABC. An interesting review and connections
between existing and new simulation-based methods can be found in Forneron and Ng (2015). These studies
emphasize the need to find appropriate summary statistics or auxiliary models when performing inference
for generative models. Meanwhile, departures from the likelihood approach have also been shown to have
statistical advantages, e.g. in terms of robustness to model misspecification (Grünwald, 2012; Müller, 2013;
Miller and Dunson, 2015). Besides, ABC corresponds to standard Bayesian inference on a di�erent model,
with added measurement error (Wilkinson, 2013).

1

MMD GAN: Towards Deeper Understanding of
Moment Matching Network

Chun-Liang Li1,⇤ Wei-Cheng Chang1,⇤ Yu Cheng2 Yiming Yang1 Barnabás Póczos1
1 Carnegie Mellon University, 2IBM Research

{chunlial,wchang2,yiming,bapoczos}@cs.cmu.edu chengyu@us.ibm.com

Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement
for a rather large batch size during the training. In this paper, we propose to
improve both the model expressiveness of GMMN and its computational efficiency
by introducing adversarial kernel learning techniques, as the replacement of a
fixed Gaussian kernel in the original GMMN. The new approach combines the key
ideas in both GMMN and GAN, hence we name it MMD-GAN. The new distance
measure in MMD-GAN is a meaningful loss that enjoys the advantage of weak⇤
topology and can be optimized via gradient descent with relatively small batch
sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-
10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms
GMMN, and is competitive with other representative GAN works.

1 Introduction

The essence of unsupervised learning models the underlying distribution PX of the data X . Deep
generative model [1, 2] uses deep learning to approximate the distribution of complex datasets with
promising results. However, modeling arbitrary density is a statistically challenging task [3]. In many
applications, such as caption generation [4], accurate density estimation is not even necessary since
we are only interested in sampling from the approximated distribution.

Rather than estimating the density of PX , Generative Adversarial Network (GAN) [5] starts from a
base distribution PZ over Z , such as Gaussian distribution, then trains a transformation network g

✓

such that P
✓

⇡ PX , where P
✓

is the underlying distribution of g
✓

(z) and z ⇠ PZ . During the training,
GAN-based algorithms require an auxiliary network f

�

for estimating the distance between PX
and P

✓

. Different probabilistic (pseudo) metrics have been studied [5–8] under GAN framework.

Instead of training an auxiliary network f
�

for measuring the distance between PX and P
✓

, Generative
moment matching network (GMMN) [9, 10] uses kernel maximum mean discrepancy (MMD) [11],
which is the centerpiece of nonparametric two-sample test, to determine the distribution distances.
During the training, g

✓

is trained to pass the hypothesis test (minimize MMD distance). [11] shows
even the simple Gaussian kernel enjoys the strong theoretical guarantees (Theorem 1). However, the
empirical performance of GMMN does not meet its theoretical properties. There is no promising
empirical results comparable with GAN on challenging benchmarks [12, 13]. Computationally,

⇤Equal Contribution

ar
X

iv
:1

70
5.

08
58

4v
1

 [c
s.L

G
]

24
 M

ay
 2

01
7

Training generative neural networks via Maximum Mean Discrepancy
optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z

drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-

 Generative Model Estimation

33

�

Wasserstein GAN

Martin Arjovsky

1

, Soumith Chintala

2

, and Léon Bottou

1,2

1

Courant Institute of Mathematical Sciences

2

Facebook AI Research

1 Introduction

The problem this paper is concerned with is that of unsupervised learning. Mainly,
what does it mean to learn a probability distribution? The classical answer to this
is to learn a probability density. This is often done by defining a parametric family
of densities (P✓)✓2Rd and finding the one that maximized the likelihood on our data:
if we have real data examples {x(i)}mi=1, we would solve the problem

max
✓2Rd

1

m

mX

i=1

logP✓(x
(i))

If the real data distribution Pr admits a density and P✓ is the distribution of the
parametrized density P✓, then, asymptotically, this amounts to minimizing the
Kullback-Leibler divergence KL(PrkP✓).

For this to make sense, we need the model density P✓ to exist. This is not
the case in the rather common situation where we are dealing with distributions
supported by low dimensional manifolds. It is then unlikely that the model manifold
and the true distribution’s support have a non-negligible intersection (see [1]), and
this means that the KL distance is not defined (or simply infinite).

The typical remedy is to add a noise term to the model distribution. This is why
virtually all generative models described in the classical machine learning literature
include a noise component. In the simplest case, one assumes a Gaussian noise
with relatively high bandwidth in order to cover all the examples. It is well known,
for instance, that in the case of image generation models, this noise degrades the
quality of the samples and makes them blurry. For example, we can see in the
recent paper [23] that the optimal standard deviation of the noise added to the
model when maximizing likelihood is around 0.1 to each pixel in a generated image,
when the pixels were already normalized to be in the range [0, 1]. This is a very
high amount of noise, so much that when papers report the samples of their models,
they don’t add the noise term on which they report likelihood numbers. In other
words, the added noise term is clearly incorrect for the problem, but is needed to
make the maximum likelihood approach work.

1

ar
X

iv
:1

70
1.

07
87

5v
3

 [s
ta

t.M
L]

 6
 D

ec
 2

01
7

Wasserstein Training of

Restricted Boltzmann Machines

Grégoire Montavon

Technische Universität Berlin
gregoire.montavon@tu-berlin.de

Klaus-Robert Müller

⇤

Technische Universität Berlin
klaus-robert.mueller@tu-berlin.de

Marco Cuturi

CREST, ENSAE, Université Paris-Saclay
marco.cuturi@ensae.fr

Abstract

Boltzmann machines are able to learn highly complex, multimodal, structured
and multiscale real-world data distributions. Parameters of the model are usually
learned by minimizing the Kullback-Leibler (KL) divergence from training samples
to the learned model. We propose in this work a novel approach for Boltzmann
machine training which assumes that a meaningful metric between observations is
known. This metric between observations can then be used to define the Wasserstein
distance between the distribution induced by the Boltzmann machine on the one
hand, and that given by the training sample on the other hand. We derive a
gradient of that distance with respect to the model parameters. Minimization of this
new objective leads to generative models with different statistical properties. We
demonstrate their practical potential on data completion and denoising, for which
the metric between observations plays a crucial role.

1 Introduction

Boltzmann machines [1] are powerful generative models that can be used to approximate a large
class of real-world data distributions, such as handwritten characters [9], speech segments [7], or
multimodal data [16]. Boltzmann machines share similarities with neural networks in their capability
to extract features at multiple scales, and to build well-generalizing hierarchical data representations
[15, 13]. The restricted Boltzmann machine (RBM) is a special type of Boltzmann machine composed
of one layer of latent variables, and defining a probability distribution p✓(x) over a set of d binary
observed variables whose state is represented by the binary vector x 2 {0, 1}d, and with a parameter
vector ✓ to be learned.

Given an empirical probability distribution p̂(x) = 1
N

PN
n=1 �xn where (xn)n is a list of N observa-

tions in {0, 1}d, an RBM can be trained using information-theoretic divergences (see for example
[12]) by minimizing with respect to ✓ a divergence �(p̂, p✓) between the sample empirical measure p̂
and the modeled distribution p✓. When � is for instance the KL divergence, this approach results in
the well-known Maximum Likelihood Estimator (MLE), which yields gradients for the ✓ of the form

r✓KL(p̂ k p✓) = � 1

N

NX

n=1

r✓ log p✓(xn) = �⌦r✓ log p✓(x)
↵
p̂
, (1)

where the bracket notation h·ip indicates an expectation with respect to p. Alternative choices for �
are the Bhattacharrya/Hellinger and Euclidean distances between distributions, or more generally

⇤Also with the Department of Brain and Cognitive Engineering, Korea University.

