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Khovanov Homology[16], and Bar-Natan’s emphasis on tangle cobordisms [2]. We use similar considera-

tions in our paper [10].

Two key motivating ideas are involved in finding the Khovanov invariant. First

of all, one would like to categorify a link polynomial such as ⟨K⟩. There are many
meanings to the term categorify, but here the quest is to find a way to express the link

polynomial as a graded Euler characteristic ⟨K⟩ = χq⟨H(K)⟩ for some homology
theory associated with ⟨K⟩.

The bracket polynomial [7] model for the Jones polynomial [4, 5, 6, 17] is usually

described by the expansion

⟨ ⟩ = A⟨ ⟩ + A−1⟨ ⟩ (4)

and we have

⟨K ⃝⟩ = (−A2 − A−2)⟨K⟩ (5)

⟨ ⟩ = (−A3)⟨ ⟩ (6)

⟨ ⟩ = (−A−3)⟨ ⟩ (7)

Letting c(K) denote the number of crossings in the diagramK, if we replace ⟨K⟩
by A−c(K)⟨K⟩, and then replace A by −q−1, the bracket will be rewritten in the fol-
lowing form:

⟨ ⟩ = ⟨ ⟩ − q⟨ ⟩ (8)

with ⟨⃝⟩ = (q+q−1). It is useful to use this form of the bracket state sum for the sake
of the grading in the Khovanov homology (to be described below). We shall continue

to refer to the smoothings labeled q (or A−1 in the original bracket formulation) as

B-smoothings. We should further note that we use the well-known convention of en-
hanced states where an enhanced state has a label of 1 or X on each of its component

loops. We then regard the value of the loop q + q−1 as the sum of the value of a circle

labeled with a 1 (the value is q) added to the value of a circle labeled with an X (the

value is q−1).We could have chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of

labeling from the beginning.
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Cubism

The bracket states form a 
category. How can we 

obtain topological 
information from this 

category?



Let c(K) = number of crossings on link K.

Form A          <K> and replace A by -q    .
-c(K) -1

Then the skein relation for <K> will 
be replaced by:
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with a 1 (the value is q) added to the value of a circle labeled with anX (the value is q−1).We could have
chosen the more neutral labels of +1 and −1 so that

q+1 ⇐⇒ +1 ⇐⇒ 1

and

q−1 ⇐⇒ −1 ⇐⇒ X,

but, since an algebra involving 1 and X naturally appears later, we take this form of labeling from the

beginning.

To see how the Khovanov grading arises, consider the form of the expansion of this version of the

bracket polynonmial in enhanced states. We have the formula as a sum over enhanced states s :

⟨K⟩ =
∑

s

(−1)nB(s)qj(s)

where nB(s) is the number of B-type smoothings in s, λ(s) is the number of loops in s labeled 1 minus
the number of loops labeled X, and j(s) = nB(s) + λ(s). This can be rewritten in the following form:

⟨K⟩ =
∑

i ,j

(−1)iqjdim(Cij)

where we define Cij to be the linear span (over k = Z/2Z as we will work with mod 2 coefficients) of
the set of enhanced states with nB(s) = i and j(s) = j. Then the number of such states is the dimension
dim(Cij).

We would like to have a bigraded complex composed of the Cij with a differential

∂ : Cij −→ Ci+1 j .

The differential should increase the homological grading i by 1 and preserve the quantum grading j. Then
we could write

⟨K⟩ =
∑

j

qj
∑

i

(−1)idim(Cij) =
∑

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j.

This formula would constitute a categorification of the bracket polynomial. Below, we shall see how the

original Khovanov differential ∂ is uniquely determined by the restriction that j(∂s) = j(s) for each
enhanced state s. Since j is preserved by the differential, these subcomplexes C• j have their own Euler

characteristics and homology. We have

χ(H(C• j)) = χ(C• j)

where H(C• j) denotes the homology of the complex C• j . We can write

⟨K⟩ =
∑

j

qjχ(H(C• j)).

