
High-dimensional Bayesian Geostatistics (on
your laptop!)

Sudipto Banerjee
CIRM Nov 26-30, 2018

Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles



Based upon projects involving:

• Abhirup Datta (Johns Hopkins University)
• Lu Zhang (UCLA)
• Andrew O. Finley (Michigan State University)



Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover Forest fire history

• Forest height (red lines) data from LiDAR at 10× 106 locations
• Knowledge of forest height is important for biomass assessment,

carbon management etc
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Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover Forest fire history

• Goal: High-resolution domainwide prediction maps of forest height
• Covariates: Domainwide tree cover (grey) and forest fire history (red

patches) in the last 20 years
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Bayesian regression for BIG DATA

• Conjugate Bayesian hierarchical linear model:

yi |β, σ2 ind∼ N(x>i β, σ2) , i = 1, 2, . . . , n ;
β |σ2 ∼ N(µβ , σ2Vβ) ; σ2 ∼ IG(a, b) .

• Exact Bayesian inference:

σ2 | y ∼ IG(a∗, b∗) β |σ2, y ∼ N(Mm, σ2M) , where
m = V−1

β µβ + X>y , M−1 = V−1
β + X>X ,

a∗ = a + n/2 , b∗ = µ>β V−1
β µβ + y>y −m>M−1m .

• What if the data cannot be stored/loaded into available workspace?

• HADOOP: Map-Reduce framework (Divide & Conquer) with cloud
computing.
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Bayesian regression on HADOOP

• Partition data as {yk ,Xk}, k = 1, 2, . . . ,K , where each yk is nk × 1,
Xk is nk × p and N =

∑K
k=1 nk .

• For each subset compute:

mk = V−1
β + X>k yk and M−1

k = V−1
β + X>k Xk .

• Then

m =
K∑

k=1
(mk − (1− 1/K )µβ) and M−1 =

K∑
k=1

(M−1
k − (1− 1/K )V−1

β ) .

• Depends (crucially) on independence across subsets; not suitable for
spatial random fields.

• Meta-Kriging (GB, Technometrics, 2018+): find convex
combination of subset-posteriors closest to the full posterior.
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Geostatistical models (Cressie, 1993; Stein, 1999)

• yFH(`) = β0 + βtreextree(`) + βfirexfire(`) + w(`) + ε(`)

• w(`) ∼ GP(0,C(·, · |σ2, φ))

• yFH ∼ N(Xβ,Kθ) where Kθ is the spatial covariance matrix:

Kθ = C(σ,φ) + τ 2I , where θ = {σ, φ, τ}

where C(σ2,φ) is the GP covariance matrix derived from C(·, · |σ2, φ).
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High-dimensional outcomes: Jointly modeling LiDAR and sur-
vey data with factor models (TDFB Statistica Sinica, 2018+)

• y(`): Field observed (survey) data (multivariate outcomes);

• z(`): LiDAR signals (high-dimensional) vectors at each location `.

Stage 1: z(`) = Xz (`)>βz + Λzw(`) + εz (`)
Stage 2: y(`) = Xy (`)>βy + Λy w(`) + Γv(`) + εy (`) .

• w(·) and v(·) are spatial processes;

• Λz and Λy are loadings extracting “principal process components”;

• εz (·) and εy (·) are additional (perhaps white-noise) processes to
capture unstructured or micro-structured variation.

6



Likelihood from (full rank) GP models

• L = {`1, `2, . . . , `n} are locations where data is observed

• y(`i ) is outcome at the i th location, y = (y(`1), y(`2), . . . , y(`n))>

• Model: y ∼ N(Xβ,Kθ)

• Estimating process parameters from the likelihood:

−1
2 log det(Kθ)− 1

2 (y − Xβ)>K−1
θ (y − Xβ)

• Bayesian inference: Priors on {β, θ}

• Computing: (i) chol(Kθ) = LDL>, (ii) v = trsolve(L, y − Xβ),

−1
2

n∑
i=1

log dii −
1
2

n∑
i=1

v2
i /dii

• Challenges: Storage and chol(Kθ) = LDL>.
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Prediction and interpolation

• Conditional predictive density

p(y(`0) | y , θ, β) = N
(
y(`0)

∣∣µ(`0), σ2(`0)
)
.