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Inference in generative models using the Wasserstein distance

Espen Bernton, Mathieu Gerber, Pierre E. Jacob, Christian P. Robert

December 2016

Abstract

In purely generative models, one can simulate data given parameters but not necessarily evaluate the
likelihood. We use Wasserstein distances between empirical distributions of observed data and empirical
distributions of synthetic data drawn from such models to estimate their parameters. Previous interest
in the Wasserstein distance for statistical inference has been mainly theoretical, due to computational
limitations. Thanks to recent advances in numerical transport, the computation of these distances
has become feasible, up to controllable approximation errors. We leverage these advances to propose
point estimators and quasi-Bayesian distributions for parameter inference, first for independent data.
For dependent data, we extend the approach by using delay reconstruction techniques. We provide a
theoretical study of the proposed estimators, and adaptive Monte Carlo algorithms to approximate them.
The approach is illustrated on three examples: a quantile g-and-k distribution, a toggle switch model
from systems biology, and a Lotka-Volterra model for plankton population sizes.

1 Introduction
The likelihood function plays a central role in statistics, and arguably provides all the relevant information
for inference (Berger et al., 1988). However, for many models of interest, the likelihood cannot be evaluated,
often because it involves an intractable integral over latent variables. It might be possible to generate
synthetic data sets given parameters, in which case the model is said to be generative. This article is about
statistical inference for generative models.

Various approaches exist to perform inference for generative models. A popular approach consists in
replacing the likelihood by an approximation and aiming for either point estimators (Diggle and Gratton,
1984; Wood, 2010), or quasi-posterior distributions, leading to Approximate Bayesian Computation (ABC)
(Beaumont et al., 2002; Marin et al., 2012). Other approaches include indirect inference (Gouriéroux et al.,
1993) and the method of simulated moments (McFadden, 1989). A number of articles have studied the
justification for these methods, for instance Pakes and Pollard (1989) for simulated moments, Heggland
and Frigessi (2004) for indirect inference, Atchadé (2015); Frazier et al. (2016) for parameter inference
with ABC and Robert et al. (2011) for model choice with ABC. An interesting review and connections
between existing and new simulation-based methods can be found in Forneron and Ng (2015). These studies
emphasize the need to find appropriate summary statistics or auxiliary models when performing inference
for generative models. Meanwhile, departures from the likelihood approach have also been shown to have
statistical advantages, e.g. in terms of robustness to model misspecification (Grünwald, 2012; Müller, 2013;
Miller and Dunson, 2015). Besides, ABC corresponds to standard Bayesian inference on a di�erent model,
with added measurement error (Wilkinson, 2013).

1

Learning Generative Models with Sinkhorn Divergences

Aude Genevay Gabriel Peyré Marco Cuturi
CEREMADE,

Université Paris-Dauphine
CNRS and DMA,

École Normale Supérieure
ENSAE CREST

Université Paris-Saclay

Abstract

The ability to compare two degenerate proba-
bility distributions, that is two distributions
supported on low-dimensional manifolds in
much higher-dimensional spaces, is a crucial
factor in the estimation of generative mod-
els.It is therefore no surprise that optimal
transport (OT) metrics and their ability to
handle measures with non-overlapping sup-
ports have emerged as a promising tool. Yet,
training generative machines using OT raises
formidable computational and statistical chal-
lenges, because of (i) the computational bur-
den of evaluating OT losses, (ii) their instabil-
ity and lack of smoothness, (iii) the difficulty
to estimate them, as well as their gradients,
in high dimension. This paper presents the
first tractable method to train large scale gen-
erative models using an OT-based loss called
Sinkhorn loss which tackles these three issues
by relying on two key ideas: (a) entropic
smoothing, which turns the original OT loss
into a differentiable and more robust quantity
that can be computed using Sinkhorn fixed
point iterations; (b) algorithmic (automatic)
differentiation of these iterations with seam-
less GPU execution. Additionally, Entropic
smoothing generates a family of losses inter-
polating between Wasserstein (OT) and En-
ergy distance/Maximum Mean Discrepancy
(MMD) losses, thus allowing to find a sweet
spot leveraging the geometry of OT on the one
hand, and the favorable high-dimensional sam-
ple complexity of MMD, which comes with un-
biased gradient estimates. The resulting com-
putational architecture complements nicely
standard deep network generative models by

Preliminary work. Under review by AISTATS 2018. Do not

distribute.

a stack of extra layers implementing the loss
function.

1 Introduction

Several important statistical problems boil down to
fitting densities, i.e. estimating the parameters of a
chosen model that fits observed data in some mean-
ingful way. While the standard approach is maximum
likelihood estimation, this approach is often flawed in
machine learning tasks where the sought after distribu-
tion is obtained in a generative fashion, i.e. described
using a sampling mechanism (often a non-linear func-
tion mapping a low dimensional latent random vector
to a high dimensional space). Indeed, in these set-
tings, the density is singular in the sense that it only
has positive probability on a low-dimensional manifold
of the observation space and is zero elsewhere. To
remedy these issues, and in line with several recent
proposals [2, 26, 4, 1], we propose to shift away from
information divergence based methods (among which
the MLE) and consider instead the geometry of optimal
transport [35, 30] to define such a fitting criterion.

Previous works. For purely generative models, sev-
eral likelihood-free workarounds exist. Major ap-
proaches include variational autoencoders (VAE) [21],
generative adversarial networks (GAN) [15] and several
more variations including combinations of both [23].
The adversarial GAN approach is implicitly geometric
in the sense that it computes the best achievable classi-
fication accuracy (taking for granted the training and
generated datapoints have opposite labels) for a given
class of classifiers as a proxy for the distance between
two distributions: If accuracy is high distributions are
well separated, if accuracy is low they are difficult to
tell apart and lie thus at a very close distance.

Geometry was also explicitly considered when trying
to minimize a flexible metric between distributions:
the maximal mean discrepancy [16]. It was shown
in ensuing works that the effectiveness of the MMD
in that setting [25, 11] hinges on the ability to find

Improving GANs Using Optimal Transport

Tim Salimans⇤
OpenAI

tim@openai.com

Han Zhang⇤†
Rutgers University

han.zhang@cs.rutgers.edu

Alec Radford
OpenAI

alec@openai.com

Dimitris Metaxas
Rutgers University

dnm@cs.rutgers.edu

Abstract

We present Optimal Transport GAN (OT-GAN), a variant of generative adversarial
nets minimizing a new metric measuring the distance between the generator distri-
bution and the training data. This metric, which we call mini-batch energy distance,
combines optimal transport in primal form with an energy distance defined in an
adversarially learned feature space, resulting in a highly discriminative distance
function with unbiased mini-batch gradients and statistical consistency guarantees.
Experimentally we show OT-GAN to be highly stable when trained with large
mini-batches, and we present state-of-the-art results on several popular benchmark
problems for image generation.