The last formula expresses the bracket polynomial as a graded Euler characteristic of a homology theory

associated with the enhanced states of the bracket state summation. This is the categorification of the

bracket polynomial. Khovanov proves that this homology theory is an invariant of knots and links (via the

Reidemeister moves of Figure 1), creating a new and stronger invariant than the original Jones polynomial.
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Enhanced States

For reasons that will soon become apparent, we 
let -1 be denoted by X and +1 be denoted by 1.
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= number of +1 loops minus number of -1 loops.

C ij = module generated by enhanced states 
with i =n   and j as above.B
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We will construct the differential in this complex first for mod-2 coefficients. The differential is based
on regarding two states as adjacent if one differs from the other by a single smoothing at some site. Thus

if (s, τ) denotes a pair consisting in an enhanced state s and site τ of that state with τ of type A, then
we consider all enhanced states s′ obtained from s by smoothing at τ and relabeling only those loops that
are affected by the resmoothing. Call this set of enhanced states S′[s, τ ]. Then we shall define the partial
differential ∂τ (s) as a sum over certain elements in S′[s, τ ], and the differential by the formula

∂(s) =
∑

τ

∂τ (s)

with the sum over all type A sites τ in s. It then remains to see what are the possibilities for ∂τ (s) so that
j(s) is preserved.

Note that if s′ ∈ S′[s, τ ], then nB(s′) = nB(s) + 1. Thus

j(s′) = nB(s′) + λ(s′) = 1 + nB(s) + λ(s′).

From this we conclude that j(s) = j(s′) if and only if λ(s′) = λ(s) − 1. Recall that

λ(s) = [s : +] − [s : −]

where [s : +] is the number of loops in s labeled +1, [s : −] is the number of loops labeled −1 (same as
labeled with X) and j(s) = nB(s) + λ(s).

Proposition. The partial differentials ∂τ (s) are uniquely determined by the condition that j(s′) = j(s)
for all s′ involved in the action of the partial differential on the enhanced state s. This unique form of the
partial differential can be described by the following structures of multiplication and comultiplication on

the algebra A = k[X]/(X2) where k = Z/2Z for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit andX2 = 0.

2. ∆(1) = 1 ⊗ X + X ⊗ 1 and ∆(X) = X ⊗ X.

These rules describe the local relabeling process for loops in a state. Multiplication corresponds to the

case where two loops merge to a single loop, while comultiplication corresponds to the case where one

loop bifurcates into two loops.

(The proof is omitted.)

Partial differentials are defined on each enhanced state s and a site τ of typeA in that state. We consider
states obtained from the given state by smoothing the given site τ . The result of smoothing τ is to produce
a new state s′ with one more site of type B than s. Forming s′ from s we either amalgamate two loops to
a single loop at τ , or we divide a loop at τ into two distinct loops. In the case of amalgamation, the new
state s acquires the label on the amalgamated circle that is the product of the labels on the two circles that
are its ancestors in s. This case of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if the circle is labeled X , then the
resultant two circles are each labeledX corresponding to∆(X) = X⊗X . If the orginal circle is labeled 1
then we take the partial boundary to be a sum of two enhanced states with labels 1 andX in one case, and

labels X and 1 in the other case, on the respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1.
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The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

that the existence of a bigraded complex of this type allows us to further
write:

⟨K⟩ =
X

j

qj
X

i

(−1)idim(Cij) =
X

j

qjχ(C• j),

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed
value of j. Since j is preserved by the differential, these subcomplexes have
their own Euler characteristics and homology. We can write

⟨K⟩ =
X

j

qjχ(H(C• j)),

where H(C• j) denotes the homology of this complex. Thus our last for-
mula expresses the bracket polynomial as a graded Euler characteristic of a
homology theory associated with the enhanced states of the bracket state
summation. This is the categorification of the bracket polynomial. Kho-
vanov proves that this homology theory is an invariant of knots and links,
creating a new and stronger invariant than the original Jones polynomial.

