The group of disjoint 2-spheres in 4-space Luminy, February 12, 2018 Peter Teichner, MPIM Bonn joint work will Rob Schneiderman

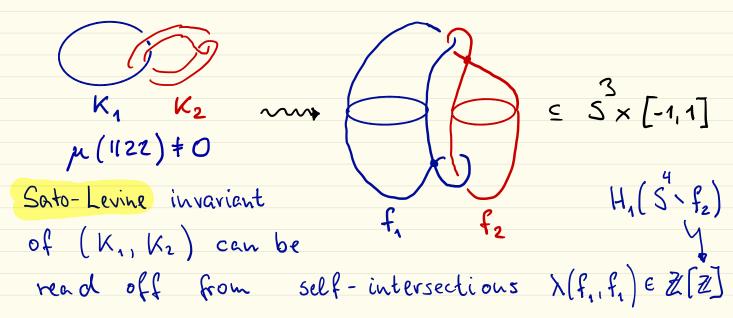
Brief history of 2-knots & - links E. Artin, 1925 : Span 2-knots $\subseteq \mathbb{R} \subseteq S$ S_K) K rotale in R4 $\pi_1(\mathbb{R}^4, S_K^2) \cong \pi_1(\mathbb{R}^3 \setminus K)$ so 2-knots are more complicated than 1-knots!

Andrews - Curtis, Annals 1959: $0 \neq S_{L_0} \in \pi_2(S^4 S_K)$ 4 SISK) Lo D Note : a 2-unknot, so $\pi(S_1S_1) = 0$ Sis But: trefoil into Lo symmetrically Tying gives L with SK # O E TT2 (S4 ~ SL).

It's not hard to see that (SK, SL) is link homotopic to the unlick in the following sense (c.f. J. Milnor 1950's): There is a homotopy through link maps $f: X \to Y$, $\pi(X) \hookrightarrow \pi(im(f))$

Massey - Rolfsen, 1982, asked whether any 2- link is homotopically trivial? Thm.: [A. Bartels & P.T., 1999] For u≥2, any link SH. IS ~> St is link how trivial. Proof via stratified Morse & surgery theory, homology of nilpotent groups ...

Fenn-Rolfsen, 1986 : LH212 + O, i.e. there is an essential link map $(f_1, f_2): S^2 \perp S^2 \longrightarrow S^4$, a "suspension" of the Whitehead link in S^3 ;

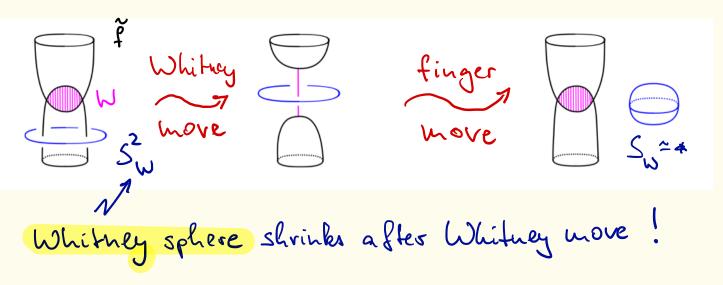


Linked 'embeddings' in dimensions 3 and 4:

$$\begin{pmatrix}
(K_{A}, K_{2}): S \perp S \hookrightarrow S \\
. K_{i} are unknots \\
. Lk(K_{A}, K_{2}) = 0
\end{pmatrix}$$

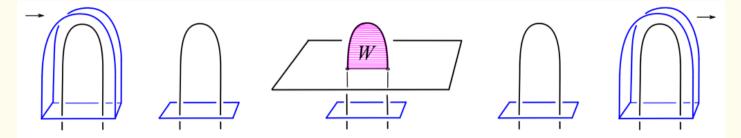
$$\begin{array}{c}
Jin-Kirk \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\$$

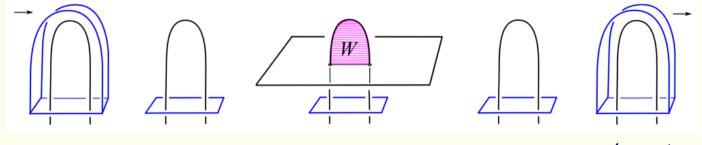
Let's revisit some basic tools in dimension 4: Any f: Z⁻→ H⁴ is homotopic to f: Z⁺ =→ M, a generic immersion with algebraically D self-intersections. A homotopy between such immensions is homotopic (rel ∂) to a sequence of finger moves & Whitney noves:



Whitney move, dual version :

Precise picture of Whitney sphere S.

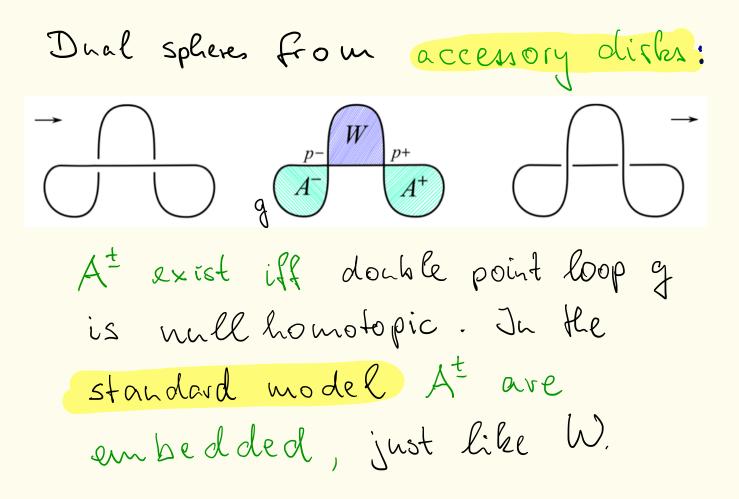




After the Whitney move we see that Whitney sphere bounds 3-ball:

Sw = * is called a Whitney homotopy.

