The complex of boundary braids

Stefan Witzel

Universität Bielefeld

joint work with Michael Dougherty and Jon McCammond UC Santa Barbara

> Winter Braids VIII February 5 to 9, CIRM

> > ▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

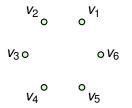
Boundary braids

The dual braid complex

Decomposing boundary braids

Braid group setup

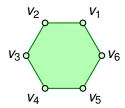
Let $n \ge 3$ and let $[n] = \{1, \dots, n\} \cong \mathbb{Z}/n\mathbb{Z}$. For $j \in [n]$ let $v_j = \exp(2\pi i j/n) \in \mathbb{C}$ and let $V = \{v_1, \dots, v_n\}$.



Braid group setup

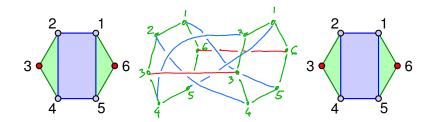
Let $n \ge 3$ and let $[n] = \{1, ..., n\} \cong \mathbb{Z}/n\mathbb{Z}$. For $j \in [n]$ let $v_j = \exp(2\pi i j/n) \in \mathbb{C}$ and let $V = \{v_1, ..., v_n\}$. Let P = CONVV and put

$$CONF_n(P) = \{(x_1, \dots, x_n) \in P^n \mid i \neq j \Rightarrow x_i \neq x_j\}$$
$$UCONF_n(P) = CONF_n(P)/S_n$$
$$BRAID_n = \pi_1(UCONF_n(P), V).$$



Boundary braids

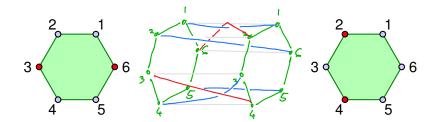
Let $B \subseteq [n]$ with |B| = k. The subgroup $Fix_n(B)$ consists of braids that fix V_B . It is an irreducible parabolic subgroup, isomorphic to BRAID_{*n*-*k*}.



Boundary braids

Let $B \subseteq [n]$ with |B| = k. The subgroup $Fix_n(B)$ consists of braids that fix V_B . It is an irreducible parabolic subgroup, isomorphic to BRAID_{*n*-*k*}.

The subset $BRAID_n(B)$ consists of braids whose strands starting in V_B stay in ∂P . We call its elements boundary braids.

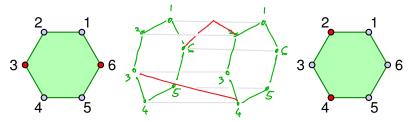


Boundary braids

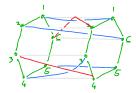
Let $B \subseteq [n]$ with |B| = k. The subgroup $Fix_n(B)$ consists of braids that fix V_B . It is an irreducible parabolic subgroup, isomorphic to BRAID_{*n*-*k*}.

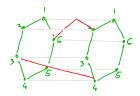
The subset $BRAID_n(B)$ consists of braids whose strands starting in V_B stay in ∂P . We call its elements boundary braids.

We denote by $MOVE_n(B)$ the set of paths in $UCONF_k(\partial P)$ starting in V_B and ending some $V_{B'}$, and call its elements moves.

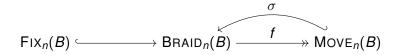


$$FIX_n(B) \longrightarrow BRAID_n(B) \xrightarrow{f} MOVE_n(B)$$

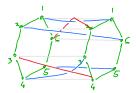


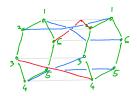


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

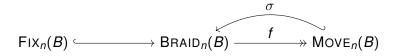


For every move pick a boundary braid that realizes it.





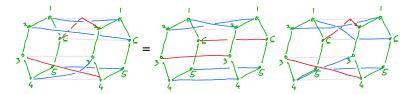
・ロト・日本・日本・日本・日本・日本

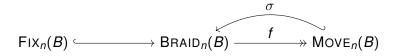


- For every move pick a boundary braid that realizes it.
- Then every boundary braid decomposes uniquely according to

 $BRAID_n(B) = FIX_n(B)MOVE_n(B).$

・ロット (雪) ・ (日) ・ (日)

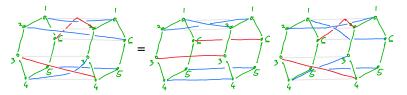




- For every move pick a boundary braid that realizes it.
- Then every boundary braid decomposes uniquely according to

 $BRAID_n(B) = FIX_n(B)MOVE_n(B).$

・ コット (雪) (小田) (コット 日)

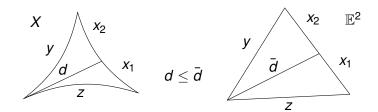


Goal: make a canonical choice.

