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A (general) knot theory is a groupoid with diagrams as

objects and morphisms generated by a set of R -moves.

A knot is a component of the theory.

For example planar knot diagrams and Reidemeister moves
define

Classical Knot Theory

But there is more.
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As well as planar diagrams, there are arrow diagrams, simple

polygonal circuits in R
3
, immersed hypersurfaces in R

n
,

etc, etc.
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Planar diagrams are immersed 1-manifolds in the plane, in

general position, This covers the usual diagrams for classical
knots as well as braids and knotoids.

We extend this with a ”tag” at each crossing.

c c̄

Positive and negative classical crossings

f v, w

flat and virtual /weld crossings

s s̄

singular crossings
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We can now generalize to arbitary tags as follows.

ǫ ǭ

general crossing tag
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The general R -moves look like the following. They are the

analogues of the Reidemeister moves except R4 which is a
newcomer.

⇔R±

1
(ǫ) ǫ

ǫ ǭ
⇔R±

2
(ǫ)

ǫ η

ξ
⇔R3(ǫ, η, ξ) ǫη

ξ

ǫ η
⇔R±

4
(ǫ, η)

η ǫ±

general Reidemeister moves

R1, R2, and R4 are signed according to the ambiguity of

the orientation. R3 can always be oriented from left to right,
if R2 is allowed, by a trick due to Turaev and we shall always

assume this.
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If R3(ǫ, η, ξ) we say that the pair (ǫ, η) dominates ξ
and sometimes write (ǫ, η) ≻ ξ .

If (ǫ, ǭ) ≻ ξ then we say that ǫ dominates ξ .

If this is true for all ξ then we say that ǫ dominates the
theory.

The R -moves for generalized planar diagrams are a set of
rules which may be allowed or forbidden.

For example, in classical knot theory, all the R1 and R2

moves are allowed and both c and c̄ dominate.

In virtual knot theory, all the R1 and R2 moves are allowed

and v dominates every thing. However neither c or c̄ are
allowed to dominate v .

In welded knot theory w has all the properties of v but in
addition c dominates w but c̄ is not allowed to dominate
w .
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The various tags c, v, w etc have known properties within

themselves but have rules for interactions between two. So a
knot theory can be represented as a sort of presentation.

For example classical knot theory has the ”free” presentation

< c, c̄| >

because we know the properties of c .

Virtual knot theory has the presentation

< c, v|v ≻ c, c̄ >

Welded knot theory allows the ”first forbidden move”

< c, c̄, w|c ≻ w >

The ”second forbidden move” c̄ 6≻ v is forbidden.

Doodles have a presentation

< f, v|R1(f), R2(f), v ≻ f >

Free knots have the same generators as doodles but more re-

lations

< f, v|R1(f), R2(f), v ≻ f, f ≻ f,R4(f, v) >

etc
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Doodles and commutator identities

Doodles give rise to commutator identities in the free group

ab

c

ab

c

The left hand side yields the defining identity

(a, c)b(b, c)(b, a)c(c, a)(c, b)a(a, b) ≡ 1

where for example, (a, c)b = b−1(a−1c−1ac)b , and the
right hand side yields

(bc, a)(ca, b)(ab, c) ≡ 1.

Another which can be extracted from the borromean doodle

is the Hall-Witt identity,

((a, b), ca)((c, a), bc)((b, c), ab) ≡ 1

This is a group-theoretic analogue of the Jacobi identity for

Lie algebras.
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Braid like Planar Diagrams

Let f : S1 −→ R
2

be a component of a planar diagram.
Let O be a point not on the diagram. Then the component

is braid like from O if the map f̂ : S1 −→ S1 defined

by

f̂(x) =
f(x)−O

||f(x)−O||

is a covering.

O

For example the Trefoil

Generalized Alexander Theorem (Bartholemew,

F) Every knot in a theory which has R2 has a braid like
planar representative.
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Generalized Markov

Generalized Markov Theorem (Bartholemew, F)
Consider a knot theory which is dominated by the tag ǫ .
Let D1 and D2 be braid like planar diagrams in the the-
ory which represent the same knot. Then D1 and D2 are

related by the following moves which preserve the braid like
structure: R2 , R3 , Markov extension and the K -move.

η η̄

...
...A B

⇔ ǫ ǭ

...
...A B

The K -move

In the case of classical and welded knots, the K move is not
necessary but for virtual knots it is.
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Arrow Diagrams

Where a component crosses itself we represent this by an arrow
forming the chord of a circle.

ǫ
→

ǫ
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R moves for Arrow Diagrams

ǫ ⇔

arrow diagrams under R1

ǫ

ǭ
⇔ ⇔

ǫ

ǭ

arrow diagrams under R2

ǫ

η

ξ ⇔ ǫ

η

ξ

arrow diagrams under R3

ǫ
η

⇔

η

ǫ±

arrow diagrams under R4

13



Free Knots

Free knots are represented by arrow diagrams without tags
and without arrow heads.

They satisfy all the R -moves above and can sometimes be
defined by a permutation.

1

2
3

4 5
6

7

8

1

2
3

4 5
6

7

8

A free knot defined by a permutation

The 3-morning star. This is not defined by a permutation.

14



PL diagrams

The diagrams are simple polygonal circuits in R
3

up to
homeomorphisms which preserve the polygonal structure.

The R -moves are of two types.

⇔

⇔

Although the first is a consequence of the second.
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A knot is ordered if each diagram has an order which is

changed by an R move.

A knot is uniradical if every diagram has a descending path

to a unique root (sink).

For example a classical knot, represented by a polygonal loop,

could be ordered by the number of edges (vertices), the stick
number.

However if we order a polygonal representative of the unknot

by the minimum number of triangles in a triangulated span-
ning disk then we see that the unknot is uniradical.

There are other uniradical statements for doodles (Barthole-
mew, N. Kamada, S. Kamada, F), virtual knots (Kuperberg),

singular knots (Jordan, Rourke, F), etc.
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Theorem (Newman) An ordered knot is uniradical iff

1. There are no infinite descending paths
2. Every path of the form ascending/descending (րց ) can

be repaced by one descending/ascending (ցր ).
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The R -complex of a knot

The groupoid of a knot, K , with diagrams as objects and
morphisms generated by R -moves can be made into a sim-

plicial set, RK , in a standard way.

The n -simplexes of RK are composible sequences of mor-

phisms of length n

(D0

f0
−→ D1

f1
−→ · · ·

fn−1

−→ Dn) = (f0, . . . , fn−1)

The i -th face, di is

(f0, . . . , fi ◦ fi+1, . . . , fn−1)

if 0 < i < n− 1

(f1, . . . , fn−1), (f0, . . . , fn−2)

for i = 0, n− 1

The i -th degeneracy, si is

(f0, . . . , 1Di
, fi, fi+1, . . . , fn−1)
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The k -th horn Λn
k for each k ≤ n , is the subcomplex

of the boundary of the standard n -simplex, ∆n with the
k -th face removed.

A simplicial set, S , is Kan if any functor Λn
k −→ S

extends to ∆n −→ S .

The R -complex of a knot, RK , is Kan. This means that
the homotopy groups of RK can be defined.

For any knot, RK is a K(π, 1) .

19



Some Questions

Since RK is a K(π, 1) what is π for say the trefoil, the
figure eight . . . ?

Are the homology groups of RK interesting?

What’s Khovanov homology got to do with RK ?

Is RK , for a uniradical knot K , contractible?
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