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Metropolis-Hastings algorithm

Consider the posterior distribution

π(θ|Y ) = π(θ |Y1, . . . ,YN) ∝ f (Y1, . . . ,YN | θ)π(θ)

Metropolis-Hastings, transitioning from θk → θk+1 :

1 draw θ̃ ∼ Q(θk , ·)
2 set θk+1 = θ̃ with probability

A(θk , θ̃) = 1 ∧ π(θ̃ |Y )Q(θ̃, θk)

π(θk |Y )Q(θk , θ̃)

and θk+1 = θk w.p. 1− A(θk , θ̃).

Is it possible to usefully employ MH without computing
π(θ̃ |Y1, . . . ,YN), to accept/reject θ̃ based on a subset
of n� N data ?
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Austerity in MCMC-Land

A. Korattikara, Y. Chen, M. Welling, Austerity in MCMC land : Cutting the Metropolis-Hastings
budget. ICML (2014).

In the i.i.d case f (Y1, . . . ,YN | θ) =
∏N

i=1 f (Yi | θ),

1
N

N∑
i=1

log

(
f (Yi |θ̃)

f (Yi |θk)

)
≥ s :=

1
N

log

[
U
π(θk)Q(θk , θ̃)

π(θ̃)Q(θ̃, θk)

]

Based on a random subsample of size n, test

H0 :
1
N

N∑
i=1

log

(
f (Yi |θ̃)

f (Yi |θk)

)
≥ s.

If the power of the test is not large enough :
increase n and start again.
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Theoretical analysis

R. Bardenet, A. Doucet, C. Holmes, Towards scaling up Markov chain Monte Carlo : an adaptive
subsampling approach. ICML (2014).

Designed an explicit test with probability of mistake ≤ δ.
Theoretical analysis :

Theorem (' BDH 2014)

Assume that the transition kernel P(·, ·) of the (regular) MH
algorithm is uniformly geometrically ergodic, that is

∃ρ < 1, ∀θ,
∥∥Pk(θ, ·)− π(·|Y )

∥∥
TV ≤ Cρk .

Then the kernel P̃(·, ·) of the subsampling MH satisfies

∀θ,
∥∥∥P̃k(θ, ·)− Pk(θ, ·)

∥∥∥
TV
≤ C̃δ.
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Generalization : Noisy MCMC

P. Alquier, N. Friel, R. G. Everitt & A. Boland. Noisy Monte-Carlo : Convergence of Markov
Chains with Approximate Transition Kernels. Statistics and Computing, 2016.

Noisy MCMC :
1 draw θ̃ ∼ Q(θk , ·)
2 set θk+1 = θ̃ with probability Â(θk , θ̃,X ).

Â(θ, θ′,X ) : approximation of the acceptance ratio
A(θ, θ′) that might be based on the drawing of an
auxiliary random variable X .
Define

δ(θ, θ′) = EX |Â(θ, θ′,X )− A(θ, θ′)|

δ = sup
θ

∫
Q(θ, dθ′)δ(θ, θ′).
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Theoretical study of Noisy MCMC

Theorem (AFEB 2016)

Assume that the transition kernel P(·, ·) of MH algorithm is
uniformly geometrically ergodic with (C , ρ). Then the kernel
P̃(·, ·) of noisy MCMC satisfies

∀θ,
∥∥∥P̃k(θ, ·)− Pk(θ, ·)

∥∥∥
TV
≤ C̃δ.

Finally,

D. Rudolf, N. Schweizer. Perturbation theory for Markov chains via Wasserstein distance.
Bernoulli, 2018.

extended considerably the generality of the results :
(non-uniformly) geometrically erdogic Markov chains.
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A problem with the “austerity” approach

remind that in order to reach a proba. of mistake ≤ δ,
one might have to increase the size of the subsample n,
depending on the values of θk and θ̃.

