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Khovanov Homology

Two key motivating ideas are involved in finding the Khovanov invariant. First
of all, one would like to categorify a link polynomial such as (K). There are many
meanings to the term categorify, but here the quest is to find a way to express the link
polynomial as a graded Euler characteristic (K) = x,(H(K)) for some homology
theory associated with (K).
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Cubism

The bracket states form a
category. How can we
obtain topological
information from this
category!




Exploration: Examine the Bracket Polynomial
for Clues.

Let ¢(K) = number of crossings on link K.
Form A (9 <K> and replace A by -q-I :

Then the skein relation for <K> will
be replaced by:
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Use enhanced states by labeling each loop with
+| or -I.
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Enhanced States
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For reasons that will soon become apparent, we
let -1 be denoted by X and +1| be denoted by |I.




J(s) =np(s) + Als)

(K) =) (~1)'¢’dim(C7)
1,J
nB(s) = number of B-smoothings in the state s.

A($) = number of +1 loops minus number of -1 loops.

c 'l = module generated by enhanced states
with i =n gand j as above.




Wanted: differential acting in the form
9 :Cl — i1

For j to be constant as i increases by |, we need

A(s) to decrease by |.







The differential should increase the homological
grading i by | and leave fixed the quantum grading j.

Then we would have

= qu Z(— )'dim/(C¥) Zq x(C*7)
X(H(C*7)) = x(C*7)

qu (C*7))




o(s) =3 0r(s)

The boundary is a sum of partial differentials
corresponding to resmoothings on the states.

>_-/\ AX)=X@Xand A1) =19 X + X ® 1.

X2 =0




Proposition. The partial differentials 0, (s) are uniquely determined by the condition
that j(s’) = j(s) for all s" involved in the action of the partial differential on the en-
hanced state s. This unique form of the partial differential can be described by the fol-
lowing structures of multiplication and comultiplication on the algebra A = k[X]/(X?)
where k = Z/27 for mod-2 coefficients, or k = Z for integral coefficients.

1. The element 1 is a multiplicative unit and X2 = 0.

22 A1) =19 X+X®land A(X) =X ® X.
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qz . 0 Bracket states
6_) S C form a
! / 1 \ l category that
C

assembles
| itself into a chain
complex.

83 % 1 Levels in the chain
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B[) O <>D complex are
° 1 direct sums of modules
corresponding to
> D C 3 states with a constant
OB number of B

smoothings.
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Checking Order Compatibility
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Evaluations at
successive levels.
Identity from topology.

counit € unit 1

-t a

A(a) = Za1(x) a2
Te(al) @ a2

C Ja m(ze(al) @ a2) =
Using special case of a=1, we obtain:
m(e(1)®X + eX)®1) =1
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We have arrived at the Frobenius algebra, but there
is still work to be done to see the invariance under
ambient isotopy of knots and links.




Cubism Again




Categorification and the Morse Dream

(flattenlng a higher category)
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Dror’s Canopoly

An abstract
categorical
analog of a chain
complex.
That can be taken
up to
chain homotopy.
The maps are
additive
combinations of
surface
cobordisms.
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We examine this question as
though we had not seen the
Frobenius algebra.
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Figure 11: Complexes for Second Reidemeister Move
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Figure 12: Cobordism Compositions for Second Reidemeister Move
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Figure 13: Preparation for Homotopy for Second Reidemeister Move
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Figure 14: Homotopy for Second Reidemeister Move
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The Four-Tube Relation

(4Tu Relation)

Four surface locations 1,2,3,4.

(i j) denotes a new surface
arrangement, with a tube joining
i and j.

(12) + (34) = (14) + (23)

or, equivalently

(12) - (23) + (34) - (14) = 0.
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Figure 15: Four-Tube Relation From Homotopy
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Schematic Four-Tube Relation
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4 3 From Four Tube to the Tube Relation
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From 4Tu to Frobenius Algebra

-9 ©
a'e

@%/}éé&) ;O{é& @\}/&QL

Y
> [ = €(é>@di+€(oz)¢c7 =

= L =e(DL WY | e () =|
A= €L ameF [l (%) =0
W= ()L +eK ed =0




RN
D
R
0>||
S
8

(xx = 11)

N
0>+
N
®

= x xX)1 +xX) x
=t(11) +xX) x

Figure 20: Coproducts of 1 and x Via Tube-Cutting Relation




Algebra from 4Tu - Guaranteed to
Produce Link Homology




Lee’s Algebra

? =1,

Al)=1®z+2z®1,
Alz) =22 +1®1,
e(x) =1,
e(1) = 0.

