
KNOTS, GRAPHS, SURFACES IN DIMENSIONS 3 AND 4
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1. Basic results on knots, graphs and surfaces in dimensions 3 and 4

We start out with several definitions and fairly elementary statements. Basically all of
the following have appeared in one form or another in earlier papers or at least drafts for
papers by the author.
Let Σ3 be an integral homology sphere and let L ⊂ Σ3 be an oriented m-component

link. We pick an open tubular neighborhood νL of L and we refer to XL = Σ3 \ νL as the
exterior of L. Let us quickly recall the calculation of the homology groups of Σ3 \L. Given
any i ∈ N we have

Hi(Σ
3\L) ∼= Hi(Σ

3\νL︸ ︷︷ ︸
=XL

) ∼= H3−i(XL, ∂XL) ∼= H3−i(Σ3, νL) ∼= H̃2−i(νL) =

{
Zm, if i = 1,
Zm−1, if i = 0.

We write H = H1(XL;Z), which in this case we can identify with Zm. We consider the
Alexander module H1(XL;Z[H]). We make the following observations:

(1) Each Hi(XL;Z[H]) is finitely presented. We deduce this fact from the observation
that XL is a compact manifold and Z[H] is Noetherian.

(2) We can calculate the Z[H]-homology groups of XL using a 2-dimensional chain
complex. This follows from the observation that XL is homotopy equivalent to a 2-
dimensional CW-complex XCW

L (this can be seen say by pushing in 3-simplices of a
triangulation, starting from the boundary), and that the singular homology groups
of XL agree with the cellular homology groups of XCW

L . For example it follows that

H2(XL;Z[H]) = HCW
2 (XCW

L ;Z[H]) ⊂ CCW
2 (XCW

L ;Z[H])

is torsion-free.
(3) We define ∆L ∈ Z[H] to be the order of H1(XL;Z[H]).

At times it is interesting to generalize questions from links to spatial graphs. Recall that
a spatial graph is an embedded graph Γ in S3. We pick a regular neighborhood νΓ. With
the same argument as above we can calculate the homology groups of S3 \ Γ. For example
for the spatial graph in Figure 1 we have H1(S

3 \ Γ) ∼= Z2 and H2(S
3 \ Γ) = 0. As above

we write H = H1(S
3 \ νΓ;Z). We can study the Alexander module H1(S

3 \ νΓ;Z[H]) and
the same observations as above apply.
In the remainder of the introduction we want to study knots in S3. Here we write

Z[H] = Z[t±1]. We say that a knot K ⊂ S3 is topologically slice if K bounds a locally flat
1
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Figure 1.

disk D ⊂ B4. A locally flat disk admits an open tubular neighborhood νD and we refer to
ED := B4 \ νD as the exterior of D. As above we can make the following observations:

(1) Each Hi(ED;Z[t±1]) is finitely presented.
(2) We can calculate the Z[H]-homology groups of XL using a 3-dimensional chain

complex. In particular H3(ED;Z[t±1]) is torsion-free.

The following proposition gives the most basic obstruction to a knot being topologically
slice.

Proposition 1.1. If K is topologically slice, then ∆K = f(t)f(t−1) for some f(t) ∈ Z[t±1].

As an example, for the trefoil we have ∆K = 1−t+t2 we do not have such a factorization
which implies that the trefoil is not topologically slice.

Proof. We consider the long exact sequence of the Z[t±1]-homology of the pair (ED, XK):

0→H2(ED;Z[t±1])→H2(ED;Z[t±1])→H1(XK ;Z[t±1])→H1(ED;Z[t±1])→H1(ED;Z[t±1])→0.

Using Poincaré duality one relates the groups to the left and the right and one quickly sees
that ∆K = f(t)f(t−1) for some f(t) ∈ Z[t±1]. �

More interesting sliceness obstructions are given by the linking form and the Blanchfield
form. These can be viewed as odd-dimensional versions of the more familiar linking forms.
We recall the definition of the intersection form of a 4-dimensional manifold W :

IW : H2(W ;Z)×H2(W ;Z) → Z
(a, b) 7→ ⟨PDW (a) Y PDW (b), [W ]⟩

It follows from the (anti-) commutativity of the cup-product that the intersection form
is symmetric. This form can be calculated on the homology level by counting algebraic
intersection numbers of surfaces that represent the homology classes, or more generally
by counting algebraic intersection numbers of singular chains that represent the given
homology classes. If we are given an epimorphism π1(W ) → Z = ⟨t⟩ then using the
equivariant intersection number of cycles we can also define a Z[t±1]-valued intersection
form

H2(W ;Z[t±1])×H2(W ;Z[t±1]) → Z[t±1].