• “Kriging” (spatial prediction/interpolation)

µ(`0) = E[y(`0) | y , θ] = x>(`0)β + k>θ (`0)K−1
θ (y − Xβ) ,

σ2(`0) = var[y(`0) | y , θ] = Kθ(`0, `0)− k>θ (`0)K−1
θ kθ(`0) .

• Bayesian “kriging” computes (simulates) posterior predictive density:

p(y(`0) | y) =
∫

p(y(`0) | y , θ, β)p(β, θ | y)dβdθ
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Bayesian low rank models (Wikle, HSS, 2010)

• Hierarchical Bayesian regression models are naturally low-rank:

y |β, z , θ, τ ∼ N(Xβ + Bθz ,Dτ ) ;
z | θ ∼ N(0,Vz,θ) ;

β |µβ ,Vβ ∼ N(0,Vβ) ;
θ, τ ∼ p(θ, τ) = p(θ)× p(τ) .

• Posterior distribution:

p(θ)× p(τ)× N(β |µβ ,Vβ)× N(z | 0,Vz,θ)× N(y |Xβ + Bθz ,Dτ ) .

• Bθz? Start with a parent process w(`) and construct w̃(`)

w(`) ≈ w̃(`) =
r∑

j=1
bθ(`, `∗j )z(`∗j ) = b>θ (`)z .

• Example: w̃(`) = E[w(`) |w∗] =
∑r

j=1 bθ(`, `∗j )w(`∗j )
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Implementing low-rank Bayesian models

• The ubiquituous Sherman-Woodbury-Morrison formulas (discovered
and rediscovered through the ages!)

• Computing var(y) in two different ways yields (Lindley & Smith,
JRSS-B, 1972)

(Dτ + BθVzB>θ )−1 = D−1
τ − D−1

τ Bθ(V−1
z + B>θ D−1

τ Bθ)−1B>θ D−1
τ .

• A companion formula for the determinant:

det(Dτ + BθVzB>θ ) = det(Vz ) det(Dτ ) det(V−1
z + B>θ D−1

τ Bθ) .

• For BIG DATA computations avoid directly computing the above
formulas; use optimized functions (Banerjee, Bayesian Anal., 2017):

L = chol(V ) and W = trsolve(T ,B) .

• Complexity: O(nr2 + r3) ≈ O(nr2).
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Oversmoothing in low rank models (Banerjee, 2017; BA)

True w Full GP PPGP 64 knots

Figure: Comparing full GP vs low-rank GP with 2500 locations. Figure (1c)
exhibits oversmoothing by a low-rank process (with r = 64)

• Can be explained: P[B1:B2] = PB1 + P[(I−PB1 )B2]
• Fixes and improvements: MRA (e.g., Katzfuss, JASA, 2016).
• Sparse approximations or sparsity-inducing processes.
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Sparse likelihood approximations (Vecchia, 1988)

• Let R = {`1, `2, . . . , `r}

• With w(`) ∼ GP(0,Kθ(·)), write the joint density p(wR) as:

N(wR | 0,Kθ) =
r∏

i=1
p(w(`i ) |wH(`i ))

≈
r∏

i=1
p(w(`i ) |wN(`i )) .

where N(`i ) ⊆ H(`i ).

• Shrinkage: Choose N(`) as the set of “m nearest-neighbors” among
H(`i ). Theory: “Screening” effect (Stein, 2002).
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Sparse likelihood approximations (Datta et al, 2016)

• Let R = {`1, `2, . . . , `r}

• With w(`) ∼ GP(0,Kθ(·)), write the joint density p(wR) as:

N(wR | 0,Kθ) =
r∏

i=1
p(w(`i ) |wH(`i ))

≈
r∏

i=1
p(w(`i ) |wN(`i ))

=N(wR | 0, K̃θ) .

where N(`i ) ⊆ H(`i ).