1 Introduction

Generative modeling is a major sub-field of Machine Learning that studies the problem of how
to learn models that generate images, audio, video, text or other data. Applications of generative
models include image compression, generating speech from text, planning in reinforcement learning,
semi-supervised and unsupervised representation learning, and many others. Since generative models
can be trained on unlabeled data, which is almost endlessly available, they have enormous potential
in the development of artificial intelligence.

The central problem in generative modeling is how to train a generative model such that the distribution
of its generated data will match the distribution of the training data. Generative adversarial nets
(GANs) represent an advance in solving this problem, using a neural network discriminator or critic

to distinguish between generated data and training data. The critic defines a distance between the
model distribution and the data distribution which the generative model can optimize to produce data
that more closely resembles the training data.

A closely related approach to measuring the distance between the distributions of generated data
and training data is provided by optimal transport theory. By framing the problem as optimally
transporting one set of data points to another, it represents an alternative method of specifying a
metric over probability distributions and provides another objective for training generative models.
The dual problem of optimal transport is closely related to GANs, as discussed in the next section.
However, the primal formulation of optimal transport has the advantage that it allows for closed form
solutions and can thus more easily be used to define tractable training objectives that can be evaluated
in practice without making approximations. A complication in using primal form optimal transport is
that it may give biased gradients when used with mini-batches (see Bellemare et al., 2017) and may
therefore be inconsistent as a technique for statistical estimation.

⇤equal contribution
†work performed during an internship at OpenAI

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

MMD GAN: Towards Deeper Understanding of
Moment Matching Network

Chun-Liang Li1,⇤ Wei-Cheng Chang1,⇤ Yu Cheng2 Yiming Yang1 Barnabás Póczos1
1 Carnegie Mellon University, 2IBM Research

{chunlial,wchang2,yiming,bapoczos}@cs.cmu.edu chengyu@us.ibm.com

Abstract

Generative moment matching network (GMMN) is a deep generative model that
differs from Generative Adversarial Network (GAN) by replacing the discriminator
in GAN with a two-sample test based on kernel maximum mean discrepancy
(MMD). Although some theoretical guarantees of MMD have been studied, the
empirical performance of GMMN is still not as competitive as that of GAN on
challenging and large benchmark datasets. The computational efficiency of GMMN
is also less desirable in comparison with GAN, partially due to its requirement
for a rather large batch size during the training. In this paper, we propose to
improve both the model expressiveness of GMMN and its computational efficiency
by introducing adversarial kernel learning techniques, as the replacement of a
fixed Gaussian kernel in the original GMMN. The new approach combines the key
ideas in both GMMN and GAN, hence we name it MMD-GAN. The new distance
measure in MMD-GAN is a meaningful loss that enjoys the advantage of weak⇤
topology and can be optimized via gradient descent with relatively small batch
sizes. In our evaluation on multiple benchmark datasets, including MNIST, CIFAR-
10, CelebA and LSUN, the performance of MMD-GAN significantly outperforms
GMMN, and is competitive with other representative GAN works.

1 Introduction

The essence of unsupervised learning models the underlying distribution PX of the data X . Deep
generative model [1, 2] uses deep learning to approximate the distribution of complex datasets with
promising results. However, modeling arbitrary density is a statistically challenging task [3]. In many
applications, such as caption generation [4], accurate density estimation is not even necessary since
we are only interested in sampling from the approximated distribution.

Rather than estimating the density of PX , Generative Adversarial Network (GAN) [5] starts from a
base distribution PZ over Z , such as Gaussian distribution, then trains a transformation network g

✓

such that P
✓

⇡ PX , where P
✓

is the underlying distribution of g
✓

(z) and z ⇠ PZ . During the training,
GAN-based algorithms require an auxiliary network f

�

for estimating the distance between PX
and P

✓

. Different probabilistic (pseudo) metrics have been studied [5–8] under GAN framework.

Instead of training an auxiliary network f
�

for measuring the distance between PX and P
✓

, Generative
moment matching network (GMMN) [9, 10] uses kernel maximum mean discrepancy (MMD) [11],
which is the centerpiece of nonparametric two-sample test, to determine the distribution distances.
During the training, g

✓

is trained to pass the hypothesis test (minimize MMD distance). [11] shows
even the simple Gaussian kernel enjoys the strong theoretical guarantees (Theorem 1). However, the
empirical performance of GMMN does not meet its theoretical properties. There is no promising
empirical results comparable with GAN on challenging benchmarks [12, 13]. Computationally,

⇤Equal Contribution

ar
X

iv
:1

70
5.

08
58

4v
1

 [c
s.L

G
]

24
 M

ay
 2

01
7

Training generative neural networks via Maximum Mean Discrepancy
optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z

drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-

Optimal Transport in ML

34

Generative
Models
vs. data

h1

Color Histograms

h2

Bags
of features

d

p✓

p✓0

Statistical Models Brain Activation Maps

µ

latent
space

OT is establishing itself as a generic toolbox
to handle probability measures in ML tasks

35

Discrete - Continuous

Continuous - Continuous

Discrete - Discrete

OT Computations

35

Discrete - Continuous

Continuous - Continuous

Discrete - Discrete

Stochastic
Optimization

PDE

Network flow solvers
Auction algorithm
(Entropic) regularization

[Genevay’16]

low dim.
[Mérigot’11][Kitagawa’16][Levy’15]

[Benamou’98]

OT Computations

36

MXY

U(a, b)

P ?

O(n3
log(n))

min cost flow solver
used in practice.

Solving the OT Problem

36

MXY

U(a, b)

P ?

O(n3
log(n))

min cost flow solver
used in practice.

P ?Solution unstable
and not always unique.

Solving the OT Problem

36

MXY

U(a, b)

O(n3
log(n))

min cost flow solver
used in practice.

P ?Solution unstable
and not always unique.{P ?}

Solving the OT Problem

37

MXY

U(a, b)

O(n3
log(n))

min cost flow solver
used in practice.

{P ?}
P ?Solution unstable

and not always unique.

Solving the OT Problem

37

MXY

U(a, b)

O(n3
log(n))

min cost flow solver
used in practice.

P ?

P ?Solution unstable
and not always unique.

Solving the OT Problem

37

MXY

U(a, b)

O(n3
log(n))

min cost flow solver
used in practice.

P ?

P ?Solution unstable
and not always unique.

W p
p (µ,⌫) not di↵erentiable.

Solving the OT Problem

Discrete OT Problem

38

MXY

U(a, b)

P ?

Discrete OT Problem

38

MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver
used in practice.

Discrete OT Problem

38

MXY

U(a, b)

P ?

O(n3
log(n))

network flow solver
used in practice.

Solution: Regularization

39

MXY

U(a, b)

P ?

Wishlist:
faster & scalable, more stable,

robust, differentiable.