We explain the differential in this complex for mod-2 coefficients and
leave it to the reader to see the references for the rest. The differential
is defined via the algebra A = k[X]/(x2) so that X2 = 0 with coproduct
∆ : A −→ A⊗A defined by ∆(X) = X ⊗ X and ∆(1) = 1 ⊗ X + X ⊗ 1.
Partial differentials (which are defined on an enhanced state with a chosen
site, whereas the differential is a sum of these mappings) are defined on
each enhanced state s and a site κ of type A in that state. We consider
states obtained from the given state by smoothing the given site κ. The
result of smoothing κ is to produce a new state s′ with one more site of
type B than s. Forming s′ from s we either amalgamate two loops to a
single loop at κ, or we divide a loop at κ into two distinct loops. In the case
of amalgamation, the new state s acquires the label on the amalgamated
circle that is the product of the labels on the two circles that are its
ancestors in s. That is, m(1⊗X) = X and m(X⊗X) = 0. Thus this case
of the partial differential is described by the multiplication in the algebra.
If one circle becomes two circles, then we apply the coproduct. Thus if
the circle is labelled X, then the resultant two circles are each labelled X
corresponding to ∆(X) = X ⊗ X. If the orginal circle is labelled 1 then
we take the partial boundary to be a sum of two enhanced states with
labels 1 and X in one case, and labels X and 1 in the other case on the
respective circles. This corresponds to ∆(1) = 1 ⊗ X + X ⊗ 1. Modulo
two, the differential of an enhanced state is the sum, over all sites of type
A in the state, of the partial differential at these sites. It is not hard
to verify directly that the square of the differential mapping is zero and
that it behaves as advertised, keeping j(s) constant. There is more to say
about the nature of this construction with respect to Frobenius algebras
and tangle cobordisms. See [Kh, BN, BN2]

Here we consider bigraded complexes Cij with height (homological
grading) i and quantum grading j. In the unnormalized Khovanov complex
[[K]] the index i is the number of B-smoothings of the bracket, and for
every enhanced state, the index j is equal to the number of components
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Figure 2: SaddlePoints and State Smoothings

the relationships between Frobenius algebras and the surface cobordism category. The

proof of invariance of Khovanov homology with respect to the Reidemeister moves

(respecting grading changes) will not be given here. See [12, 1, 2]. It is remarkable

that this version of Khovanov homology is uniquely specified by natural ideas about

adjacency of states in the bracket polynomial.

Remark on Integral Differentials. Choose an ordering for the crossings in the link

diagram K and denote them by 1, 2, · · ·n. Let s be any enhanced state of K and let

∂i(s) denote the chain obtained from s by applying a partial boundary at the i-th site
of s. If the i-th site is a smoothing of type A−1, then ∂i(s) = 0. If the i-th site is

Δm

F G H

Figure 3: Surface Cobordisms
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A-State: s(K) = 1 - (#loops) + (# crossings) = 
2genus(Seifert(K))

For positive knot all loops labelled x.





Figure 4: Surfaces and Virtuals

We have the

Theorem 1 [17, 24, 19, 3]. Two virtual link diagrams are isotopic if and only if their

corresponding surface embeddings are stably equivalent.

In Figure 4 we illustrate some points about this association of virtual diagrams and knot

and link diagrams on surfaces. Note the projection of the knot diagram on the torus to

a diagram in the plane (in the center of the figure) has a virtual crossing in the planar

diagram where two arcs that do not form a crossing in the thickened surface project to

the same point in the plane. In this way, virtual crossings can be regarded as artifacts of

projection. The same figure shows a virtual diagram on the left and an “abstract knot

diagram” [38, 3] on the right. The abstract knot diagram is a realization of the knot

on the left in a thickened surface with boundary and it is obtained by making a neigh-

borhood of the virtual diagram that resolves the virtual crossing into arcs that travel

on separate bands. The virtual crossing appears as an artifact of the projection of this

surface to the plane. The reader will find more information about this correspondence

[17, 24] in other papers by the author and in the literature of virtual knot theory.