• K̃−1
θ is sparser with at most nm2 non-zero entries

• K̃θ is a Nearest-Neighbor (NN) approximation for Kθ.
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Gaussian graphical models: linearity

• Write a joint density p(w) = p(w1,w2, . . . ,wn) as:

p(w1)p(w2 |w1)p(w3 |w1,w2) · · · p(wn |w1,w2, . . . ,wn−1)

• For Gaussian distribution N(w | 0,Kθ), we have a sequence of linear
models

w1

w2

w3
...

wn

 =


0 0 0 . . . 0 0

a21 0 0 . . . 0 0
a31 a32 0 . . . 0 0

...
...

...
...

...
...

an1 an2 an3 . . . an,n−1 0




w1

w2

w3
...

wn

+


η1

η2

η3
...
ηn


=⇒ w = Aw + η; η ∼ N(0,D) .

• η = (I − A)w = Lw (L is the decorrelation transformation).

• aij = 0 introduces conditional independence and sparsity.
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Sparse precision matrices (e.g., graphical Gaussian models)

N(w | 0,Kθ) ≈ N(w | 0, K̃θ) ; K̃−1
θ = (I − A)>D−1(I − A)

I − A D−1 K̃−1
θ

• det(K̃−1
θ ) =

∏n
i=1 D−1

ii , K̃−1
θ is sparse with O(nm2) entries
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• Computing A and D

for(i in 1:(n-1) {

Pa = N[i+1] # neighbors of i+1

a[i+1,Pa] = solve(K[Pa,Pa], K[i+1, Pa])

d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1, Pa],a[i+1,Pa])

}

• We need to solve n − 1 linear systems of size at most m ×m.
Trivially parallelizable!

• Quadratic form:

qf(u,v,A,D) = u[1] ∗ v[1] / D[1,1]
for(i in 2:n) {

qf(u,v,A,D) = qf(u,v,A,D) + (u[i] - dot(A[i,N(i)], u[N(i)]))
∗(v[i] - dot(A[i,N(i)], v[N(i)]))/D[i,i]

}

• Determinant: det(K̃θ) =
∏n

i=1 d[i,i]
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Nearest-Neighbor GP (Datta et al., 2016)

• Fix “reference” set R = {`1, `2, . . . , `r} (e.g. observed points)

N(`i ) =


empty set for i = 1
{`1, `2, . . . , `i−1} for 2 ≤ i ≤ m
m nearest neighbors of `i among {`1, `2, . . . , `i−1} for i > m

• N(`i ) is the set of at most m nearest neighbors of `i among
{`1, `2, . . . , `i−1}.

• N(`) is the set of m-nearest neighbors of ` in R
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Nearest-Neighbor GP (Datta et al., 2016)

• This completes the consistent extension to a process w(`) ∼ GP:

p(wR,w(`) | θ) = N(wR | 0, K̃θ)× p(w(`) | {w(`i ) : `i ∈ N(`)}, θ) .

• For any `, `′ /∈ R, conditional indep: w(`) ⊥ w(`′) |wR

• Finite-dimensional realizations of w(`) (given R) will enjoy sparse
precision matrices

• Call this NNGP. In hierarchical models, substitute NNGP for GP and
achieve MASSIVE scalability.
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NNGP as BLUPs: Pourahmadi Biometrika, 1999; Stein et al.
JRSS B, 2004; Guinness Technometrics, 2018

• Let aij = 0 for all but m nearest neighbors of node i . Then,∑
j∈N[i]

aijwj = E[wi |w{j∈N[i]}] i = 2, . . . , n ,

where N[i ] = {j < i : j ∼ i} are indices for neighbors of i .

• wi is the “projection” onto a subset of {w1,w2, . . . ,wi−1}

• So any “optimality” of the resulting distribution will depend upon
the “order” of {w1,w2, . . . ,wi−1}.