Entropic Regularization [Wilson’62]

40
Note: Unique optimal solution because of strong concavity of entropy

E(P)

def
= �

nmX

i,j=1

Pij(logPij � 1)

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P)

Entropic Regularization [Wilson’62]

40

EMD Entropy

Discrete analog: Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P)

Entropic Regularization [Wilson’62]

40

EMD Entropy

Discrete analog: Cuturi, NIPS 2013

�
µ

⌫

P�

Note: Unique optimal solution because of strong concavity of entropy

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P)

Entropic Regularization [Wilson’62]

40

EMD Entropy

Discrete analog: Cuturi, NIPS 2013

�
µ

⌫

P�

Def. Regularized Wasserstein, � � 0

W�(µ,⌫)
def
= min

P2U(a,b)
hP ,MXY i � �E(P)

“static” problem associated with Schrödinger problem

Fast & Scalable Algorithm

41

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

Fast & Scalable Algorithm

41

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

L(P,↵,�) =
X

ij

PijMij + �Pij(logPij � 1) + ↵T
(P1� a) + �T

(PT1� b)

@L/@Pij = Mij + � logPij + ↵i + �j

(@L/@Pij = 0))Pij = e
↵i

� e
�

Mij

� e
�j

�
= ui KKijvj

Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b

Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = bdiag(u)1n| {z }
u

Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = bdiag(u)1n| {z }
u

vz }| {
diag(v)1m

Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b

v

u

Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b

v

u

u �
v �

Fast & Scalable Algorithm

42

Prop. If P�
def
= argmin

P2U(a,b)
hP ,MXY i��E(P)

then 9!u 2 Rn
+,v 2 Rm

+ , such that

P� = diag(u)KKdiag(v), KK
def
= e�MXY /�

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b

v

u

u �
v �
u = a/KKv

v = b/KKTu

Fast & Scalable Algorithm

42

P� 2 U(a, b) ,
(
diag(u)KKdiag(v)1m = a

diag(v)KKTdiag(u)1n = b

v

u

u �
v �
u = a/KKv

v = b/KKTu

1.

2.

Sinkhorn’s Algorithm : Repeat

Fast & Scalable Algorithm

43

u = a/KKv

v = b/KKTu

1.

2.

Sinkhorn’s Algorithm : Repeat

• [Sinkhorn’64] proved convergence for the first time.

• [Lorenz’89] linear convergence, see [Altschuler’17]

• complexity, GPGPU parallel [Cuturi’13] .

• on gridded spaces using convolutions.

O(nm)

[Solomon’15]
O(n logn)

44

MXY

Sinkhorn in between W and MMD

P ?

U(a, b)

W p(µ,⌫) = hP ?,MXY i

µ =
nX

i=1

a
i

�
xi ⌫ =

mX

j=1

bj�yj

44

MXY

Sinkhorn in between W and MMD

P ?

U(a, b)

W p(µ,⌫) = hP ?,MXY i

W�(µ,⌫) = hP� ,MXY i P�

µ =
nX

i=1

a
i

�
xi ⌫ =

mX

j=1

bj�yj

44

MXY

Sinkhorn in between W and MMD

P ?

E(µ,⌫) = habT ,MXY i abT

U(a, b)

W p(µ,⌫) = hP ?,MXY i

W�(µ,⌫) = hP� ,MXY i P�

µ =
nX

i=1

a
i

�
xi ⌫ =

mX

j=1

bj�yj

44

MXY

Sinkhorn in between W and MMD

P ?

E(µ,⌫) = habT ,MXY i abT

U(a, b)

W p(µ,⌫) = hP ?,MXY i

W�(µ,⌫) = hP� ,MXY i P�

µ =
nX

i=1

a
i

�
xi ⌫ =

mX

j=1

bj�yj

� ! 1

� ! 0

45

Sinkhorn in between W and MMD
E(µ,⌫) = habT ,MXY i

W�(µ,⌫) = hP� ,MXY i

W̄�(µ,⌫) = W�(µ,⌫)�
1

2
(W�(µ,µ) +W�(⌫,⌫))

MMD(µ,⌫) = E(µ,⌫)� 1

2
(E(µ,µ) + E(⌫,⌫))

W p(µ,⌫) = hP ?,MXY i

46

Sinkhorn in between W and MMD

W̄�(µ,⌫) = W�(µ,⌫)�
1

2
(W�(µ,µ) +W�(⌫,⌫))

MMD(µ,⌫) = E(µ,⌫)� 1

2
(E(µ,µ) + E(⌫,⌫))

W p(µ,⌫) = hP ?,MXY i

� ! 0

� ! 1

SINKHORN DIVERGENCE

47

How to compare them?

Computational properties

Statistical properties

|�(µ,⌫)��(µ̂n, ⌫̂n)| f(n)?

µ̂
n

def
= 1

n

X

i

�
xi , ⌫̂m

def
= 1

m

X

j

�
yj

i.i.d samples x1, . . . , xn ⇠ µ, y1, . . . , ym ⇠ ⌫,

E↵ort to compute/approximate �(µ̂n, ⌫̂m)?

48

Sinkhorn in between W and MMD

MMD(µ,⌫) = E(µ,⌫)� 1

2
(E(µ,µ) + E(⌫,⌫))

(n+m)2 O(1/
p
n)

W p(µ,⌫) = hP ?,MXY i

O((n+m)nm log(n+m) O(1/n1/d)

48

Sinkhorn in between W and MMD

MMD(µ,⌫) = E(µ,⌫)� 1

2
(E(µ,µ) + E(⌫,⌫))

(n+m)2 O(1/
p
n)

W p(µ,⌫) = hP ?,MXY i

O((n+m)nm log(n+m) O(1/n1/d)

W̄�(µ,⌫) = W�(µ,⌫)�
1

2
(W�(µ,µ) +W�(⌫,⌫))

O((n+m)2) O
⇣

1
�d/2

p
n

⌘ [GCBCP’18]

[FSVATP’18]

49

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Differentiability of W

W ((a,X), (b, Y))

49

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Differentiability of W

W ((a + �a,X), (b, Y)) = W ((a,X), (b, Y))+??

49

(⌦,D)

µ =
nX

i=1

a
i

�
xi

⌫ =
mX

j=1

bj�yj

Differentiability of W

a a+�a

W ((a + �a,X), (b, Y)) = W ((a,X), (b, Y))+??

50

(⌦,D)

⌫ =
mX

j=1

bj�yj

µ =
nX

i=1

a
i

�
xi

Sinkhorn ⤑ Differentiability
W ((a,X + �X), (b, Y)) = W ((a,X), (b, Y))+??

50

(⌦,D)

⌫ =
mX

j=1

bj�yjX X +�X

µ =
nX

i=1

a
i

�
xi

Sinkhorn ⤑ Differentiability
W ((a,X + �X), (b, Y)) = W ((a,X), (b, Y))+??

51

Sinkhorn: A Programmer View

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

where PL
def
= diag(uL)KKdiag(vL),

v0 = 1m; l � 0,ul
def
= a/KKvl,vl+1

def
= b/KKTul.

52

Sinkhorn: A Programmer View

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

KK

` `+ 1

Sinkhorn

` = 1, . . . , L� 1

y1, . . . , ym

1m

x1, . . . , xn MXY

⇥KK ⇥KKT

uT
L(KK �MXY)vL

vl ul+1

a/·
vl+1

b/· WLa b

52

Sinkhorn: A Programmer View

Def. For L � 1, define

WL(µ,⌫)
def
= hPL,MXY i,

Prop.

@WL
@X , @WL

@a can be computed recur-

sively, in O(L) kernelKK⇥vector products.

[Hashimoto’16] [Bonneel’16][Shalit’16]

Primal Descent on Regularized W

53

Averaging 30 Measures

30 measures on R2.

50

min
a2⌃h⇥h

NX

i=1

�iW�(a, bi)

[Cuturi’14]

Primal Descent on Regularized W

53

Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

min
a2⌃h⇥h

NX

i=1

�iW�(a, bi)

[Cuturi’14]

Primal Descent on Regularized W

53

Averaging 30 Measures

30 measures on R2.