Now that we have recalled the definition of intersection forms we can give the definition
of linking forms. We denote by YK the 2-fold branched cover of K. In this case we know
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that H1(YK ;Z) is torsion and we can define the linking form which usually is defined as
follows:

λK : H1(YK ;Z)×H1(YK ;Z) → Q/Z
([a], [b]) 7→ 1

n
a ·B

where a and b are 1-cycles that do not meet, n is chosen such that n · b is null-homologous,
i.e. there exists a singular 2-chain B and we denote by a ·B the intersection number of the
singular chains. The linking form is again symmetric.

Proposition 1.2. If K is topologically slice, then λK is metabolic, i.e. there exists a sub-
group P ⊂ H1(YK ;Z) with P = P⊥, where

P T = {b ∈ H1(YK ;Z) |λK(a, b) = 0 for all a ∈ H1(YK ;Z)}

denotes the orthogonal complement of P .

Proof. We denote by ZD the 2-fold cover of B4, branched along D. By considering the
pair (ZD, YK) and again using Poincaré duality one can show that P := ker{H1(YK ;Z) →
H1(ZD;Z)} is a metabolizer, i.e. it has the property that P = P⊥. �

The same way that we generalized the Z-valued intersection form to a Z[t±1]-valued
intersection form we can also generalize the Q/Z-valued linking form to a Q(t)/Z[t±1]-
valued linking form:

λK : H1(YK ;Z[t±1])×H1(YK ;Z[t±1]) → Q(t)/Z[t±1]
([a], [b]) 7→ 1

∆K
a ·B

where a, b ∈ C1(YK ;Z[t±1]) = C1(ỸK) are chains, B ∈ C(YK ;Z[t±1]) = C2(ỸK) is a chain
with ∂B = ∆K · a and a · B denotes the equivariant Z[t±1]-valued intersection form of
singular chains.

2. Questions and some answers

2.1. Tubular and regular neighborhoods. A first question is, what do we mean by a
tubular and regular neighborhood? If we go back to the above discussion we see that in
the calculation of the homology groups of Σ3 \ L we used the following three properties:

(a) we used that the closure νL is a codimension 0 zero submanifold,
(b) we used that νL is homotopy equivalent to L,
(c) we used that Σ3 \ νL is homotopy equivalent to Σ3 \ L.

We also talked about the tubular neighborhood of L ⊂ Σ3, the tubular neighborhood of
K ⊂ Σ3, D ⊂ B4 and of Γ ⊂ S3 and correspondingly we talked about the exterior of
K ⊂ S3, D ⊂ B4 and of Γ ⊂ S3. Evidently a tubular neighborhood is not entirely unique,
so the question is, what type of uniqueness did we really use? When we talk about the
exterior then we clearly expect that the exterior is well-defined up to homeomorphism. So
we really want the following fourth property:
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(d) Given any two tubular/regular neighborhoods νJ and µJ of some J ⊂ M we need
that there exists a homeomorphism Φ: M → M with Φ(νJ) = µJ . (Ideally we
want the homeomorphism to be isotopic to the identity.)

How are we doing on this account?

(1) First of all, unfortunately there does not seem to be a universally agreed upon con-
cept of a tubular neighborhood of a submanifold. Nonetheless it seems to me that
this can be fixed and that there exists a general notion of a tubular neighborhood of
a submanifold that satisfies the obvious generalizations of (a), (b) and (c) and that
also satisfies (d). For example in [Fr18, Chapter 57.2] we define a (closed) tubular
neighborhood of Lk ⊂ Mk+n as an embedded linear B

n
-bundle over L. Another def-

inition which works well is the notion of an “extendable normal vector bundle” that
is introduced in [FQ90, p. 137]. We also refer to [Kos93, Section III.2] or alterna-
tively [Bre93, Theorem II.11.14], [Le02, Theorem 6.24] and [BJ82, Theorem 12.11]
for more information on tubular neighborhoods.