• If N(1)[i ] ⊆ N(2)[i ] ⊆ · · · ⊆ N(m)[i ] for all i = 1, 2, . . . , n

KL(N(0,Kθ)||N(0, K̃ (1)
θ )) ≥ · · · ≥ KL(N(0,Kθ)||N(0, K̃ (m)

θ ))
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Effect of topological ordering (Guinness, Technometrics, 2018)

• Cholesky decompositions are not invariant to ordering

• Robust estimates and RMSPE:
Parameter True values Sorted by x + y MMD

Sill 1.41 0.74 (0.54, 1.15) 0.76 (0.52, 1.23)
Range 0.20 0.15 (0.11, 0.23) 0.15 (0.10, 0.25)

RMSPE 0.1565937 0.1565853

0.00
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0.15

0 10 20 30 40 50
divergence

de
ns

ity

ordering
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sorted_x
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Histogram of deviance with different ordering
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True w Full GP PPGP 64 knots

NNGP, m = 10 NNGP, m = 20
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NNGP models

• Collapsed (latent) NNGP:
• yFH (`) = β0 + βtreextree(`) + βfirexfire(`) + w(`) + ε(`)

• w(`) ∼ NNGP(0,C(·, · |σ2, φ))

• yFH ∼ N(Xβ, C̃ + τ 2I) where C̃ is the NNGP covariance matrix
derived from C

• Response NNGP:
• yFH (`) ∼ NNGP(β0 + βtreextree(`) + βfirexfire(`),Σ(·, · |σ2, φ, τ 2))

• yFH ∼ N(Xβ, Σ̃) where Σ̃ is the NNGP covariance matrix derived
from Σ = C + τ 2I

• Generalized-Vecchia (Katzfuss and Guinness, 2017).
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Conjugate Response NNGP (FDCMAB, JCGS, 2018+)

• Full GP covariance matrix: Kθ = σ2M, where M = R(φ) + δ2I
• If φ and δ2 are known, so are M and its NNGP approximation M̃
• Assume a Normal Inverse Gamma (NIG) prior for {β, σ2}
• {β, σ2} ∼ NIG(µβ ,Vβ , aσ, bσ), i.e.,

β |σ2 ∼ N(µβ , σ2Vβ) and σ2 ∼ IG(aσ, bσ) .

• The model becomes a conjugate Bayesian linear model:

p(β, σ2 | y) ∝ NIG(β, σ2 |µβ ,Vβ , aσ, bσ)× N(y |Xβ, σ2M̃)
= NIG(β, σ2 |µ∗β ,V ∗β , a∗σ, b∗σ)

• Exact posterior predictive distribution: y(`) | y ∼ t2a∗
σ

(m(`), b∗
σ

a∗
σ

v(`))
• Fully closed-form Bayesian inference; all computations in O(n) time.
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Response VS Latent Model

• Compare KL-divergence of response and latent NNGP models from
the full GP model

DKL(P||Q) =
∫

log dP
dQ dP .

• Theoretically: both NNGP models are “admissible”...
• ...but, in practice, the latent NNGP model tends to (not always!)

outperform the response NNGP:
(C + τ

2 I)−1 − (C̃ + τ
2 I)−1 = C−1 − C−1M−1C−1 − C̃−1 + C̃−1M∗−1C̃−1

= E − EM−1C̃−1 − C̃−1M−1E − C̃−1(M−1 − M∗−1)C̃−1︸ ︷︷ ︸
B

− EM−1E︸︷︷︸
O(E2)

• E is the error from Vecchia (or response NNGP) approximation of
full GP

• The leading matrix B tends to shrink the order of the approximation
further...

||B||F ≤ ||E ||F
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Conjugate latent NNGP models

[data | process]× [process | parameters]× [parameters] .

y(`i )
ind∼ N(x(`i )>β + w(`i ), σ2δ2) , i = 1, 2, . . . , n

w = {w(`i )} ∼ N(0, σ2M̃); {β, σ2} ∼ NIG(µβ ,Vβ , aσ, bσ)