50

Euclidean Mean

51

2-Wasserstein

53

min
a2⌃h⇥h

NX

i=1

�iW�(a, bi)

[Cuturi’14]

On Regularizing or Not

54

Given optimal couplings X?
1 , · · · , X

?
N , the solution to

the WBP is equal to the marginal common to all those
couplings, namely p = X?

k1n for any k N . For
small N and n, this problem is tractable, but it can
be surprisingly ill-posed as we see next.

Indeed, it is also known that the 2-Wasserstein mean
of two univariate (continuous) Gaussian densities of
mean and standard deviation (µ1,�1) and (µ2,�2) re-
spectively is a Gaussian of mean (µ1+µ2)/2 and stan-
dard deviation (�1 + �2)/2 (Agueh & Carlier, 2011,
§6.3). This fact is illustrated in the top-left plot of Fig-
ure 1 where we display the average Wasserstein average
N (0, 5/8) of the two densities N (2, 1) and N (�2, 1/4).
That plot is obtained by using smoothed spline inter-
polations of a uniformly spaced grid of 100 values, as
can be better observed in the top-right (stair) plot,
where the discrete evaluations of these densities are
respectively denoted pW , q1 and q2.

Naturally, one would expect the barycenter of q1 and
q2 to be close, in some sense, to the discretized his-
togram pW of their true barycenter. Histogram p?,
displayed in the bottom-left plot, is the exact optimal
solution of Equation (18), computed with the simplex
method. That WBP reduces to a linear program of
2 ⇥ 1002 variables and 300 constraints. We observe
that W 2

2 (p
?, q1) + W 2

2 (p
?, q2) = 0.5833950 whereas

W 2
2 (pW , q1) +W 2

2 (pW , q2) = 0.5834070. The solution
obtained with the simplex has, indeed, a smaller objec-
tive than the discretized version of the true barycenter.

The bottom-right plot displays the solution of
the smoothed Wasserstein barycenter problem (with
smoothing parameter � = 1

100 and a ground cost M
that has been re-scaled to have a median value of 1).
The objective value for that smoothed approximation
is 0.5834597.

This numerical experiment does not contradict the
fact that the discretized barycenter p? converges to
the continuous barycenter as the grid size tends to
zero, as shown in (Carlier et al., 2014). This observa-
tion illustrates however that, because it is defined as
the argmin of a linear program, the true Wasserstein
barycenter may be extremely unstable. Regularization
the Wasserstein distances has thus the added benefit
of smoothing the resulting solution, which may have
in many applications a beneficial e↵ect.

3.6. Experiments

We describe first the two direct competitors of our
optimization framework, the smooth primal approach
of Cuturi & Doucet and the dual approach of Carlier
et al.. We compare them with our smooth dual ap-

−4 −2 0 2 4

0.02

0.04

0.06

N (2, 1)
N (−2, 1/4)
W = N (0, 5/8)

−4 −2 0 2 4

0.02

0.04

0.06

q1q2pW

−4 −2 0 2 4

0.02

0.04

0.06

q1q2pW
p⋆

−4 −2 0 2 4

0.02

0.04

0.06

q1
q2
pW
p⋆
γ

Figure 1. (top-left) two Gaussian densities and their
barycenter (top right) same densities, discretized (bottom
left) discretization of the true barycenter vs. the optimum
of Equation 18 (bottom right) barycenter computed with
our smoothing approach.

-4 -3 -2 -1 0 1 2 3 4 5
0

0.01

0.02

0.03

n = 200

q1
q2
pW
p⋆

-4 -3 -2 -1 0 1 2 3 4 5
0

0.01

0.02

n = 300

q1
q2
pW
p⋆

-4 -3 -2 -1 0 1 2 3 4 5
0

0.005

0.01

n = 500

q1
q2
pW
p⋆

Figure 2. Plots of the exact barycenters for varying grid
size n.

proach to compute the Wasserstein barycenter of 12
histograms laid out on the 100⇥100 grid, as displayed
in Figure 3.

Smooth primal first-order descent Cuturi &
Doucet (2014, §5) proposed to minimize directly Equa-
tion (11) with a regularizer � > 0. That objective can
be evaluated by running N Sinkhorn fixed-point iter-
ations in parallel. That objective is di↵erentiable and
its gradient is equal to �

P
k �k log↵k, where the ↵k

are the left scalings obtained with that subroutine. A
weakness of that approach is that a precision thresh-
old ✏ for the Sinkhorn fixed-point algorithm must be
chosen. That precision can be measured by the di↵er-
ence in l1 norm between the row and column marginals
of d(↵k)e�M/� d(�k) and targeted p and qk. Setting
that tolerance ✏ to a large value ensures a faster con-
vergence of the subroutine but noisy gradients and

55

Given optimal couplings X?
1 , · · · , X

?
N , the solution to

the WBP is equal to the marginal common to all those
couplings, namely p = X?

k1n for any k N . For
small N and n, this problem is tractable, but it can
be surprisingly ill-posed as we see next.

Indeed, it is also known that the 2-Wasserstein mean
of two univariate (continuous) Gaussian densities of
mean and standard deviation (µ1,�1) and (µ2,�2) re-
spectively is a Gaussian of mean (µ1+µ2)/2 and stan-
dard deviation (�1 + �2)/2 (Agueh & Carlier, 2011,
§6.3). This fact is illustrated in the top-left plot of Fig-
ure 1 where we display the average Wasserstein average
N (0, 5/8) of the two densities N (2, 1) and N (�2, 1/4).
That plot is obtained by using smoothed spline inter-
polations of a uniformly spaced grid of 100 values, as
can be better observed in the top-right (stair) plot,
where the discrete evaluations of these densities are
respectively denoted pW , q1 and q2.

Naturally, one would expect the barycenter of q1 and
q2 to be close, in some sense, to the discretized his-
togram pW of their true barycenter. Histogram p?,
displayed in the bottom-left plot, is the exact optimal
solution of Equation (18), computed with the simplex
method. That WBP reduces to a linear program of
2 ⇥ 1002 variables and 300 constraints. We observe
that W 2

2 (p
?, q1) + W 2

2 (p
?, q2) = 0.5833950 whereas

W 2
2 (pW , q1) +W 2

2 (pW , q2) = 0.5834070. The solution
obtained with the simplex has, indeed, a smaller objec-
tive than the discretized version of the true barycenter.

The bottom-right plot displays the solution of
the smoothed Wasserstein barycenter problem (with
smoothing parameter � = 1

100 and a ground cost M
that has been re-scaled to have a median value of 1).
The objective value for that smoothed approximation
is 0.5834597.

This numerical experiment does not contradict the
fact that the discretized barycenter p? converges to
the continuous barycenter as the grid size tends to
zero, as shown in (Carlier et al., 2014). This observa-
tion illustrates however that, because it is defined as
the argmin of a linear program, the true Wasserstein
barycenter may be extremely unstable. Regularization
the Wasserstein distances has thus the added benefit
of smoothing the resulting solution, which may have
in many applications a beneficial e↵ect.