4 Flat Virtual Knots and Links

Every classical knot or link diagram can be regarded as a 4-regular plane graph with ex-
tra structure at the nodes. This extra structure is usually indicated by the over and under

crossing conventions that give instructions for constructing an embedding of the link in

three dimensional space from the diagram. If we take the flat diagramwithout this extra

structure then the diagram is the shadow of some link in three dimensional space, but

the weaving of that link is not specified. It is well known that if one is allowed to apply

the Reidemeister moves to such a shadow (without regard to the types of crossing since

they are not specified) then the shadow can be reduced to a disjoint union of circles.

5

Virtual Knot Theory
 studies stabilized knots in thickened surfaces.





Figure 6 — Signed Gauss Codes

Now consider the effect of changing these signs. For example let

g = O1 + U2 + O3 − U1 + O2 + U3 − .

Then g is a signed Gauss code and as Figure 6 illustrates, the corresponding
diagram is forced to have virtual crossings in order to acommodate the change
in orientation. The codes t and g have the same underlying (unsigned) Gauss
code O1U2O3U1O2U3, but g corresponds to a virtual knot while t represents
the classical trefoil.

Carrying this approach further, we define a virtual knot as an equivalence
class of oriented Gauss codes under abstractly defined Reidemeister moves
for these codes—with no mention of virtual crossings. The virtual crossings
become artifacts of a planar representation of the virtual knot. The move sets

12

Figure 6 — Signed Gauss Codes

Now consider the effect of changing these signs. For example let

g = O1 + U2 + O3 − U1 + O2 + U3 − .

Then g is a signed Gauss code and as Figure 6 illustrates, the corresponding
diagram is forced to have virtual crossings in order to acommodate the change
in orientation. The codes t and g have the same underlying (unsigned) Gauss
code O1U2O3U1O2U3, but g corresponds to a virtual knot while t represents
the classical trefoil.

Carrying this approach further, we define a virtual knot as an equivalence
class of oriented Gauss codes under abstractly defined Reidemeister moves
for these codes—with no mention of virtual crossings. The virtual crossings
become artifacts of a planar representation of the virtual knot. The move sets

12

Virtual knots are 
all oriented

(signed) Gauss 
codes taken up to 

Reidemeister 
moves on the 

codes.

Virtual crossings 
are artifacts of 

the planar 
diagram.



There exist infinitely many non-trivial K 
with unit Jones polynomial.
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when smoothing flanking virtuals.

Z-Equivalence



to the handling of classical knot diagrams. Many structures in classical knot theory

generalize to the virtual domain.

In the diagrammatic theory of virtual knots one adds a virtual crossing (see Figure

1) that is neither an over-crossing nor an under-crossing. A virtual crossing is repre-

sented by two crossing segments with a small circle placed around the crossing point.

Moves on virtual diagrams generalize the Reidemeister moves for classical knot

and link diagrams. See Figure 1. One can summarize the moves on virtual diagrams by

saying that the classical crossings interact with one another according to the usual Rei-

demeister moves while virtual crossings are artifacts of the attempt to draw the virtual

structure in the plane. A segment of diagram consisting of a sequence of consecutive

virtual crossings can be excised and a new connection made between the resulting free

ends. If the new connecting segment intersects the remaining diagram (transversally)

then each new intersection is taken to be virtual. Such an excision and reconnection

is called a detour move. Adding the global detour move to the Reidemeister moves

completes the description of moves on virtual diagrams. In Figure 1 we illustrate a set

of local moves involving virtual crossings. The global detour move is a consequence

of moves (B) and (C) in Figure 1. The detour move is illustrated in Figure 2. Virtual

knot and link diagrams that can be connected by a finite sequence of these moves are

said to be equivalent or virtually isotopic.