Bardenet, Doucet & Holmes actually show that in the
stationary regime, one has

n ∝ N

for some constant N .
But one would like n� N .
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Firefly MCMC

D., Maclaurin, R., Adams. Firefly Monte Carlo : Exact MCMC with Subsets of Data. IJCAI, 2014.

Aux. variables Zi =

{
1 if Yi included in the subsample,
0 otherwise.

Adapting acceptance ratio → exact sampling, but one has to
know an easily computable lower-bound 0 < Bi(θ) < f (Yi |θ).

If the lower-bound B is not tight, one ends up with

n =
N∑
i=1

Zi ' N .
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Subposteriors

Definition
Let YU be a subset of Y1:N of size n, we define the “scaled
subposteriors” π̄n by

π̄n(θ |YU) ∝ f (YU | θ)
N
n π(θ) =

[∏
i∈U

f (Yi |θ)

]N
n

π(θ)
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Motivating example : exponential family

Assume that f belongs to the exponential family

f (y | θ) ∝ ψ(θ) exp{φ(θ)TS(y)} .

Definition
For any U ∈ Un, the set of all possible subset of {1, . . . ,N} of
size n, define the vector of sufficient statistics between the
whole dataset and the sub-sample YU as :

∆n(U) =
N∑

k=1

S(yk)− N

n

∑
k∈U

S(yk).
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Exponential family : an optimality result

Proposition
For any U ∈ Un, the following inequality holds :

KL(π(·|Y ), π̄n(·|YU)) ≤ B(Y ,U) , where

B(Y ,U) = ‖∆n(U)‖ logEπ exp
{
‖φ(θ)− Eπ(φ(θ))‖

}
.

As a consequence,
1 If there is a “perfect” U , that is

1
N

N∑
k=1

S(yk) =
1
n

∑
k∈U

S(yk),

then π̄n(·|YU) = π(·|Y ).

2 ‖∆n(U1)‖ ≤ ‖∆n(U2)‖ ⇒ B(Y ,U1) ≤ B(Y ,U2).
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Toy example : Bernoulli model

Simulate N = 10, 000 observations Y1, . . . ,YN ∼ Be(p). Then

π(θ |Y ) ∝ π(θ)(1− p)
∑N

k=1 YkpN−
∑N

k=1 Yk

π̄n(θ |YU) ∝ π(θ)(1− p)
N
n

∑
k∈U YkpN−

N
n

∑
k∈U Yk

Here the sufficient statistics difference is

|∆n(U)| =

∣∣∣∣∣
N∑

k=1

Yk −
N

n

∑
k∈U

Yk

∣∣∣∣∣ .
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Bernoulli model, n = 100

0.6 0.7 0.8 0.9 1 1.1 1.2
0
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π̃n , ‖∆n(U)‖ = 44

π̃n , ‖∆n(U)‖ = 56

π̃n , ‖∆n(U)‖ = 256

π̃n , ‖∆n(U)‖ = 644
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Bernoulli model, n = 1000

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0
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π̃n , ‖∆n(U)‖ = 4

π̃n , ‖∆n(U)‖ = 14

π̃n , ‖∆n(U)‖ = 26
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From sufficient statistics to summary statistics
We no longer assume that we are in an exponential model, nor
i.i.d.

Let S be a mapping of summary statistics.
∆n(U) = S(Y1, . . . ,YN)− N

n
S(YU).

For each U ∈ Un, a weight νn,ε(U) is assigned to the subset of
data YU

νn,ε(U) ∝ exp
{
−ε‖∆n(U)‖2

}
.

ε→ 0 : all the subsets have the same weight.
ε→∞ : the mass is concentrated on the most
representative subset.
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ISS-MCMC

Based on the analysis of exponential models, we propose
ISS-MCMC (for Informed Sub-Sampling). It produces a chain
{θk ,Uk}k . A single iteration of this algorithm is as follows :

1 Update the subset :
1 propose U ′ ∼ R(Uk , ·)
2 set Uk+1 with probability

1 ∧ exp {ε (‖∆n(Uk)‖ − ‖∆n(U ′)‖)}
2 Update the parameter :

1 propose θ′ ∼ Q(θk , ·)
2 set θk+1 = θ′ with probability

1 ∧
f (θ′ |YUk+1)π(θ′)Q(θ′, θk)

f (θk |YUk+1)π(θk)Q(θk , θ′)
.
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Assumptions for the analysis of ISS-MCMC

By construction, ISS-MCMC samples a Markov chain on an
extended state space {(θi ,Ui), i ∈ N}. Here we study the
distribution of the marginal chain (θi).