3.6. Experiments

We describe first the two direct competitors of our
optimization framework, the smooth primal approach
of Cuturi & Doucet and the dual approach of Carlier
et al.. We compare them with our smooth dual ap-

−4 −2 0 2 4

0.02

0.04

0.06

N (2, 1)
N (−2, 1/4)
W = N (0, 5/8)

−4 −2 0 2 4

0.02

0.04

0.06

q1q2pW

−4 −2 0 2 4

0.02

0.04

0.06

q1q2pW
p⋆

−4 −2 0 2 4

0.02

0.04

0.06

q1
q2
pW
p⋆
γ

Figure 1. (top-left) two Gaussian densities and their
barycenter (top right) same densities, discretized (bottom
left) discretization of the true barycenter vs. the optimum
of Equation 18 (bottom right) barycenter computed with
our smoothing approach.

-4 -3 -2 -1 0 1 2 3 4 5
0

0.01

0.02

0.03

n = 200

q1
q2
pW
p⋆

-4 -3 -2 -1 0 1 2 3 4 5
0

0.01

0.02

n = 300

q1
q2
pW
p⋆

-4 -3 -2 -1 0 1 2 3 4 5
0

0.005

0.01

n = 500

q1
q2
pW
p⋆

Figure 2. Plots of the exact barycenters for varying grid
size n.

proach to compute the Wasserstein barycenter of 12
histograms laid out on the 100⇥100 grid, as displayed
in Figure 3.

Smooth primal first-order descent Cuturi &
Doucet (2014, §5) proposed to minimize directly Equa-
tion (11) with a regularizer � > 0. That objective can
be evaluated by running N Sinkhorn fixed-point iter-
ations in parallel. That objective is di↵erentiable and
its gradient is equal to �

P
k �k log↵k, where the ↵k

are the left scalings obtained with that subroutine. A
weakness of that approach is that a precision thresh-
old ✏ for the Sinkhorn fixed-point algorithm must be
chosen. That precision can be measured by the di↵er-
ence in l1 norm between the row and column marginals
of d(↵k)e�M/� d(�k) and targeted p and qk. Setting
that tolerance ✏ to a large value ensures a faster con-
vergence of the subroutine but noisy gradients and

True barycenter Barycenter using
regularized OT

On Regularizing or Not

56

On Regularizing or Not

" = 0.1 h

2

" = 2 h

2

multi-marginal

Figure 6: Barycenters in Wasserstein space over [0, 1]

2, computed on 256⇥256 grids for " = 0.1 h

2.
Left ‘barycentric triangle’ spanned by a ring, a diamond and a square (for weights see (5.5)).
Center Close-up of the � = (1, 2, 1)/4 barycenter, also shown for " = 2h

2 (as reported in [7]). The
" = 0.1 h

2 version is much sharper, revealing discretization artifacts. Right The same barycenter
on a 64 ⇥ 64 grid, computed via multi-marginal formulation.

Note that relative to the dualization (2.10a) ! (2.10b) we use rescaled dual variables [(↵

i

/�

i

,

�

i

/�

i

)]

i

. Primal and dual iterates are related by ⇡

i

= diag(exp(↵

i

/"))K diag(exp(�

i

/")). As
before, we introduce scaling factors [(u

i

, v

i

)]

i

, u

i

= exp(↵

i

/"), v

i

= exp(�

i

/") and optimize
(5.2b) by alternating optimization in ↵ and �, expressed by (u, v). Each ↵

i

can be optimized
independently and one gets a standard Sinkhorn update for every u

i

: u

(`+1)

i

def.
= µ

i

↵ (K v

(`)

i

).
Optimization in (�

i

)

i

is more involved. One finds v

(`+1)

i

def.
= �

(`+1) ↵ (K

>
u

(`+1)

i

) where �

(`+1)

=

Q
n

i=1

(K

>
u

(`+1)

i

)

�i is the geometric mean of all (K

>
u

(`+1)

i

)

i

, weighted by (�

i

)

i

. Note that the
prox and proxdiv steps of F

2

must be computed w.r.t. the weighted KL divergence

KL

�

((⌫

i

)

i

|(µ
i

)

i

) =

nX

i=1

�

i

KL(⌫

i

|µ
i

)

to account for the weights (�

i

)

i

in the third term of the dual functional.
These iterations can be stabilized, analogous to Sect. 3.1, where one splits each (u

i

, v

i

) into
pairs (ũ

i

, ṽ

i

) and (↵̂

i

,

ˆ

�

i

) and introduces one stabilized kernel K
i

per pair (↵̂

i

,

ˆ

�

i

). The stabilized
proxdiv step of F

2

w.r.t. KL

� is given by

proxdiv
"

F

2

((⌫

i

)

i

, (�

i

)

i

) =

�

⌫

i

where � = exp

nX

i=1

�

i

(log ⌫

i

� �

i

/")

!
. (5.4)

The terms �

i

/" in the expression for � are seemingly unstable in the limit " ! 0. However, the F

⇤
2

term in the dual (5.2b) enforces
P

n

i=0

�

i

�

i

= 0. Therefore, only the deviation from this constraint
enters the exponential in (5.4). When one gradually approaches the optimal solution during "-
scaling, this deviation can be kept numerically small. Likewise, adaptive truncation applies
to each kernel separately and a multi-scale coarse-to-fine approach can be used, as outlined in

38

[Schmitzer’16]

56

On Regularizing or Not

" = 0.1 h

2

" = 2 h

2

multi-marginal

Figure 6: Barycenters in Wasserstein space over [0, 1]

2, computed on 256⇥256 grids for " = 0.1 h

2.
Left ‘barycentric triangle’ spanned by a ring, a diamond and a square (for weights see (5.5)).
Center Close-up of the � = (1, 2, 1)/4 barycenter, also shown for " = 2h

2 (as reported in [7]). The
" = 0.1 h

2 version is much sharper, revealing discretization artifacts. Right The same barycenter
on a 64 ⇥ 64 grid, computed via multi-marginal formulation.

Note that relative to the dualization (2.10a) ! (2.10b) we use rescaled dual variables [(↵

i

/�

i

,

�

i

/�

i

)]

i

. Primal and dual iterates are related by ⇡

i

= diag(exp(↵

i

/"))K diag(exp(�

i

/")). As
before, we introduce scaling factors [(u

i

, v

i

)]

i

, u

i

= exp(↵

i

/"), v

i

= exp(�

i

/") and optimize
(5.2b) by alternating optimization in ↵ and �, expressed by (u, v). Each ↵

i

can be optimized
independently and one gets a standard Sinkhorn update for every u

i

: u

(`+1)

i

def.
= µ

i

↵ (K v

(`)

i

).
Optimization in (�

i

)

i

is more involved. One finds v

(`+1)

i

def.
= �

(`+1) ↵ (K

>
u

(`+1)

i

) where �

(`+1)

=

Q
n

i=1

(K

>
u

(`+1)

i

)

�i is the geometric mean of all (K

>
u

(`+1)

i

)

i

, weighted by (�

i

)

i

. Note that the
prox and proxdiv steps of F

2

must be computed w.r.t. the weighted KL divergence

KL

�

((⌫

i

)

i

|(µ
i

)

i

) =

nX

i=1

�

i

KL(⌫

i

|µ
i

)

to account for the weights (�

i

)

i

in the third term of the dual functional.
These iterations can be stabilized, analogous to Sect. 3.1, where one splits each (u

i

, v

i

) into
pairs (ũ

i

, ṽ

i

) and (↵̂

i

,

ˆ

�

i

) and introduces one stabilized kernel K
i

per pair (↵̂

i

,

ˆ

�

i

). The stabilized
proxdiv step of F

2

w.r.t. KL

� is given by

proxdiv
"