(2) For spatial graphs the first question that arises is, what do we mean by an “embed-
ded” graph? Unfortunately often this is not made clear. One possible definition is
given in [Fr18, Chapter 1.8]. I could not find a reference that shows that given a
spatial graph there exists a notion of a regular neighborhood with properties (a),
(b), (c) and (d).
In the case of a PL-manifold M and a “compact polyhedron” X in M a “regular

neighborhood” N(X) is introduced in [RS72, p. 33]. By [RS72, Theorem 3.8, Propo-
sition 3.10 and Corollary 3.30] this notion of a regular neighborhood has properties
(a), (b) and (d). I am not sure whether (b) is satisfied. Also the notion of a “regular
neighborhood” used in [RS72] seems to me slightly artificial for a topologist.

(3) It seems like [FQ90, p. 137] can be used to define a notion of a tubular neighborhood
of a topological submanifold of a topological 4-dimensional manifold that satisfies
(a), (b), (c) and (d).

2.2. The topology of compact topological 4-manifolds. In many text books, e.g.
[Bre93, E.5.Corollary] or [Hat02, p. 527] it is shown that the every compact topological
manifold is a retract of a finite CW-complex. From this fact it follows immediately that
the usual singular homology groups are finitely generated. But this result is not good
enough for dealing with twisted coefficients.
Kirby and Siebenmann [KS77, Essay III.2] showed that every closed topological manifold

of dimension ≥ 6 has a CW-structure. In 1982 Quinn [Qu82] extended this result to the
case of 5-dimensional manifolds. We point out that Kirby–Siebenmann often get misquoted,
often it is claim that they show that every compact topological manifold of dimension ≥ 6
admits a CW-structure.
What is true is that every compact topological manifold is homotopy equivalent to a finite

CW-complex. This follows from the work of Hanner [Han51, Theorem 3.3] who showed in
1950 that every topological manifold is an “absolute neighborhood retract”. West [Wes77]
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(see also [KS77]) showed in 1977 that every compact “absolute neighborhood retract” is
homotopy equivalent to a compact CW-complex.
This discussion shows why in the first section the modules H∗(ED;Z[t±1]) are finitely

generated. But the references we have collected so far are not enough to deduce that
H3(ED;Z[t±1]) is torsion-free.
Using [Wal66, Corollary 5.1] and the computations of homology groups of topological

manifolds one obtains the following strengthening of the above results:

(1) Every closed n-dimensional topological manifold is homotopy equivalent to a finite
n-dimensional CW-complex.

(2) Every compact, connected n-dimensional topological manifold with non-empty bound-
ary is homotopy equivalent to a finite (n− 1)-dimensional CW-complex.

2.3. Cup products and intersecting cycles. The intersection form of a 2k-dimensional
manifold W is defined via the cup product:

IW : Hk(W ;Z)×Hk(W ;Z) → Z
(a, b) 7→ ⟨PDW (a) Y PDW (b), [W ]⟩

At least for smooth manifolds the intersection form can be calculated using intersection
numbers of embedded submanifolds, see e.g. [Bre93, Chapter VI.11] for a rigorous proof.
I do not know a reference in the literature for the statement that the cup product can be
calculated by “immersed submanifolds” let alone by “intersecting cycles”. A proof for the
later statement will appear in [Fr18b]. For illustration we give the proof of the following
lemma which is a simplified version.

Lemma 2.1. Let W be an oriented 2k-dimensional topological manifold. If a ∈ Hk(W ;Z)
and b ∈ Hk(W ;Z) can be represented by disjoint cycles, then IW (a, b) = 0.