Some assumptions :
1 We assume that the MH transition kernel K targetting π

is either uniformly ergodic or geometrically ergodic.
2 The subsets U1,U2, . . . are independent and identically

distributed under νn,ε.
3 There exists a constant γn <∞, such that for all

(θ,U) ∈ Θ× Un

|log f (Y | θ)− (N/n) log f (YU | θ)| ≤ γnN‖S(Y )−S(YU)‖ .
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Theoretical analysis of ISS-MCMC

Theorem 1
When the chain produced by the (regular) Metropolis-Hastings
algorithm is geometrically ergodic, then so is (θ̃i).
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Theoretical analysis of ISS-MCMC

Theorem 2
When the chain produced by MH is uniformly ergodic, then so
is (θ̃i), and its asymptotic distribution π̃n,ε satisfies, for some
κ > 0,

‖π̃n,ε − π(·|Y )‖TV ≤ κδn,ε

where δn,ε is provided by the Noisy-MCMC analysis :

δn,ε = sup
θ

∫
EU∼νn,ε

∣∣∣∣1− ΦU(θ′)

ΦU(θ)

∣∣∣∣Q(θ, dθ′),

where ΦU(θ) =
f (Y |θ)

f (YU |θ)
N
n

.
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Choice of summary statistics

1 Clearly, this approach was initially motivated by the ABC
method

2 Ideally the choice of S should guarantee that subsamples
YU having a very small likelihood f (YU | θ) are assigned
to a weight νn,ε(U) ≈ 0 to limit their contribution. In
other words, S should be specified in a way that prevents
f (YU | θ) to go to 0 faster than νn,ε(U). This is ensured if
Assumption 3 holds.

3 In situations where the maximum likelihood estimator
θ∗(Y1:n) is easy and quick to evaluate numerically, we
recommend setting S(Y1:n) = θ∗(Y1:n). In the case of
independent observations, setting the summary statistics
as the maximum likelihood estimate is justified since it is
possible to prove that this implies that Assumption 3
holds.
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Implementing ISS-MCMC

Subset size n : This choice is essentially related to the
computational budget available to the user. In the
following examples we have used n ∝ N1/2 which achieves
a substantial computational gain at a price of a negligible
asymptotic bias.

Bandwidth parameter ε : In practice, ε needs to be very
large and could potentially cause the algorithm to get
stuck in a very small number of subsets. To avoid such a
situation, we suggest monitoring the refresh rate of
subsamples that should occur with probability of at least
1%.

Pierre Alquier Informed Subsampling MCMC



Example 1 : estimation of template shapes
Data are of handwritten digits (MNIST database)

Figure – example of data

The dataset contains N = 10, 000 images of size 16x16
Each image belongs to a class Ik ∈ {1, . . . , 5} assumed to
be known
The model can be written as :

Ik = i , Yk = φ(θi) + σ2εk , εk ∼ N (0, 1) .
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Example 1 : estimation of template shapes

n = 100 digits, ε = 105 and S(U) = (S1(U), . . . , S5(U))
with Si(U) =

∑
k∈U Ik

τMH = 41.2 secs and τISS-MCMC = 0.7 secs (60 × faster)

time M–H ISS–MCMC
3 mins

15 mins

30 mins

60 mins
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Example 1 : estimation of template shapes
Consider the metric d(t) =

∑5
i=1

∥∥∥θ∗i − 1
L(t)

∑L(t)
`=1 θi ,`

∥∥∥ ,
where :

L(t) is the number of iterations completed at time t
θ∗i is the map of model i (estimated from stochastic EM)
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Example 1 : estimation of template shapes
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Figure – Comparing the true and approximate marginal distribution
of one parameter of θ1 (left) and one parameter of θ5 (right).
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Example 2 : Auto regressive model

An AR(2) model, parameterized by θ = (θ1 θ2, θ3)

yt = θ1yt−1 + θ2yt−2 + ζt , ζt ∼ N (0, θ2
3) .