A

B

C

RI

RII

RIII

vRI

vRII

vRIII

mixed

  RIII

planar
isotopy

Figure 1: Moves

Another way to understand virtual diagrams is to regard them as representatives

for oriented Gauss codes [8], [17, 18] (Gauss diagrams). Such codes do not always

have planar realizations. An attempt to embed such a code in the plane leads to the

production of the virtual crossings. The detour move makes the particular choice of

3

Generalized Reidemeister Moves for 
Virtual Knots and Links







We say that K is concordant to K`
K ~ K`

if there exists a cobordism from K to K` of genus 0.

A virtual knot is said to be slice
if it is concordant to the unknot.

c
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Figure 21: Virtual Stevedore Cobordism Seifert Surface
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D is a positive 
virtual diagram and

is NOT slice.

VS is the virtual stevedore
and bounds 

another surface of 
genus zero.



We now observe that for any classical knotK, there is a surface bounding that knot in the four-ball
that is homeomorphic to the Seifert surface. One can construct this surface by pushing the Seifert

surface into the four-ball keeping it fixed along the boundary. We will give here a different description

of this surface as indicated in Figure 19. In that figure we perform a saddle point transformation at

every crossing of the diagram. The result is a collection of unknotted and unlinked curves. By our

interpretation of surfaces in the four-ball obtained by saddle moves and isotopies, we can then bound

each of these curves by discs (via deaths of circles) and obtain a surface S(K) embedded in the four-
ball with boundaryK. As the reader can easily see, the curves produced by the saddle transformations
are in one-to-one correspondence with the Seifert circles for K, and it easy to verity that S(K) is
homeomorphic with the Seifert surface F (K). Thus we know that g(S(K)) = (1/2)(−r + n + 1). In
fact the same argument that we used to analyze the genus of the Seifert surface applies directly to the

construction of S(K) via saddles and minima.

Now the stage is set for generalizing the Seifert surface to a surface S(K) for virtual knotsK.View
Figure 20 and Figure 21. In these figures we have performed a saddle transformation at each classical

crossing of a virtual knotK. The result is a collection of unknotted curves that are isotopic (by the first
classical Reidemeister move) to curves with only virtual crossings. Once the first Reidemeister moves

are performed, these curves are identical with the virtual Seifert circles obtained from the diagram K
by smoothing all of its classical crossings. We can then Isotope these circles into a disjoint collection

of circles (since they have no classical crossings) and cap them with discs in the four-ball. The result

is a virtual surface S(K) whose boundary is the given virtual knot K. We will use the terminology
virtual surface in the four-ball for this surface schema. In the case of a virtual slice knot, we have that

the knot bounds a virtual surface of genus zero. But with this construction we have proved the

Lemma. Let K be a virtual knot, then the virtual Seifert surface S(K) constructed above has genus
given by the formula

g(S(K)) = (1/2)(−r + n + 1)

where r is the number of virtual Seifert circles in the diagram K and n is the number of classical
crossings in the diagramK.

Proof. The proof follows by the same argument that we already gave in the classical case. Here

the projected virtual diagram gives a four-regular graph G (not necessarily planar) whose nodes are

in one-to-one correspondence with the classical crossings of K. The edges of G are in one-to-one

correspondence with the edges in the diagram that extend from one classical crossing to the next.

We regard G as an abstract graph so the the virtual crossings disappear. The argument then goes

over verbatim in the sense that G with two-cells attached to the virtual Seifert circles is a retract of

the surface S(K) constructed by cobordism. The counting argment for the genus is identical to the
classical case. This completes the proof. //

Remark. For the virtual stevedore in Figure 21 we have the interesting phenomenon that there is a

much lower genus surface that can be produced by cobordism than the virtual Seifert surface. In that

same figure we have illustrated a diagramD with the same projected diagram as the virtual stevedore,

but D has all positive crossings. In this case we can prove [2] that there is no virtual surface for this

diagramD of four-ball genus less than 1. In fact, we have the following result which is proved in [2].
This Theorem is a generalization of a corresponding result for classcial knots due to Rasmussen [16].