Proof. By our hypothesis we can find disjoint compact subsets A and B of W such that a
lies in the image of Hk(A) → H2(W ) and b lies in the image of Hk(B) → Hk(W ). Since
W is metrizable we can in fact find disjoint open subsets U and V of W that contain A
and B. In particular a lies in the image of Hk(U) → Hk(W ) and b lies in the image of
Hk(V ) → Hk(W ).
We denote by i : U → W the inclusion. We consider PDU(i∗(a)) ∈ Hk

c (U). By definition
of cohomology with compact support there exists a compact subset K such that PDU(i∗(a))
lies in the image of the mapHk(U,U\K) → Hk

c (U). We consider the following commutative
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diagram:

Hk
c (U)

PDU

∼=
//

i∗

��

Hk(U)

i∗

��

Hk(U,U \K)

iiSSSSSSSSSSS XµU,K

33hhhhhhhhhhhhhhhhhh

(i∗)−1

��

Hk(W )
PDW

∼=
// Hk(W )

Hk(W,W \K).

iiSSSSSSSSSSS X[W ]

33hhhhhhhhhhhhhhhhh

We have thus shown that PDW (a) lies in the image of Hk(W,W \K) → Hk(W ) for some
compact subset K ⊂ U . The same argument shows that PDW (a) lies in the image of
Hk(W,W \L) → Hk(W ) for some compact subset L ⊂ V . The statement follows from the
following commutative diagram

Hk(W )×Hk(W )
Y // Hn(W )

Hk(W,W \K)×Hk(W,W \L)

OO

Y // Hn(W, (W \K) ∪ (W \L)︸ ︷︷ ︸
=W

).

OO

and the observation that the group in the lower right corner is zero. �
Things are even worse for the Z[t±1]-valued intersection form

Hk(W ;Z[t±1])×Hk(W ;Z[t±1]) → Z[t±1].

It requires some thought to define this form using cup products. I do not know a reference
which proves that such intersection forms can be calculated using embedded submanifolds
let alone by intersecting cycles. Presumably with quite some effort one can generalize the
above approaches in the untwisted case.

2.4. Linking forms. LetM be an (2n+1)-dimensional rational homology sphere with n ≥
1. In this case the Bockstein homomorphisms in homology and cohomology in dimension
n are in fact isomorphisms. We denote by Ω the composition

Hn(M ;Z)
PDZ

M−−−→ Hn+1(M ;Z) β−1

−−→ Hn(M ;Q/Z) ev−→ HomZ(Hn(M ;Z),Q/Z)
φ 7→ (σ 7→ ⟨φ, σ⟩).

The linking form of M is the form

λM : Hn(M ;Z)×Hn(M ;Z) → Q/Z
defined by λM(a, b) = Ω(a)(b). From the definition it is not immediate that linking forms
are symmetric. A not entirely rigorous argument was given by Seifert [Se35]. Modern
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rigorous proofs are given in [Po16, CFH17]. In the introduction I defined the linking form
using “intersections of cycles”. I do not know a reference for this statement. Using the
calculation of the “intersection form” H1(N ;Z) ×H2(N ;Q/Z) → H3(N ;Q/Z) = Q/Z in
terms of intersections of cycles one should be able to prove the above formula. I hope to
return to this question after [Fr18b].
The Blanchfield form can also be defined using Poincaré duality. With more effort one

should be able to push the afore mentioned techniques to show that the two definitions are
the same. Again I hope to return to this question later on.
It is natural to like to think of intersection forms as intersections of objects. After all, this

is where the inspiration for the definition comes from. It takes a while to get used to working
with cup products. But once one got its head around to working with cup products, they
are not so hard to work with. For example in [CFH17] we used cup products to determine
the linking form of all rational homology 3-spheres in terms of the Heegaard splitting.
To state the result we need some notation. Given an orientation-reversing self-diffeo-

morphism φ of the genus g surface Fg we write M(φ) := Xg ∪φ Zg where we identify x ∈
Fg = ∂Xg with φ(x) ∈ ∂Zg. We give M(φ) the orientation which turns both the inclusions
Xg → M(φ) and Zg → M(φ) into orientation-preserving embeddings. Furthermore we
denote by (

Aφ Bφ

Cφ Dφ

)
the matrix that represents φ∗ : H1(Fg;Z) → H1(Fg;Z) with respect to a symplectic basis
a1, . . . , ag, b1, . . . , bg.

Theorem 2.2. Let g ∈ N and let φ : Fg → Fg be an orientation-reversing diffeomorphism.
If M(φ) is a rational homology sphere, then Bφ ∈ M(g× g,Z) is invertible and the linking
form of M(φ) is isometric to the form1

Zg/BT
φZg × Zg/BT

φZg → Q/Z
(v, w) 7→ vTB−1

φ Aφw.
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