F

2

((⌫

i

)

i

, (�

i

)

i

) =

�

⌫

i

where � = exp

nX

i=1

�

i

(log ⌫

i

� �

i

/")

!
. (5.4)

The terms �

i

/" in the expression for � are seemingly unstable in the limit " ! 0. However, the F

⇤
2

term in the dual (5.2b) enforces
P

n

i=0

�

i

�

i

= 0. Therefore, only the deviation from this constraint
enters the exponential in (5.4). When one gradually approaches the optimal solution during "-
scaling, this deviation can be kept numerically small. Likewise, adaptive truncation applies
to each kernel separately and a multi-scale coarse-to-fine approach can be used, as outlined in

38

" = 0.1 h

2

" = 2 h

2

multi-marginal

Figure 6: Barycenters in Wasserstein space over [0, 1]

2, computed on 256⇥256 grids for " = 0.1 h

2.
Left ‘barycentric triangle’ spanned by a ring, a diamond and a square (for weights see (5.5)).
Center Close-up of the � = (1, 2, 1)/4 barycenter, also shown for " = 2h

2 (as reported in [7]). The
" = 0.1 h

2 version is much sharper, revealing discretization artifacts. Right The same barycenter
on a 64 ⇥ 64 grid, computed via multi-marginal formulation.

Note that relative to the dualization (2.10a) ! (2.10b) we use rescaled dual variables [(↵

i

/�

i

,

�

i

/�

i

)]

i

. Primal and dual iterates are related by ⇡

i

= diag(exp(↵

i

/"))K diag(exp(�

i

/")). As
before, we introduce scaling factors [(u

i

, v

i

)]

i

, u

i

= exp(↵

i

/"), v

i

= exp(�

i

/") and optimize
(5.2b) by alternating optimization in ↵ and �, expressed by (u, v). Each ↵

i

can be optimized
independently and one gets a standard Sinkhorn update for every u

i

: u

(`+1)

i

def.
= µ

i

↵ (K v

(`)

i

).
Optimization in (�

i

)

i

is more involved. One finds v

(`+1)

i

def.
= �

(`+1) ↵ (K

>
u

(`+1)

i

) where �

(`+1)

=

Q
n

i=1

(K

>
u

(`+1)

i

)

�i is the geometric mean of all (K

>
u

(`+1)

i

)

i

, weighted by (�

i

)

i

. Note that the
prox and proxdiv steps of F

2

must be computed w.r.t. the weighted KL divergence

KL

�

((⌫

i

)

i

|(µ
i

)

i

) =

nX

i=1

�

i

KL(⌫

i

|µ
i

)

to account for the weights (�

i

)

i

in the third term of the dual functional.
These iterations can be stabilized, analogous to Sect. 3.1, where one splits each (u

i

, v

i

) into
pairs (ũ

i

, ṽ

i

) and (↵̂

i

,

ˆ

�

i

) and introduces one stabilized kernel K
i

per pair (↵̂

i

,

ˆ

�

i

). The stabilized
proxdiv step of F

2

w.r.t. KL

� is given by

proxdiv
"

F

2

((⌫

i

)

i

, (�

i

)

i

) =

�

⌫

i

where � = exp

nX

i=1

�

i

(log ⌫

i

� �

i

/")

!
. (5.4)

The terms �

i

/" in the expression for � are seemingly unstable in the limit " ! 0. However, the F

⇤
2

term in the dual (5.2b) enforces
P

n

i=0

�

i

�

i

= 0. Therefore, only the deviation from this constraint
enters the exponential in (5.4). When one gradually approaches the optimal solution during "-
scaling, this deviation can be kept numerically small. Likewise, adaptive truncation applies
to each kernel separately and a multi-scale coarse-to-fine approach can be used, as outlined in

38

[Schmitzer’16]

57

−6 0 6
0

0.02

0.04

0.06

0.08

0.1

Data samples

b1
b2
b3

−6 0 6
0

0.02

0.04

0.06

0.08

0.1

Data samples

b98
b99
b100

Dictionary Learning

min
A2(⌃n)K ,⇤2(⌃K)N

PN
i=1 W

⇣
bi,

PK
k=1 ⇤

i
kak

⌘

[Sandler’11] [Zen’14] [Rolet’16]

57

−6 0 6
0

0.02

0.04

0.06

0.08

0.1

Data samples

b1
b2
b3

−6 0 6
0

0.02

0.04

0.06

0.08

0.1

Data samples

b98
b99
b100

a1

a2

a3

a1

a2

a3

Dictionary Learning

min
A2(⌃n)K ,⇤2(⌃K)N

PN
i=1 W

⇣
bi,

PK
k=1 ⇤

i
kak

⌘

[Sandler’11] [Zen’14] [Rolet’16]

OT Dictionary Learning

58

• [Hoffman’98] proposed to learn dictionaries
(topics) for text, seen as histograms-of-words.

• Vector embeddings for words [Mikolov’13]
[Pennington’14] defines geometry:

• Data: 7,034 Reuters, 737 BBC sports news articles

D(public, car) = kxpublic � xcark2

⌦ = {words}, |⌦| ⇡ 13, 000

59

Topic Models

[Rolet’16]

60

• consider Barycenter operator:

• address now Wasserstein inverse problems:

b(�)
def
= argmin

a

NX

i=1

�iW�(a, bi)

Given a, find argmin

�2⌃N

E(�) def= Loss(a, b(�))

Inverse Wasserstein Problems

61

Wasserstein Inverse Problems

Barycenters = Fixed Points

62

Prop. [BCCNP’15] Consider B 2 ⌃

N
d

and let U0 = 1d⇥N , and then for l � 0:

bl
def
= exp

�
log

�
KTUl

�
�
�
;

8
<

:
Vl+1

def
=

bl1T
N

KTUl
,

Ul+1
def
=

B
KVl+1

.

63

Using Truncated Barycenters

argmin

�2⌃N

E(L)
(�)

def
= Loss(a, b(L)

(�))

argmin

�2⌃N

E(�) def= Loss(a, b(�))

• instead of using the exact barycenter

• use instead the L-iterate barycenter

• Differente using the chain rule.

rE(L)
(�) = [@b(L)

]

T
(g), g

def
= rLoss(a, ·)|b(L)(�).

64

Gradient / Barycenter Computation

65

Application: Volume Reconstruction

[Bonneel’16]

66

Application: Color Grading

67

Application: Color Grading

68

Application: Color Grading

69

Application: Color Grading

Wasserstein Barycentric Coordinates: Histogram
Regression using Optimal Transport, SIGGRAPH’16 [BPC’16]

70

Application: Brain Mapping

Flickr database Input KL (23 min)
�2 = 1

TV (38 min)
�0,2,6 = (0.34, 0.23, 0.42)

Wasserstein (49 min)
�0,8 = (0.37, 0.63)

Quadratic (33min)
�2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[Pitié et al. 2007],
�0 = 1

[Pitié et al. 2007],
�2 = 1

[Pitié et al. 2007],
�4 = 1

[Pitié et al. 2007],
�6 = 1

[Pitié et al. 2007],
�8 = 1

Figure 8: Using the image search engine Flickr, we use the top 10 results for the query autumn (here, with Commercial use allowed and
sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 128

3 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Original Euclidean Wasserstein
projection projection

Figure 11: (left) Original MRI, followed by two 208⇥ 276⇥ 225

histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.

