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Introduction, I

Parkinson (2014a) considered the sea ice extent of both the Arctic and
the Antarctic regions for a 35-year period; by visualizing the time
series of yearly (and monthly) areas of global sea ice, a decreasing
trend of the global sea ice cover was observed.

Figure: Yearly global sea ice extent (1979-2013), where the dashed line shows an
ordinary-least-squares �t (from Figure 3, in Parkinson, 2014a).
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Introduction, II

Declining sea ice cover impacts the polar biogeochemical cycles (Meier
et al., 2014) and can cause climate change in other regions (e.g., Mori
et al., 2014; Cohen et al., 2014).

Moreover, the albedo-ice feedback e�ect may lead to further retreat of
the planet's ice cover (e.g., Screen et al., 2013; Pistone et al., 2014).

An analysis of ranks of the monthly Arctic/Antarctic sea ice extents
for di�erent years can be found in Parkinson and DiGirolamo (2016).
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Arctic sea ice cover, I

Arctic sea ice extent has drawn considerable attention in recent years, due
to the decreasing trend of ice cover in very high northern latitudes (e.g.,
Parkinson et al., 1999; Meier et al., 2007; Stroeve et al., 2007; Comiso
et al., 2008; Parkinson, 2014a).
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Figure: September Arctic sea ice extent for 1996 to 2015, where the dashed line
shows an ordinary-least-squares �t (Zhang and Cressie, 2017).
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Arctic sea ice cover, II

Parkinson (2014b) considered the length of the Arctic sea ice season
(number of days for an area to be covered by sea ice) and created spatial
maps that show the reduction of the Arctic sea ice cover.

Figure: The length of the Arctic sea ice season for 1979 and 2013 (from Figure 1
in Parkinson, 2014b).
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Spatio-temporal statistical models

The geophysics literature has given results based on purely spatial or
purely temporal data summaries, but generally lacking (proper)
uncertainty measures. Hence, it is desirable to develop spatio-temporal
statistical models for the Arctic sea ice data, from which defensible
statistical inferences can be carried out.

Descriptive spatio-temporal models: They describe spatio-temporal
correlations through a valid spatio-temporal covariance function. Past
and recent developments of descriptive spatio-temporal models mainly
focus on Gaussian models for very large datasets (e.g., Higdon, 2002;
Bevilacqua et al., 2012; Bai et al., 2012; Zhang et al., 2015; Datta
et al., 2016; Zammit-Mangion and Cressie, 2017).

Dynamic spatio-temporal models: They target the process' evolution,
often discretized over time and using an autoregressive relationship
(e.g., Wikle and Cressie, 1999; Wikle et al., 2001; Xu et al., 2005;
Cressie et al., 2010; Cressie and Wikle, 2011; Katzfuss and Cressie,
2011; Finley et al., 2012). This is our focus here.
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Arctic sea ice extent (SIE)

Arctic sea ice extent is de�ned as the total area of Arctic grid cells,
each of whose sea ice concentration is greater than or equal to a
cut-o� value (say 0.15; e.g., Parkinson et al., 1999; Parkinson, 2014a).

Figure: Binary sea ice cover data in September 1998; the region around the North
Pole is not represented in the database (http://nsidc.org/data/G02202).
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Spatial/spatio-temporal GLMs

The data used to calculate sea ice extent are spatio-temporal and
binary, equal to 1 if a grid cell is speci�ed to be covered with ice, and
equal to 0 otherwise.

For spatial non-Gaussian observations, the exponential family of
distributions and a spatial generalized linear model (GLM) within a
hierarchical modeling framework (proposed by Diggle et al., 1998) is
very �exible and has been applied to modeling large non-Gaussian
spatial datasets, including empirical hierarchical models (EHM; e.g.,
Sengupta and Cressie, 2013; Sengupta et al., 2016; Shi and Kang,
2017), and Bayesian hierarchical models (BHM; e.g., Bradley et al.,
2016; Guan and Haran, 2017; Bradley et al., 2017; Linero and Bradley,
2018, to name a few).