Theorem [2]. Let K be a positive virtual knot (all classcial crossings in K are positive), then the

four-ball genus g4(K) is given by the formula

g4(K) = (1/2)(−r + n + 1) = g(S(K))
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T

Seifert Circles

Seifert Surface

         F(T)

Figure 18: Classical Seifert Surface

where r is the number of virtual Seifert circles in the diagram K and n is the number of classcial
crossings in this diagram. In other words, that virtual Seifert surface for K represents its minimal

four-ball genus.

3.2 Properties of the Virtual Stevedore’s Knot

We first point out that the virtual stevedore (V S) is an example that illustrates the viability of our
theory. We prove that V S is not classical by showing that it is represented on a surface of geus one and
no smaller. The reader should note the difference between representation of a virtual knot or link on a

surface (as an embedding into the thickened surface) and the previous subsection’s work on spanning

surfaces.

The technique for finding this surface genus for the virtual stevedore is to use the bracket expansion

on a toral representative of V S and examine the structure of the state loops on that surface. See

Figure 22 and Figure 23. Note that in thes Figures the virtual crossings correspond to parts of the

diagram that loop around the torus, and do not weave on the surface of the torus. An analysis of the

homology classes of the state loops shows that the knot cannot be isotoped off the handle structure of

the torus. See [6, 23] for more information about using the surface bracket.

Next we examine the bracket polynomial of the virtual stevedore, and show as in Figure 24 that it

has the same bracket polynomial as the classical figure eight knot. The technique for showing this is

to use the basic bracket identity for a crossing flanked by virtual crossings as discussed in the previous

section. This calculation shows that V S is not a connected sum of two virtual knots. Thus we know that
V S is a non-trivial example of a virtual slice knot. We now can state the problem: Classify virtual
knots up to concordance. We will discuss this problem in this paper, but not solve it. The reader
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Heather Dye, Aaron Kaestner and LK, prove the 
following generalization of Rasmussen’s Theorem, 
giving the four-ball genus of a positive virtual knot.

The virtual Seifert surface for positive virtual K 
represents the minimal four-ball genus of K.

The Theorem is proved by generalizing both Khovanov 
and Lee homology to virtual knots and generalizing 

the Rasmussen invariant to virtual knots.



Remarks on Generalizing Khovanov Homology, Lee 
Homology and Rasmussen Invariant



Mod 2 Khovanov Homology for Virtuals is OK.



Remarks on Generalizing Khovanov Homology, Lee 
Homology and Rasmussen Invariant

diagram in Figure 10. For more on sour-sink structures and virtual knots
see Maturov [Man05] [MI13].

Figure 10: Source-sink orientation

Remark 2.1. This can be done arbitrarily but we will assume the canonical
source-sink orientation given in Figure 11.

Figure 11: Canonial source-sink orientation

Using the (canonical) source-sink orientations we place cut loci on the
semi-arcs of the knot diagram whenever neighboring source-sink orientations
disagree. Figure 12 illustrates this process for a two-crossing virtual knot.
Note that the number of cut loci is fixed for any particular diagram and
choice of source-sink orientations on the crossings. However, as we will see,
the number of cut loci may change when a Reidemeister move is performed.

Figure 12: Cut loci for a two-crossing virtual knot

Source-sink orientations were originally introduced by Naoko Kamada
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Canonical Source-Sink Orientation
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Cut Locus Involution

a a

The Frobenius algebra controlling the Khovanov homology 
differentials has 

an order two function

a a

that is applied whenever an algebra 
element is moved across  a cut locus.

x = - x

1 = 1



1

1

x

1

x

x

1 Transport

1
x

x

1
+ +

multiply and add

x + x = -x + x = 0.

Transportation past cut loci
bars the corrsponding 

elements and makes the 
square commute integrally.