This gives a link homology theory that is distinct from Khovanov homology. In this theory, the
quantum grading j is not preseved, but we do have that

J(0()) = j(e)

for each chain « in the complex. This means that one can use j to filter the chain complex for
the Lee homology. The result is a spectral sequence that starts from Khovanov homology and
converges to Lee homology.
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Lee homology is simple. One has that the dimension of the Lee homology is equal to 2¢°™?(L)
where comp(L) denotes the number of components of the link L. Up to homotopy, Lee’s ho-
mology has a vanishing differential, and the complex behaves well under link concondance. In
his paper [4] Dror BarNatan remarks ”In a beautiful article Eun Soo Lee introduced a second
differential on the Khovanov complex of a knot (or link) and showed that the resulting (double)
complex has non-interesting homology. This is a very interesting result.”” Rasmussen [49] uses
Lee’s result to define invariants of links that give lower bounds for the four-ball genus, and deter-
mine it for torus knots. This gives an (elementary) proof of a conjecture of Milnor that had been
previously shown using gauge theory by Kronheimer and Mrowka [29].

Rasmussen’s result uses the Lee spectral sequence. We have the quantum () grading for a di-
agram K and the fact that for Lee’s algebra j(9(s)) > j(s). Rasmussen uses a normalized version
of this grading denoted by g(s). Then one makes a filtration F*C*(K) = {v € C*(K)|g(v) > k}
and given a € Lee*(K) define

S(@) := maz{g(v)|[v] = o}
Smin(K) := min{S(a)|a € Lee*(K), a # 0}
Smaz(K) := maz{S(a)|a € Lee*(K),a # 0}

and
$(K) := (1/2)(8min(K) + Smaz(K)).

This last average of s,,;, and S,,,. 1s the Rasmussen invariant.




Sveding
( L) = 4)( i_:) - (% =2 % . \




We now enter the following sequence of facts:
1. s(K) € Z.
2. s(K) is additive under connected sum.

3. If K* denotes the mirror image of the diagram K, then

s(K*) = —s(K).

4. If K is a positive knot diagram (all positive crossings), then
s(K)=—-r+n+1

where r denotes the number of loops in the canonical oriented smoothing (this is the same
as the number of Seifert circuits in the diagram K') and n denotes the number of crossings
in K.

5. For a torus knot K, ; of type (a, b), s(K,p) = (a —1)(b —1).
6. |s(K)| < 2¢*(K) where g*(K) is the least genus spanning surface for K in the four ball.
7. g*(Kap) = (@ — 1)(b— 1)/2. This is Milnor’s conjecture.

[his completes a very skeletal sketch of the construction and use of Rasmussen’s invariant.
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/ Facts: s (K) + 2

max(K) ~ Smin
s(K) = Smin(K) + |

A-State: s(K) = | - (#loops) + (# crossings) =
2genus(Seifert(K))

For positive knot all loops labelled x.
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Virtual Knot Theory
studies stabilized knots in thickened surfaces.

@

Figure 4: Surfaces and Virtuals







g = 01+U2+03-U1+02+135-

Virtual knots are
all oriented
(signed) Gauss
codes taken up to
Reidemeister
moves on the
codes.

Virtual crossings
are artifacts of
the planar
diagram.

g=01+U2+03-Ul+02+U3—.




There exist infinitely many non-trivial K
with unit Jones polynomial.

Bracket Polynomial is Unchanged
when smoothing flanking virtuals.

Z-Equivalence

N\




Generalized Reidemeister Moves for
Virtual Knots and Links
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Virtual Knot Cobordism
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Figure 16: Saddles, Births and Deaths
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Figure 17: Virtual Stevedore is Slice




We say that K is concordant to K
K=K
if there exists a cobordism from K to K of genus 0.

A virtual knot is said to be slice
if it is concordant to the unknot.




Spanning Surfaces for Knots and Virtual Knots.
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Seifert Circles

Seifert Surface
F(T)

Figure 18: Classical Seifert Surface




Every classical knot diagram bounds a surface in the four-ball
whose genus is equal to the genus of its Seifert Surface.

Figure 19: Classical Cobordism Surface
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Seifert Circle(s) for K

Every virtual diagram K bounds a virtual orientable surface of
genus g = (1/2)(-r + n +1) where r is the number of Seifert circles,

and n is the number of classical crossings in K.
This virtual surface is the cobordism Seifert surface when K

is classical.