Spatio-temporal GLMs in a BHM are considered by Holan and Wikle
(2016); Bradley et al. (2018); Hu and Bradley (2018). This talk is
about a spatio-temporal GLM in an EHM.
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The computational challenge

When working in the purely spatial or the �descriptive"
spatio-temporal contexts, computational challenges can be
considerable, due to models that depend on large covariance matrices
of spatial or spatio-temporal datasets.
Fitting a spatial hierarchical GLM to very large spatial datasets has
computational challenges, since it usually involves evaluating the
likelihood of a latent high-dimensional Gaussian random vector.
In this talk, we focus on a low-rank linear mixed e�ects model (Wikle
et al., 2001; Cressie and Johannesson, 2006, 2008) to achieve
dimension-reduction for the latent random e�ects in a spatio-temporal
GLM, and then we model the evolution of the random e�ects with a
multivariate dynamic model (e.g., Wikle et al., 2001; Cressie et al.,
2010; Kang et al., 2010; Cressie and Wikle, 2011; Katzfuss and
Cressie, 2011; Bradley et al., 2018; Hu and Bradley, 2018).
Using a relatively small �xed number of basis functions makes
computations feasible for very large spatio-temporal datasets, whether
the hierarchical models are Bayesian (BHM) or empirical (EHM).
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Hierarchical spatio-temporal model, I

Let zt(s) denote a binary (1 ≡ ice; 0 ≡ no ice) spatio-temporal datum
observed at a spatial location s ∈ D, where D is the spatial domain of
interest, assumed here to be the same for all times t ∈ {1, 2, . . . ,T}.
As in Diggle et al. (1998), who considered spatial-only binary data, we
model the spatio-temporal binary data as conditionally independent
Bernoulli random variables, where the conditioning is on a latent
process, {yt(s) : s ∈ D, t = 1, . . . ,T}. That is, for s ∈ D,

zt(s)|yt(s)
ind.∼ Bernoulli(pt(s)), (1)

where yt(s) = g(pt(s)), and g(·) is a link function.

Here we choose the logit link, g(p) = log(p/(1− p)), and hence

yt(s) = log

(
pt(s)

1− pt(s)

)
and pt(s) =

exp(yt(s))

1 + exp(yt(s))
.
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Hierarchical spatio-temporal model, II

The latent process {yt(s)} is further modeled as a spatio-temporal
mixed e�ects model:

yt(s) = xt(s)
′βt + St(s)

′ηt + ξt(s), (2)

where

xt(s) is a p-dimensional covariate vector at location s ∈ D;
βt is a p-dimensional vector of regression coe�cients;

St(s) ∈ Rr is a basis-function vector evaluated at s ∈ D;
ηt is an r -dimensional mean-zero Gaussian random vector at time t;
{ξt(·)} is a Gaussian random process that is temporally independent
with mean zero, and has only local or no spatial dependence that
captures �ne-scale variation. Here we make the white-noise assumption
that cov(ξt(s), ξu(s′)) = σ2ξ,t I (u = t; s′ = s), where I (·) is an indicator
function;

{ηt} and {ξt(·)} are independent over both space and time.
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Dynamic temporal dependence

We use a lag-1 vector-autoregressive (VAR(1)) process to model the
spatio-temporal random e�ects, {ηt : t = 1, . . . ,T} (e.g., Cressie and
Wikle, 2011, Ch.7):

η1 ∼ N (0,K ), ηt |η1, . . . ,ηt−1 ∼ N (Htηt−1,Ut), for t = 2, . . . ,T ,

where we stack the random e�ects into η ≡ (η′1, . . . ,η
′
T )′.

Here, {Ht : t = 2, . . . ,T} and {Ut : t = 2, . . . ,T} are the r × r
propagator and r × r innovation matrices at time t, respectively. The
propagator matrix Ht captures the temporal cross-correlations of
random e�ects between time points t and t − 1.

