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Braid group setup

Let n ≥ 3 and let [n] = {1, . . . ,n} ∼= Z/nZ.

For j ∈ [n] let vj = exp(2πij/n) ∈ C and let V = {v1, . . . , vn}.

Let P = CONVV and put

CONFn(P) = {(x1, . . . , xn) ∈ Pn | i 6= j ⇒ xi 6= xj}
UCONFn(P) = CONFn(P)/Sn

BRAIDn = π1(UCONFn(P),V ).

v1v2

v3

v4 v5

v6



Braid group setup

Let n ≥ 3 and let [n] = {1, . . . ,n} ∼= Z/nZ.

For j ∈ [n] let vj = exp(2πij/n) ∈ C and let V = {v1, . . . , vn}.

Let P = CONVV and put

CONFn(P) = {(x1, . . . , xn) ∈ Pn | i 6= j ⇒ xi 6= xj}
UCONFn(P) = CONFn(P)/Sn

BRAIDn = π1(UCONFn(P),V ).

v1v2

v3

v4 v5

v6



Boundary braids

Let B ⊆ [n] with |B| = k . The subgroup FIXn(B) consists of braids
that fix VB. It is an irreducible parabolic subgroup, isomorphic to
BRAIDn−k .

The subset BRAIDn(B) consists of braids whose strands starting in
VB stay in ∂P. We call its elements boundary braids.
We denote by MOVEn(B) the set of paths in UCONFk (∂P) starting in
VB and ending some VB′ , and call its elements moves.
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Decomposing boundary braids

FIXn(B) BRAIDn(B) MOVEn(B)
f

σ

I For every move pick a boundary braid that realizes it.
I Then every boundary braid decomposes uniquely according to

BRAIDn(B) = FIXn(B)MOVEn(B).

Goal: make a canonical choice.
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Motivation: CAT(0)-geometry
A metric space X is CAT(0) if any two points can be connected by a
geodesic and if triangles are at most as thick as in euclidean space:

X
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z

d̄d ≤ d̄

Examples.
I Riemannian manifolds of non-positive sectional curvature.
I Coxeter complexes and buildings.
I Cube complexes whose links are flag.
I Products and convex subsets of CAT(0)-spaces.

Fact. If G acts freely, properly and cocompactly on a CAT(0)-space,
it is torsion-free and has solvable word- and conjugacy problem.
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Non-crossing partitions as generators

For I ⊆ [n] let VI = {vi , i ∈ I}. A partition π = {B1, . . . ,Bk} of [n] is
non-crossing if CONVVBi ∩ CONVVBj = ∅ for i 6= j .
Non-crossing partitions form a lattice denoted NCn.

Every non-crossing partition π defines a braid δπ.
The braids (δπ)π∈NCn generate BRAIDn.
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The dual braid complex

Let CAY(Bn, (δπ)π∈NCn ) be the Cayley graph.
The flag complex of CAY(Bn, (δπ)π∈NCn ) is the dual braid complex
CX(BRAIDn) of dimension n − 1.

BRAIDn acts on it freely and cocompactly.
Theorem (Brady ’01). The dual braid complex is contractible.
The dual braid complex carries the orthoscheme metric
by Brady and McCammond.
Conjecture (Brady–McCammond ’10).
The dual braid complex is CAT(0).

Theorem (Brady–McCammond ’10).
CX(BRAIDn) is CAT(0) for n ≤ 5.

Theorem (Haettel–Kielak–Schwer ’16).
CX(BRAIDn) is CAT(0) for n = 6.
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Complexes associated to boundary braids

Define CX(FIXn(B)) ≤ CX(BRAIDn(B) ≤ CX(BRAIDn) to be the full
subcomplexes supported on FIXn(B) and BRAIDn(B).

Define CX(MOVEn(B)) by analogy.
Lemma. CX(MOVEn(B)) is a euclidean
polyhedron.
In particular, it is CAT(0).
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Main result
Theorem (DMW). There is a decomposition of metric spaces

CX(BRAIDn(B)) = CX(FIXn(B))︸ ︷︷ ︸
∼=CX(BRAIDn−k )

× CX(MOVEn(B))︸ ︷︷ ︸
euclidean polyhedron

.

Corollary. If CX(BRAIDn−k ) is CAT(0) then so is CX(BRAIDn(B)).
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