Hierarchical linear model: 1
δ y

L−1
β µβ

0


︸ ︷︷ ︸

=

 1
δX 1

δ In
L−1
β O
O D− 1

2 (I − A)


︸ ︷︷ ︸

[
β

w

]
︸ ︷︷ ︸ +

 η1

η2

η3


︸ ︷︷ ︸

y∗ = X∗ γ + η

The posterior distribution of γ and σ2 is

p(γ, σ2 | y) ∝ IG(σ2 | a∗, b∗)× N(γ | γ̂, σ2(X>∗ X∗)−1)

Storage and computational complexity O(n(m + 1)2).
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Choosing δ2 and φ

• φ and δ2 are chosen using K -fold cross validation over a grid of
possible values

• Unlike MCMC, cross-validation can be completely parallelized
• Resolution of the grid for φ and δ2 can be decided based on

computing resources available
• In practice, a reasonably coarse grid often suffices
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Choosing δ2 and φ
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Figure: Simulation experiment: True value (+) of (δ2, φ) and estimated value
(◦) using 5-fold cross validation
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Alaska Tanana Valley dataset

Conjugate NNGP Collapsed NNGP Response NNGP
β0 2.51 2.41 (2.35, 2.47) 2.37 (2.31,2.42)
βTC 0.02 0.02 (0.02, 0.02) 0.02 (0.02, 0.02)
βFire 0.35 0.39 (0.34, 0.43) 0.43 (0.39, 0.48)
σ2 23.21 18.67 (18.50, 18.81) 17.29 (17.13, 17.41)
τ 2 1.21 1.56 (1.55, 1.56) 1.55 (1.54, 1.55)
φ 3.83 3.73 (3.70, 3.77) 4.15 (4.13, 4.19)

CRPS 0.84 0.86 0.86
RMSPE 1.71 1.73 1.72

time (hrs.) 0.002 319 38

Table: Parameter estimates and model comparison metrics for the Tanana
valley dataset

• Conjugate model produces estimates and model comparison
numbers very similar to the MCMC based NNGP models

• For 5× 106 locations, conjugate model takes 7 seconds
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Comparison of computing times for different NNGP algorithms
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Figure: (a) Run time required for one sampler iteration using n=5× 104 by
number of CPUs (y-axis is on the log scale). (b) Run time required for one
sampler iteration by number of locations.
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Concluding remarks

• Model-based solution for spatial “BIG DATA”

• Available in the spNNGP package in R

• Algorithms: Gibbs, RWM, HMC, VB or INLA; HMC is especially
promising on STAN.

• Multivariate Geostatistics: Conjugate NNGP models using
Matrix-variate Normal-IW family.

• Challenges: Nonstationary models; High-dimensional outcomes;
High-dimensional domains; Smoother process approximations.

30



Hamiltonian Monte Carlo Implementation of NNGP models

NNGP using Hamiltonian Monte Carlo
http://mc-stan.org/users/documentation/case-studies/nngp.html

• The Metropolis-Hastings algorithm: Sample from any target probability density,
e.g., posterior density p(θ | y) ∝ p(θ)× f (y | θ)

• Start with a initial value for θ = θ(0). Repeat for j = 1, 2, . . . ,M:
1. Propose θ∗ ∼ Q(· | θ(j−1)). For example, Q(· | θ(j−1)) = N(· | θ(j−1), ν).
2. Compute

A(θ∗ | θ(j−1)) = min
(

1,
p(θ∗ | y)Q(θ(j−1) | θ∗)

p(θ(j−1) | y)Q(θ∗ | θ(j−1))

)
3. Accept θ(j) = θ∗ with probability A(θ∗ | θ(j−1)).

• MH works because it leaves the target invariant (satisfies detailed balance):

p(θ | y)T (θ′ | θ) = p(θ′ | y)T (θ | θ′)

• Hamiltonian Monte Carlo: Use (discretized) Hamiltonian dynamics using
symplectic integrators to propose in MH.
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Thank You!
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