We shall treat K , Ht and Ut as unknown parameters to be estimated
and assume that for the time period t = 2, . . . ,T , Ht ≡ H and
Ut ≡ U. This assumption can be weakened (as we do here) to the
case where Ht and Ut are constant within shorter time periods (e.g.,
as discussed in Katzfuss and Cressie, 2011; Zhang and Cressie, 2017).
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The data likelihood, I

We �rst introduce some notation: Let St ≡ {st,1, st,2, . . . , st,Nt} be
the observation locations at times t = 1, . . . ,T . For time t, let
Zt ≡ (zt(st,1), . . . , zt(st,Nt ))′ be the observation vector; we stack all
the space-time observations into Z ≡ (Z′1, . . . ,Z

′
T )′, which is a(∑T

t=1Nt

)
-dimensional vector.

Let ξt ≡ (ξt(st,1), . . . , ξt(st,Nt ))′ be the vector of the
�ne-scale-variation process evaluated at St . Once again, we stack
time-indexed vectors to yield ξ ≡ (ξ′1, . . . , ξ

′
T )′.

The likelihood L(θ;Z) is the marginal probability,∫
η

∫
ξ
p(Z|η, ξ,β1, . . . ,βT )× p(η|K ,H,U)×

T∏
t=1

p(ξt |σ2ξ,t)dξdη,

where θ ≡ {β1, . . . ,βT , σ
2
ξ,1, . . . , σ

2
ξ,T ,K ,H,U}.
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The data likelihood, II

Speci�cally, L(θ;Z)

=

∫
η

∫
ξ

T∏
t=1

Nt∏
i=1

(1 + exp(−(2zt,i − 1)yt,i ))−1 × |K |−1/2 exp(−η1
′K−1η1/2)

×(2π)−T ·r/2|U|−(T−1)/2
T∏
t=2

exp(−(ηt − Hηt−1)′U−1(ηt − Hηt−1)/2)

×
T∏
t=1

(2πσ2ξ,t)
−Nt/2 exp(−ξ′tξt/(2σ2ξ,t))dξdη, (3)

In (3), we abbreviate the notation: zt,i ≡ zt(st,i ) and yt,i ≡ yt(st,i ),
where recall that yt(st,i ) is given by (2).

The likelihood (3) does not have an analytical form, and hence we use
the EM algorithm (Dempster et al., 1977), iterated to convergence, to
obtain maximum likelihood estimates of the parameters θ.
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The complete log-likelihood

We treat the latent-random-e�ects vector η and the
�ne-scale-variation vector ξ as unobserved random variables.

The complete log-likelihood, `c(θ) ≡ log p(Z,η, ξ|θ), is:

−
T∑
t=1

Nt∑
i=1

log(1 + exp(−(2zt,i − 1)yt,i ))− 1

2
log |K | − 1

2
η′1K

−1η1

−1
2

T∑
t=2

(ηt − Hηt−1)′U−1(ηt − Hηt−1)− (T − 1)

2
log |U|

−Nt

2

T∑
t=1

log σ2ξ,t −
1

2

T∑
t=1

ξ′tξt
σ2ξ,t

+ c1, (4)

where c1 is a constant that does not depend on θ.
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The expectation step (E-step)

The expectation step (E-step) of the EM algorithm is with respect to
p(η, ξ|Z,θ). Suppose that we have completed the `-th iteration,
resulting in θ(`); then at the (`+ 1)-th iteration, the E-step is:

Q(θ;θ(`)) = −
T∑
t=1

Nt∑
i=1

E (log(1 + exp(−(2zt,i − 1)yt,i ))|Z,θ(`))

−1
2
tr{E (η1η

′
1|Z,θ(`))K−1} − 1

2
log |K | − (T − 1)