Along with the bar operation and local coeffient 
transport there are other issues that demand

extra care. We leave these for the reader to find
in our paper.

Khovanov Homology, Lee Homology and a Rasmussen Invariant 
for Virtual Knots
Heather A. Dye, Aaron Kaestner, Louis H. Kauffman arXiv:1409.5088





g
g

rr

K

K with canonical source sink
orientations and cut loci

Seifert state labelled 
with Lee algebra is 
a non-trivial cycle.

Flattened
K

rg=gr = 0
rr = r
gg= g

r+g= 1
D(r) = 2r
D(g) = 2g

Lee Algebra

r  =  g

g  =  r

Barring Operations for the Lee Algebra



r g g

g r

r

g

r

r
g

Another Example of a Virtual Lee Cycle



r g g

g r

r

g

r

r
g

genus = (1/2)(-r + n +1)

   = (1/2)(-2 + 5 +1)

   = 2.



There are many questions about virtual knot cobordism
and its relations with Khovanov homology and with 

variations on Khovanov homology. (See particularly the 
papers of William Rushworth.) 

We are presently working on cobordism and 
KhoHomology of 

knotoids, where a knotoid is a diagram with endpoints, not 
necessarily in the same region. Knotoids are taken up to 
Reidemeister moves that do not involve the endpoints.



Thank you for your attention!





VS I E

<VS> = <I> = <E> = A     - A     + 1  - A     + A
-8 -4 4 8

The knot VS has bracket polynomial equal to the
bracket polynomial of the classical figure eight 
knot diagram E. This implies that VS is not a
connected sum.

Figure 12: Bracket Polynomial of the Virtual Stevedore Knot

VS

VS on a torus.

Figure 13: Virtual Stevedore Knot on a Torus
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More about the Virtual Stevedore’s Knot



Virtual Stevedore
is not

classical.

Definition of Virtual Ribbon:

A knot is said to 
be virtually ribbon 
if it can be sliced 
using only saddles 

and deaths of 
trivial circles. No 
births allowed.

(There may be a way 
to define 

this concept that is 
closer to 

‘ribbon singularities’ 
as in classical knots)

AAAA AAAB AABA AABB

ABAA ABAB ABBA
ABBB

BAAA
BAAB BABA BABB

BBAA
BBAB BBBA BBBB

Figure 14: Torus States for Virtual Stevedore Knot
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Rotational Virtual Knots

Disallow VR1.







The Virtual Stevedore is Rotationally Slice



This talk has been a walk through Khovanov 
Homology and finding the relevant Frobenius 
algebras from the categorical chain complex 

and its associated 4Tu relation. We find the 4Tu 
relation naturally in looking for relations on 
surface cobordisms that render the theory 

invariant under isotopy of links.

There are many questions!



Other directions involve the question of an 
appropriate homotopy context for 

Khovanov Homology.

Work of Turner, Everitt, Lipshitz an Sarkar shows 
how to produce spectra whose homotopy is 

Khovanov Homology and spaces whose homology 
is Khovanov homology.



Work of Chris Gomes and LK shows how to use 
Dold-Kan construction to make homotpy spectra 

for link homologies.

Dold-Kan Functor: Chain Compexes -----> 
Homotopy Simplical Objects

Simplicial Stucture of Khovanov Homology



Moral:
We can work 

simplicially
by using the cube 

category 
with a trivial

0-th partial boundary.



One can then make spaces whose homology is
Khovanov homology by forming the geometric 

realization of the corresponding simplicial objects.



By adding degeneracies to the simplicial objects
(as in ,<012> ----> <0112>)

one can do homotopy theory with them.
In particular one can realize spaces whose weak homotopy

type corresponds to the chain homotopy type 
of the Khovanov complex.



A related insight (due to Jozef Przytycki) is that 
Khovanov homology from the cube category can be 

understood to be the cohomology of the nerve 
of that category with coefficients via the Frobenius algebra 

functor.







We have been exploring the 
cohomology of categories.