Metabolic Unlinking Theorem [S.-T., 2016] TFAE:
(1)
$$(f_{41}, f_2) \in LM_{2/2}^4$$
 is trivial
(2) \exists homotopy $f_4 \cong f$ in $S^4 f_2$ such that $f: S \cong S^4$
admits Whitney disks W_i leading back to unknot &
(*) $f_2 \in \langle S W_i \rangle \subseteq T_2(S^4 \setminus f)$.
(3) ... \Downarrow $S W_i$ are disjointly embedded: W_i are framed,
disjointly
Remarks: (i) $\lambda(f_{21}, f_2) = 0$ embedded: W_i are framed,
(ii) The W_i have geometric duals
spheres S_j in $S^4 \setminus f$, in particular
 $Z[2]$ -intersection form is metabolic: $\begin{pmatrix} W_i & S_i \\ 0 & 1 \\ 1 & 4 \end{pmatrix}$.
Note: $\langle t \gamma = Z \cong T_4(S^4 \setminus unknot) \cong T_4(S^4 \setminus f)$.



Accessory sphere SA: $S_A A = pt$ and $S_A W = pt \Rightarrow$ Whas a dual sphere! A

Metabolic Unlinking Theorem [S.-T., 2016] TFAE:
(1)
$$(f_{11}, f_{2}) \in LM_{2,2}^{4}$$
 is trivial
(2) I homolopy $f_{1} \cong f$ in S^{4}, f_{2} such that &
(*) $f_{2} \in \langle S_{W_{i}} \rangle \subseteq T_{2}(S^{4} \setminus f)$.
(3) I homolopy $f_{1} \cong f$ in S^{4}, f_{2} such that $f: S^{2} \Longrightarrow S^{4}$
admits framed, disjointly embedded Whitney
disks W_{i} which in S^{4} if admit $\begin{pmatrix} W_{i} & S_{i} \\ 0 & 1^{4} \\ 1 & \star \end{pmatrix}$
 $\lambda(f_{2}, f_{2}) = 0$ and (*) holds mochilo $\begin{pmatrix} 1 \\ 1 \\ 1 \\ \star \end{pmatrix}$
 $I^{2}, T_{2}(S^{4}, f)$, where $I^{2} = (t-1)^{2}\mathcal{H}[t^{2}] \subseteq \mathcal{H}[t^{2}]$.

Lemma: For a link map
$$(f_1, f_2): S \perp S \xrightarrow{2} \rightarrow S^4$$

with f_4 an embedding, conditions (3)
of our unlinking theorem hold.
Proof: By Alexander duality, know that
 $H_4(S^4, f_4) \cong \mathbb{Z}$
 $\implies 3 \mathbb{Z}' \cdot cover \times \longrightarrow S^4(f_4) \text{ s.t. for gen. te} \mathbb{Z}$
 $\longrightarrow H_2 \times \xrightarrow{(t-1)} H_2 \times \longrightarrow H_2(S^4, f_4) = 0$
 $\forall N \exists q_N : f_2 = (t-1)^N q_N \implies \lambda(f_{21}, f_2) = 0$
Also get a link homolopy $f_4 \cong f = \text{generic innersion}$
with W_i for f s.t. $(t-1)^2$ divides $\lambda(f_2, W_i)$. GED

Sketch of proof for Metabolic Unlinking Theorem:
(1)
$$\Rightarrow$$
 (2) follows from our basic tools
and the fact that $f =$ unknot $+ \&$ finger moves.
(2) \Rightarrow (3) We saw $f_e \longrightarrow 0$
 $0 \rightarrow \langle S_{W_i} \rangle \rightarrow \pi_2 (S^{\prime}, f) \xrightarrow{\lambda(W_{i,*})} \bigoplus_{i=1}^{k} \mathbb{Z}[\mathbb{Z}] \longrightarrow 0$
accenory spheres $S_{A_i} \longrightarrow S_{ij} (\bigcup_{i=1}^{W_i} S_{A_i}) (\pi_2(S^{\prime}, f), \lambda)$ is metabolic : $\lambda = \begin{pmatrix} 0 & 1 & i \\ 1 & 4 \end{pmatrix}$
(3) \Rightarrow (1) Use $\lambda(k_2, k_2) = 0$ to embed f_2 into
a Lagrangian of λ . (*) mod $\mathbb{T}^2 \Longrightarrow$

$$\exists T_i \in T_2(S^{\prime} \setminus f) \text{ such that } W_i = W_i \# T_i \text{ and } S_{W_i} = S_{W_i} + (t-1)^2 T_i$$

Since
$$\pi_1(S^4, f) \cong \mathbb{Z}$$
 is a good group,
Freedman's disk embedding theorem gives disjointly
embedded Whitney disks Wi' homotopic to Wi.
Using our Whitney homotopies on these Wi get
a well homotopy of f_2 in S^4 , f . QED