2
log |U|

−1
2

T∑
t=2

tr
{
E (ηtη

′
t |Z,θ(`))U−1 − E (ηtη

′
t−1|Z,θ(`))H ′U−1

−HE (ηt−1η
′
t |Z,θ(`))U−1 + HE (ηt−1η

′
t−1|Z,θ(`))H ′U−1

}
−1
2

T∑
t=1

tr{E (ξtξ
′
t |Z,θ(`))}/σ2ξ,t −

Nt

2

T∑
t=1

log σ2ξ,t + c2,

where c2 does not depend on θ.
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The Laplace approximation, I

Problem: p(η, ξ|Z,θ) cannot be expressed in closed form.

We resolve this by using a Laplace approximation (e.g., Sengupta and
Cressie, 2013; Sengupta et al., 2016), which requires the posterior
mode of p(η, ξ|Z,θ).

Suppose at the `-th iteration, we obtain θ(`); then the maximum of
p(η, ξ|Z,θ(`)) can be obtained equivalently by maximizing the
complete likelihood p(Z,η, ξ|θ(`)), with respect to η and ξ.

The Laplace approximation replaces the posterior distribution,
p(η, ξ|Z,θ(`)), with a multivariate Gaussian distribution whose mean
is given by the posterior mode of (η, ξ) and whose covariance matrix
is given by the inverse of the negative Hessian matrix (He) of the
posterior distribution evaluated at the mode.
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The Laplace approximation, II

By introducing some notation to form the quadratic term in η, we can
obtain closed-form expressions for the �rst-order and second-order
derivatives of p(Z,η, ξ|θ(`)) with respect to η and ξ.

The posterior mode of (η, ξ) can be obtained iteratively by running
the Fisher-scoring algorithm (e.g., Jennrich and Sampson, 1976) until
convergence.

Let He(η, ξ) denote the Hessian matrix for `c ≡ log p(Z,η, ξ|θ(`));
hence,

He(η, ξ) =

 ∂2`c
∂ηη′

∂2`c
∂η∂ξ′

∂2`c
∂ξ∂η′

∂2`c
∂ξξ′

 .

The conditional posterior (co)variances of (η′, ξ′)′ can be
approximated by −He(η̂, ξ̂)−1, where (η̂, ξ̂) is the posterior mode of
p(η, ξ|Z,θ(`)).
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The maximization step (M-step)

The maximization step (M-step) yields θ(`+1) = argmax
θ

Q(θ;θ(`)).

The closed-form solutions of K , {σ2ξ,t}, H, and U at this step are:

K (`+1) = E (η1η
′
1|Z,θ(`)),

(σ2ξ,t)
(`+1) =

1

N
tr(E (ξtξ

′
t |Z,θ(`))),

H(`+1) =

(
T∑
t=2

E (ηtη
′
t−1|Z,θ(`))

)(
T∑
t=2

E (ηt−1η
′
t−1|Z,θ(`))

)−1
,

U(`+1) =
1

T − 1

T∑
t=2

E
(

(ηt − H(`+1)ηt−1)(ηt − H(`+1)ηt−1)′|Z,θ(`)
)
.

The regression coe�cients, {βt , t = 1, . . . ,T}, cannot be expressed
in closed form, but they can be estimated using a one-step
Newton-Raphson update within the EM algorithm (Sengupta and
Cressie, 2013).
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The empirical predictive distribution of yt(s)

First iterate to convergence to obtain the EM estimates of the model
parameters, denoted by θ̂. Then substitute them into the predictive
distribution to yield the empirical predictive distribution, p(η, ξ|Z, θ̂).

Our approach is then to simulate from p(η, ξ|Z, θ̂) using Markov
chain Monte Carlo (MCMC), which in turn yields a predictive
distribution of {yt(s) : s ∈ D, t = 1, . . . ,T}; see below.
MCMC: Since the full conditional distributions, p(η|ξ,Z, θ̂) and
p(ξ|η,Z, θ̂), do not have a closed form, the �Metropolis-Hastings
within Gibbs sampler" MCMC (e.g., Gelfand and Smith, 1990; Gelman
et al., 2014) is used to obtain predictive samples from (η, ξ).