Figure 20: Virtual Cobordism Seifert Surface




Seifert Cobordism for the Virtual Stevedore
and for a corresponding positive diagram D.

VS is the virtual stevedore
and bounds

another surface of
genus zero.

D is a positive

virtual diagram and
is NOT slice.




Heather Dye, Aaron Kaestner and LK, prove the
following generalization of Rasmussen’s Theorem,
giving the four-ball genus of a positive virtual knot.

Theorem [2]. Let K be a positive virtual knot (all classcial crossings in K are positive), then the
four-ball genus g4(K) is given by the formula

9a(K) = (1/2)(=r +n+1) = g(5(K))

where 7 is the number of virtual Seifert circles in the diagram K and n is the number of classcial
crossings in this diagram. In other words, that virtual Seifert surface for K represents its minimal
four-ball genus.

The virtual Seifert surface for positive virtual K
represents the minimal four-ball genus of K.

The Theorem is proved by generalizing both Khovanov
and Lee homology to virtual knots and generalizing
the Rasmussen invariant to virtual knots.




Remarks on Generalizing Khovanov Homology, Lee
Homology and Rasmussen Invariant

Extending Khovanov homology to virtual knots for arbitrary coefficients is
complicated by the single cycle smoothing as depicted in Figure

Figure 8: Single cycle smoothing




Composing along the top and right we have

non=0.
But composing along the opposite sides we see

moA(l)=m(l®X+XR®1)=X+X=2X.

Mod 2 Khovanov Homology for Virtuals is OK.




Remarks on Generalizing Khovanov Homology, Lee
Homology and Rasmussen Invariant

. Source-sink orientation

< - =

Cut loci for a two-crossing virtual knot

Canonical Source-Sink Orientation




Cut Locus Involution

« ‘ — —>

d d

The Frobenius algebra controlling the Khovanov homology
differentials has
an order two function

a —l*— 3
that is applied whenever an algebra
element is moved across a cut locus.
X =-X




Transportation past cut loci
bars the corrsponding
elements and makes the
square commute integrally.

moA()=m(1X+X®1)=

X+x=-x+x=0.

multiply and add

Transport




Along with the bar operation and local coeffient
transport there are other issues that demand
extra care.VVe leave these for the reader to find
In our paper.

Khovanov Homology, Lee Homology and a Rasmussen Invariant

for Virtual Knots _
Heather A. Dye, Aaron Kaestner, Louis H. Kauffman arXiv:1409.5088




Lee Algebra
rr=r

g9=g9
rg=gr=0
A(r) = 2r
A(9) =29
r¢+g=1
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Figure 22: Lee Algebra Undergoes Involution at a Cut Locus




Barring Operations for the Lee Algebra

Flattened
K K
Lee Algebra
rg=gr =0
rr=r
g8~ 8

r+g= |
D(r) = 2r
g g D(g) = 2g
r=g
g=r
K with canonical source sink Seifert state labelled
orientations and cut loci with Lee algebra is

a non-trivial cycle.




Another Example of a Virtual Lee Cycle




genus = (1/2)(-r + n +1)
=(1/2)(-2 + 5 +1)
=2.




There are many questions about virtual knot cobordism
and its relations with Khovanov homology and with
variations on Khovanov homology. (See particularly the
papers of William Rushworth.)

We are presently working on cobordism and
KhoHomology of
knotoids, where a knotoid is a diagram with endpoints, not
necessarily in the same region. Knotoids are taken up to
Reidemeister moves that do not involve the endpoints.




Thank you for your attention!







More about the Virtual Stevedore’s Knot

A

VS

VS on a torus.
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2.5 Non-classicality of Virtual Knots with Unit Jones Poly-
nomial

There is a construction that produces infinitely many non-trivial virtual
knot diagrams that have unit Jones polynomial. We shall prove here, that
all of these examples of knots with unit Jones polynomial are non-classical.
This settles a question raised in [19] and [21]. To clarify our proof we first
restate a theorem of Manturov [33] regarding the invariance of Khovanov
homology for virtual knots with arbitrary coefficients under Z-equivalence.







Bracket Polynomial is Unchanged
when smoothing flanking virtuals.
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Virtualization does not change the 1Q(K).

] \ali
A\
Figure 8. IQ(Virt)

The composition ab can denote a group theoretic operation
For example, let ab = b.a(-1).b where a.b is group
multiplication. The resulting group presentation is, for
classical knots, the fundamental group of the two-fold
branched covering along the knot.




q <Virt(K)> = <Switch(K)>
Q and

< 1Q(Virt(K)) = IQ(K).