Shape database Input shape P (�) Iso-surface

Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
� = (0.62, 4.10�4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 256

3 and his-
tograms supported on the sphere such as BRDFs), our method is
limited by its memory requirements, and remains slow for databases
exceeding more than 10-20 dense histograms. Memory requirements
increase linearly with the number of iterations L, the number of in-
put histograms S, and the number of bins N . In practice, we used
between L = 50 and 100 iterations. A memory-free implementa-
tion would make the time complexity of the algorithm quadratic in
the number of iterations instead of linear. Regarding speed, for a
regression on a 10-histogram database typically converging within
10 L-BFGS iterations, each consisting of 100 fixed-point iterations,
both our multicore CPU C++ implementation and multi-GPU mat-
lab implementations perform about 40k convolutions. This ranges
from seconds for 1D and 2D histograms to minutes for small 3D
histograms (⇠ 64

3) or hours for denser 3D histograms with the C++
implementation. The latter computations only require a few min-
utes on four K-80 GPUs. We found that initial L-BFGS iterations
can be carried out using coarser gradient approximations, without
impacting convergence.

Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
by Wasserstein barycenters. For applications such as shape inference,
this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
ordinates are often very sparse. This sparsity might be attributed

70

Application: Brain Mapping

Flickr database Input KL (23 min)
�2 = 1

TV (38 min)
�0,2,6 = (0.34, 0.23, 0.42)

Wasserstein (49 min)
�0,8 = (0.37, 0.63)

Quadratic (33min)
�2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[Pitié et al. 2007],
�0 = 1

[Pitié et al. 2007],
�2 = 1

[Pitié et al. 2007],
�4 = 1

[Pitié et al. 2007],
�6 = 1

[Pitié et al. 2007],
�8 = 1

Figure 8: Using the image search engine Flickr, we use the top 10 results for the query autumn (here, with Commercial use allowed and
sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 128

3 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Original Euclidean Wasserstein
projection projection

Figure 11: (left) Original MRI, followed by two 208⇥ 276⇥ 225

histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.

Shape database Input shape P (�) Iso-surface

Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
� = (0.62, 4.10�4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 256

3 and his-
tograms supported on the sphere such as BRDFs), our method is
limited by its memory requirements, and remains slow for databases
exceeding more than 10-20 dense histograms. Memory requirements
increase linearly with the number of iterations L, the number of in-
put histograms S, and the number of bins N . In practice, we used
between L = 50 and 100 iterations. A memory-free implementa-
tion would make the time complexity of the algorithm quadratic in
the number of iterations instead of linear. Regarding speed, for a
regression on a 10-histogram database typically converging within
10 L-BFGS iterations, each consisting of 100 fixed-point iterations,
both our multicore CPU C++ implementation and multi-GPU mat-
lab implementations perform about 40k convolutions. This ranges
from seconds for 1D and 2D histograms to minutes for small 3D
histograms (⇠ 64

3) or hours for denser 3D histograms with the C++
implementation. The latter computations only require a few min-
utes on four K-80 GPUs. We found that initial L-BFGS iterations
can be carried out using coarser gradient approximations, without
impacting convergence.

Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
by Wasserstein barycenters. For applications such as shape inference,
this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
ordinates are often very sparse. This sparsity might be attributed

Flickr database Input KL (23 min)
�2 = 1

TV (38 min)
�0,2,6 = (0.34, 0.23, 0.42)

Wasserstein (49 min)
�0,8 = (0.37, 0.63)

Quadratic (33min)
�2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[Pitié et al. 2007],
�0 = 1

[Pitié et al. 2007],
�2 = 1

[Pitié et al. 2007],
�4 = 1

[Pitié et al. 2007],
�6 = 1

[Pitié et al. 2007],
�8 = 1

Figure 8: Using the image search engine Flickr, we use the top 10 results for the query autumn (here, with Commercial use allowed and
sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 128

3 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Original Euclidean Wasserstein
projection projection

Figure 11: (left) Original MRI, followed by two 208⇥ 276⇥ 225

histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.

Shape database Input shape P (�) Iso-surface

Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
� = (0.62, 4.10�4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 256

3 and his-
tograms supported on the sphere such as BRDFs), our method is
limited by its memory requirements, and remains slow for databases
exceeding more than 10-20 dense histograms. Memory requirements
increase linearly with the number of iterations L, the number of in-
put histograms S, and the number of bins N . In practice, we used
between L = 50 and 100 iterations. A memory-free implementa-
tion would make the time complexity of the algorithm quadratic in
the number of iterations instead of linear. Regarding speed, for a
regression on a 10-histogram database typically converging within
10 L-BFGS iterations, each consisting of 100 fixed-point iterations,
both our multicore CPU C++ implementation and multi-GPU mat-
lab implementations perform about 40k convolutions. This ranges
from seconds for 1D and 2D histograms to minutes for small 3D
histograms (⇠ 64

3) or hours for denser 3D histograms with the C++
implementation. The latter computations only require a few min-
utes on four K-80 GPUs. We found that initial L-BFGS iterations
can be carried out using coarser gradient approximations, without
impacting convergence.

Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
by Wasserstein barycenters. For applications such as shape inference,
this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
ordinates are often very sparse. This sparsity might be attributed

71

end-to-end W Dictionary Learning

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min
A2(⌃n)

K⇤2(⌃K)N

NX

i=1

L (bi,a(�i))

[Schmitz’18]

71

end-to-end W Dictionary Learning

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

min
A2(⌃n)

K⇤2(⌃K)N

NX

i=1

L (bi,a(�i))

[Schmitz’18]

72

Minimum Kantorovich Estimators

min
✓2⇥

W (⌫data, f✓]µ)

[Bassetti’06] 1st reference discussing this approach.

[Montavon’16] use regularized OT in a finite setting.
[Arjovsky’17] (WGAN) uses a NN to approximate dual
solutions and recover gradient w.r.t. parameter
[Bernton’17] (Wasserstein ABC)
[Genevay’17, Salimans’17] (Sinkhorn approach)

Challenge: r✓W (⌫data, f✓]µ)?

73

Proposal: Autodiff OT using Sinkhorn

[GPC’17]

C K

` `+ 1

SinkhornGenerative model ` = 1, . . . , L� 1

. . .

✓1
✓2

(c(xi, yj))i,j

. . .

I
n
p
u
t

d
a
t
a

(z
1
,.
..
,z

m
)

(x
1
,
.
.
.
,
x

m
)

(y
1
,.
..
,y

n
) 1m ÊL(✓)1/·

⇥mK>⇥nK

1/·

b`
a`+1

b`+1
.

h(C �K)bL, aLi
e�C/"

Approximate W loss by the transport cost

¯WL after L Sinkhorn iterations.

74

Example: MNIST, Learning f✓

75

Example: MNIST, Learning f✓

Latent 
space

[0, 1]2

76

Example: Generation of Images

arxiv.org/pdf/1710.05488 [Salimans’18]

77

Example: Generation of Images

arxiv.org/pdf/1710.05488 [Salimans’18]

78

Concluding Remarks

• Regularized OT is much faster than OT when
handled in full generality.

• Regularized OT can interpolate between W and
the MMD / Energy distance (MMD) metrics.

• The solution of regularized OT is “auto-
differentiable”.

• Many open problems remain in ML that can
be addressed with OT.