Predictive samples of {yt(s)} follow from (2), which is:

yt(s) = xt(s)
′βt + St(s)

′ηt + ξt(s).
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Speci�cation of basis functions

Temporal homogeneity during {1, . . . ,T} implies that the
basis-function vector S(·) ≡ (S1(·), . . . ,Sr (·))′ does not depend on t.

Here we focus on the compactly supported multi-resolution bisquare
functions: For j = 1, . . . , r , de�ne

Sj(s) ≡

(
1−

(
‖s− cj‖
φj

)2
)2

I (‖s− cj‖ < φj); s ∈ Rd , (5)

where cj is the center of the j-th basis function Sj(·), φj is the radius
of its spatial support, and I (·) is an indicator function.

The choice of {φj} determines the multiple resolutions, which are used
to capture di�erent dependence scales (e.g., Cressie and Johannesson,
2008; Nychka et al., 2015; Katzfuss, 2017); some basis functions with
centers outside the study domain are included to accommodate
boundary e�ects (Cressie and Kang, 2010).
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A simple example of basis-function centers
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Figure: A simple example showing centers of bisquare basis functions, where
circles and pluses are for Resolution-1 and Resolution-2 basis functions,
respectively. The spatial domain of interest D = [0, 1]× [0, 1] is outlined.
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Speci�cation of the propagator matrix H

We further parameterize the propagator matrix H to model
dependence for both within-resolution basis functions and
between-resolution basis functions.

For basis functions with r1 Resolution-1 basis functions and r2
Resolution-2 basis functions, we specify H as follows:

H ≡
(
ρ1Ir1 0
ρ3R ρ2Ir2

)
≡ ρ1

(
Ir1 0
ρ̃3R ρ̃2Ir2

)
, (6)

where ρ1 and ρ2 ≡ ρ1ρ̃2 ∈ (0, 1) model the within-resolution
autocorrelations for Resolution-1 and Resolution-2 basis functions,
respectively; ρ3 ≡ ρ1ρ̃3 ∈ (0, 1) models the between-resolution
autocorrelations of basis functions multiplied by an r2 × r1 matrix R ;
and R is sparse with non-zero entries equal to 1 if a �ner-resolution
basis function is a (spatial) neighbor of a coarser-resolution basis
function.

Cressie (UOW) SIE NIASRA2018 22 / 43



Application to Arctic sea ice cover data

Recall that the Arctic sea ice extent (SIE) is obtained as the sum of
the areas of grid cells whose sea ice concentration is greater than or
equal to 15% (e.g., Parkinson et al., 1999; Zwally et al., 2002; Meier
et al., 2007; Parkinson, 2014a).

Arctic sea ice cover datasets come from remote sensing of Arctic sea
ice concentrations, which are areal proportions of sea ice over spatial
grid cells in the Arctic.

Here we considered the National Oceanic and Atmospheric
Administration (NOAA)/National Snow & Ice Data Center's (NSIDC)
Climate Data Record (CDR) of passive microwave sea ice
concentrations (e.g., Peng et al., 2013; Meier et al., 2017).

There are 136, 192 observations (stored as a 304× 448 matrix) for
each daily or monthly dataset with the possibility of missing values
(e.g., around the North Pole), and each spatial grid cell has a nominal
area of 25km× 25km.
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Data description, I

Figure: Binary sea ice cover data in September 1998; the region around the North
Pole has no data. (The same �gure was shown earlier.)
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Data description, II

We focus on the spatio-temporal binary data used to obtain the SIE
for the month of September over the 20 years from 1996 to 2015,
inclusive. The month of September typically has the minimum Arctic
sea ice extent for the year (e.g., Parkinson, 2014a).