Conclusion: There exist infinitely many
non-trivial Virt(K) with unit Jones
polynomial.
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Figure 24: Z-equivalence

Gauss diagram, a crossing is virtualized by reversing its sign and leaving
its arrow unchanged. The reader should note this very specific convention
for the term virtualization. One checks that the Jones polynomial (via the
bracket model [18]) of a knot with a virtualized crossing is the same as
the ones polynomial of that same knot with the crossing switched (a switch
interchanges over and under-crossing lines at the site of the crossing.). Thus,
given a classical knot diagram K, one can choose a subset S of the crossings
so that switching all of them gives an unknot diagram U = S(K) where
S(K) denotes the diagram that results from the diagram K by switching
all the crossings in the subset S. Instead of switching, we virtualize all the
crossings in S to form a virtual knot diagram Virt(K). It then follows that
Virt(K) has unit Jones polynomial, and is a non-trivial knot due to the fact
that its un-oriented Gauss code has not been changed (See [19] for the proof
of non-triviality).

Theorem 2.4. If K is a non-trivial classical knot diagram and Virt(K)
18 the wvirtual diagram described above with unit Jones polynomial, then
Virt(K) is a non-trivial and non-classical virtual diagram.




Rotational Virtual Knots

Disallow VR .




A rotational virtual knot and two rotational virtual links.




[K] = (AA + BB + AB)d + AB[%Q;Q]

Bracket Expansion of a Rotational Virtual Knot
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The Virtual Stevedore is Rotationally Slice




This talk has been a walk through Khovanov
Homology and finding the relevant Frobenius
algebras from the categorical chain complex
and its associated 4Tu relation.We find the 4Tu
relation naturally in looking for relations on
surface cobordisms that render the theory
invariant under isotopy of links.

There are many questions!




Other directions involve the question of an
appropriate homotopy context for
Khovanov Homology.

Work of Turner, Everitt, Lipshitz an Sarkar shows
how to produce spectra whose homotopy is
Khovanov Homology and spaces whose homology
is Khovanov homology.




Simplicial Stucture of Khovanov Homology

Work of Chris Gomes and LK shows how to use
Dold-Kan construction to make homotpy spectra
for link homologies.

Dold-Kan Functor: Chain Compexes ----- >
Homotopy Simplical Objects




A cube category is the same as a simplex category with
one full face removed. The nerve of the cube category
is the same as a sub-barycentric subdivision of the
remainder part of the deleted simplex.

Moral:
We can work
simplicially
by using the cube
category
with a trivial
O-th partial boundary.




One can then make spaces whose homology is
Khovanov homology by forming the geometric
realization of the corresponding simplicial objects.




By adding degeneracies to the simplicial objects
(as in ,<012> ----> <0112>)
one can do homotopy theory with them.
In particular one can realize spaces whose weak homotopy
type corresponds to the chain homotopy type
of the Khovanov complex.




A related insight (due to Jozef Przytycki) is that
Khovanov homology from the cube category can be
understood to be the cohomology of the nerve
of that category with coefficients via the Frobenius algebra
functor.




For a discrete category C, it is well-known how to compute the cohomology of the
topos BC of presheaves on C (cf. Chapter I, Section 2). Let A be an abelian group in
BC (an object of Ab(BC), in the notation of Section 1.4). Using the nerve of C, one
can define a cochain complex C*(C, A), with

C”(C,A) = H A(Cn)§

CQ+— ...t Cp

the coboundary d: C"~!(C, A) — C"(C, A) is described as

(dﬂ,) fi fn = Z(_l)ta’d.(c(}h—...h—cn) + (_1)nA(fﬂ)(1’d"(C0+-—.__¢—cn)‘,\
€O+~ ... +—Cn i=0

where d;(cg «+ ... — ¢,) denotes the familiar simplicial boundary:

CL — ... +— ¢, (i =0)
d( f1 fn _ feofiga .
ilCo «— ... (_Cn)— Co & ... Cio & Gy & ... & Cy (0 <1 <n)
Co — ... —Choy (1=mn).

The cohomology of this complex is (usually called) the cohomology of the category C

with coefficients in A, and 1s denoted
H(C,A).

It is the same as the cohomology of tlie topos BC:




The momhisms in a simplex category (category based on

the face morphisms of a single simplex) have the shape

of the barycentric subdivision of that simplex. This implies

that simplex homology for a module category that is a functorial

image of a simplex category is the same as the homology
of the nerve of the functorial image category.

<1>

<3>

<3




We have been exploring the
cohomology of categories.