An AR(2) time-series was simulated with N = 106

observations.
Approximate inference with n ∈ {102, 103}.
Summary statistics : auto-correlation function, or θ
estimated by Yule-Walker ?
Different ε were used.

Note : Sampling from π( · | y) via MH was a laborious task !
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Example 2 : Auto regressive model

Case where S is defined as the estimated ACF (first 5
coefficients).
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‖S̄(Y )− S̄(YU )‖

lo
g
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(Y

|θ
)
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(N
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)
lo
g
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(Y

U
|θ
)
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Informed Subsampling chains

Here S is not useful, φU(θ) is unstable yielding poor
approximate posterior inference.
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Example 2 : Auto regressive model

Second case is where S is defined as the Yule Walker coefs.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−6

−4

−2

0

2

4

6
x 10

4

‖S̄(Y )− S̄(YU )‖

lo
g
f
(Y

|θ
)
−
(N

/n
)
lo
g
f
(Y

U
|θ
)

⇒ S is appropriate since the log ratio does not grow faster
than linearly in ‖S(Y )− (N/n)S(YU)‖.
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Example 2 : Auto regressive model
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Marginal distribution of θ3 for 4 independent ISS-MCMC.
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Example 2 : Auto regressive model
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Conclusions

Our Informed Subsampling MCMC scheme :

Allows one to control deterministically the MH transition
complexity.

Subsamples according to their fidelity to this full dataset,
through summary statistics.

Allows to control only asymptotically the distance
between the chain distribution and the true posterior.
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A recent paper

M. Quiroz, R. Kohn, M. Villani, M. Tran,. Speeding up MCMC by efficient data subsampling.
JASA, to appear.

Pushed further the analysis of subsampling in
Metropolis-Hastings with explicit rates. However, as far as I
understand, the analysis only covers the ε = 0 case.

The website of the conference says that one of the authors
should be here. I’d be happy to talk with you !
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A word on Lanvegin-Monte-Carlo

Langevin-Monte Carlo approach can also be approximated by
subsampling.

M. Welling, Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. ICML, 2011.

However, one has now two levels of approximation :
discretization + subsampling. See the nice analysis

A. Dalalyan. Further and stronger analogy between sampling and optimization : Langevin Monte
Carlo and gradient descent. COLT, 2017.

(requires strong assumptions on the distribution though).
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A word on variational approximations
When one wants to get really faster, replacing sampling by
optimization (Variational Bayes or EP) becomes unavoidable.
Stochastic optimization then allows subsampling :

T. Broderick, N. Boyd, A. Wibisono, A. Wilson, M. Jordan. Streaming variational Bayes. NIPS,
2013.

M. Khan, D. Nielsen. Fast yet Simple Natural-Gradient Descent for Variational Inference in
Complex Models. ISITA, 2018.

The approximate posteriors were recently proven to be
consistent (despite a possible deformation)

P. Alquier, J. Ridgway, N. Chopin. On the properties of variational approximations of Gibbs
posteriors. Journal of Machine Learning Research, 2016.

P. Alquier, J. Ridgway. Concentration of tempered posteriors and of their variational
approximations. preprint arXiv, 2017.

B.-E. Chérief-Abdellatif, P. Alquier. Consistency of Variational Bayes Inference for Estimation and
Model Selection in Mixtures Electronic Journal of Statistics, 2018.

B.-E. Chérief-Abdellatif. Consistency of ELBO maximization for model selection. AABI, 2018.
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Thank you !
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