Our study domain D is de�ned by locations with latitudes greater than
or equal to 60◦N, which covers the Arctic region, ranging from the
south end of Greenland to the North Pole.

The spatial locations of the September data are the same for di�erent
years, resulting in a spatial binary dataset of 26, 342 observations for
each of the 20 years, for latitudes ≥ 60◦N.

We split the 20 years into four time periods: 1996− 2001,
2001− 2006, 2006− 2011, and 2011− 2015; then we applied the
proposed spatio-temporal model to data in each of these four time
periods, assuming that Ht ≡ H and Ut ≡ U in a given period, but
allowing them to be di�erent from one period to the next.
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Basis-function speci�cation

We used the multi-resolution bisquare basis functions given in (5),
where great-circle distance replaced Euclidean distance. We used two
resolutions with r1 = 45 Resolution-1 basis functions (centers are
shown as a blue circle) and r2 = 172 Resolution-2 basis functions
(centers are shown as a red plus).
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EM-estimation results, III

Table: EM estimates of the propagator-matrix parameters.

Period ρ1 ρ2 ρ3
1 0.53 0.40 0.06
2 0.36 0.43 0.03
3 0.59 0.48 0 (�xed)
4 0.48 0.52 0.05

We conclude that there is some variability in the within-resolution
correlations from period to period, and that the between-resolution
correlations of basis functions are negligible.
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The empirical predictive distributions

After obtaining the EM estimates of model parameters and MCMC
samples of (η, ξ), we can readily infer the empirical predictive
distribution of {yt(s)} from (2) (and equivalently of {pt(s)} using the
expit transformation, pt(s) = expit(yt(s)) ≡ eyt(s)/(1 + eyt(s))).

Recall that pt(s) is the probability that spatial pixel s is ice at time t,
and yt(s) is that probability on the logit scale.

Suppose that we have generated samples,

{y (`)t (s) : s ∈ D, t = 1, . . . ,T}, for ` = 1, . . . , L, from the predictive
distribution of {yt(·)}, using an MCMC algorithm. Then based on
those MCMC samples, the empirical predictive means and empirical
predictive standard errors of {yt(s)} (and {pt(s)}) can be readily
obtained.
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Predictive mean and standard error of yt(s)

(a) 1998 (Period 1): E(yt(s)|Z, θ̂) and (var(yt(s)|Z, θ̂))
1

2 (on the log scale).

(b) 2011 (Period 3): E(yt(s)|Z, θ̂) and (var(yt(s)|Z, θ̂))
1

2 (on the log scale).
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Predictive mean and standard error of pt(s)

Figure: Plots of the data and the predictive distribution of {pt(s)} for year 2011.
From left to right, the sea ice cover data, the predictive mean of p2011(·), and the
predictive standard error of p2011(·).

The latent process, pt(s) = exp(yt(s))/(1 + exp(yt(s))), contracts the
scale of spatial variability into an almost dichotomous spatial process.

Prediction uncertainties are particularly large for spatial locations
around the boundaries of the Arctic sea ice cover.
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Posterior summaries based on yt(s)

Recall that g(·) is the logit function and 0.15 is an often-used sea ice
concentration cut-o� value used to classify whether or not a spatial
grid cell is covered by ice. The following table can be used to infer the
joint ice-to-water, ice-to-ice, water-to-ice, and water-to-water
probabilities:

Table: Joint probabilities at t and t + 1 for �xed spatial locations.

HHH
HHHt
t+1

Water Ice

Ice
π11(s; t, t + 1) ≡ π12(s; t, t + 1) ≡

Pr(yt(s) ≥ g(0.15), yt+1(s) < g(0.15)|Z,θ) Pr(yt(s) ≥ g(0.15), yt+1(s) ≥ g(0.15)|Z,θ)

Water
π21(s; t, t + 1) ≡ π22(s; t, t + 1) ≡

Pr(yt(s) < g(0.15), yt+1(s) < g(0.15)|Z,θ) Pr(yt(s) < g(0.15), yt+1(s) ≥ g(0.15)|Z,θ)
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Visualization of joint probabilities

For each t, consider averaging the joint probabilities in the
ice-to-water joint-probability table, over all the spatial locations in D.
This is equal to the predictive mean of the proportion of grid cells in
the ice-to-water state.

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Proportions

ice-to-water

ice-to-ice

water-to-ice

water-to-water
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Ice-to-water joint probabilities

Recall that {y (`)t (s) : s ∈ D, t = 1, . . . ,T}, for ` = 1, . . . , L are
samples from the empirical predictive distribution of yt(s), using an
MCMC algorithm.
Let h({yt(·)}) be a functional to be predicted. Then its predictive
mean, E (h({yt(·)})|Z, θ̂), can be obtained empirically, through

averaging the samples {h({y (`)t (·)}) : ` = 1, . . . , L}. That is, the
predictive mean is approximately 1

L

∑L
`=1 h({y (`)t (·)}).

Put h({yt(·)}) = I (yt(s) ≥ g(0.15), yt+1(s) < g(0.15)); then from
the MCMC samples, π11 can be obtained (up to MCMC error) by

π11(s; t, t + 1) =
1

L

L∑
`=1

I (y
(`)
t (s) ≥ g(0.15))I (y

(`)
t+1(s) < g(0.15));

other predictive probabilities can be estimated analogously.
Each pixel s has a time series of predictive π11's, which we averaged
over s on the previous slide. This is di�erent from the time series of
the empirical proportions of ice-to-water pixels.
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The risk of transitioning to water from ice

The ice-to-water transition (IWT) probability at pixel s and time t + 1
is the conditional probability, πt+1|t(s) ≡ π11(s; t, t + 1)/π1·(s; t),
given pixel s is ice. Here,
π1·(s; t) ≡ π11(s; t, t + 1) + π12(s; t, t + 1) > 0.
Now take a weighted average to obtain the quantity, IWTt+1 ≡∑

i πt+1|t(si )π1·(si ; t)∑
i π1·(si ; t)

=

∑
i E (I (yt(si ) ≥ g(0.15), yt+1(si ) < g(0.15))|Z, θ̂)∑

i E (I (yt(si ) ≥ g(0.15))|Z, θ̂)
,

which can be obtained from MCMC samples.

1997 2001 2005 2009 2013

2

4

6

8
10 -5 Averaged ice-to-water transition probabilities
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Map of ice-to-water transition probabilities

(a) t = 1998; t + 1 = 1999 (b) t = 2011; t + 1 = 2012

Figure: The conditional probability map of πt+1|t(s) for t + 1 = 1999 and 2012.
The blue color indicates the water regions with π1·(s; t) = 0. High-risk areas are
indicated by a darker red. A more complete picture is obtained through a time
series of these maps, which we give as an animation.
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Animation for the transition-probability map

Figure: The conditional probability map of πt+1|t(s), from t + 1 = 1997 to
t + 1 = 2015. The blue color indicates the water regions with π1·(s; t) = 0.
High-risk areas are indicated by a darker red.
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Conclusions

We have proposed a hierarchical spatio-temporal generalized linear
model for analyzing binary sea ice cover datasets over time.

The spatio-temporal dependencies are modeled by a latent
spatio-temporal linear mixed-e�ects model, which achieves both
dimension-reduction for computational e�ciency and a �exible
nonstationary spatial �eld at di�erent time points.

We �smoothed" but did not �forecast" here: Based on the predictive
samples of {yt(·)}, several summaries are given that provide di�erent
perspectives on the changes over time of Arctic sea ice cover.

In particular, we considered a latent 2× 2 table based on the joint
empirical predictive distribution of yt(s) and yt+1(s) at two
consecutive time points, from which we visualized changes in the
ice-to-water state across years.

Knowing where changes occur over time is critical to understanding
changes in polar biogeochemical cycles and albedo-ice feedback.
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