A metric space X is CAT(0) if any two points can be connected by a geodesic and if triangles are at most as thick as in euclidean space:

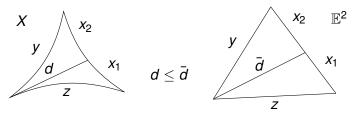
(ロ) (同) (三) (三) (三) (○) (○)

A metric space X is CAT(0) if any two points can be connected by a geodesic and if triangles are at most as thick as in euclidean space:



・ロット (雪) ・ (日) ・ (日)

A metric space X is CAT(0) if any two points can be connected by a geodesic and if triangles are at most as thick as in euclidean space:



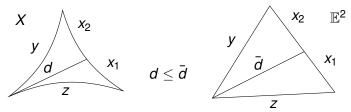
Examples.

Riemannian manifolds of non-positive sectional curvature.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Coxeter complexes and buildings.
- Cube complexes whose links are flag.
- Products and convex subsets of CAT(0)-spaces.

A metric space X is CAT(0) if any two points can be connected by a geodesic and if triangles are at most as thick as in euclidean space:



Examples.

- Riemannian manifolds of non-positive sectional curvature.
- Coxeter complexes and buildings.
- Cube complexes whose links are flag.
- Products and convex subsets of CAT(0)-spaces.

Fact. If *G* acts freely, properly and cocompactly on a CAT(0)-space, it is torsion-free and has solvable word- and conjugacy problem.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

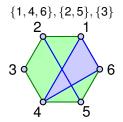
Boundary braids

The dual braid complex

Decomposing boundary braids

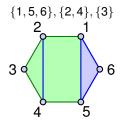
For $I \subseteq [n]$ let $V_I = \{v_i, i \in I\}$. A partition $\pi = \{B_1, \ldots, B_k\}$ of [n] is non-crossing if CONV $V_{B_i} \cap \text{CONV} V_{B_j} = \emptyset$ for $i \neq j$. Non-crossing partitions form a lattice denoted NC_n.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



For $I \subseteq [n]$ let $V_I = \{v_i, i \in I\}$. A partition $\pi = \{B_1, \ldots, B_k\}$ of [n] is non-crossing if CONV $V_{B_i} \cap \text{CONV} V_{B_j} = \emptyset$ for $i \neq j$. Non-crossing partitions form a lattice denoted NC_n.

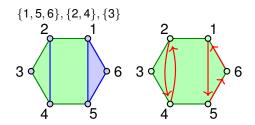
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの



For $I \subseteq [n]$ let $V_I = \{v_i, i \in I\}$. A partition $\pi = \{B_1, \ldots, B_k\}$ of [n] is non-crossing if CONV $V_{B_i} \cap CONV V_{B_j} = \emptyset$ for $i \neq j$. Non-crossing partitions form a lattice denoted NC_n.

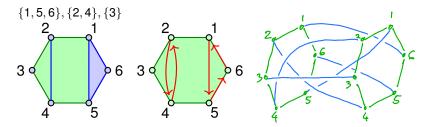
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Every non-crossing partition π defines a braid δ_{π} . The braids $(\delta_{\pi})_{\pi \in NC_n}$ generate BRAID_n.



For $I \subseteq [n]$ let $V_I = \{v_i, i \in I\}$. A partition $\pi = \{B_1, \ldots, B_k\}$ of [n] is non-crossing if CONV $V_{B_i} \cap CONV V_{B_j} = \emptyset$ for $i \neq j$. Non-crossing partitions form a lattice denoted NC_n.

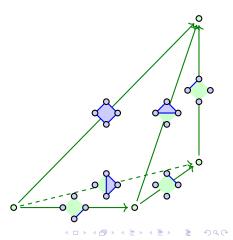
Every non-crossing partition π defines a braid δ_{π} . The braids $(\delta_{\pi})_{\pi \in NC_n}$ generate BRAID_n.



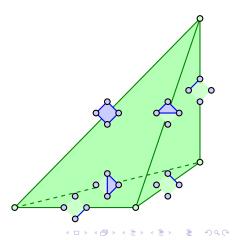
Let $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ be the Cayley graph. The flag complex of $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ is the dual braid complex $CX(BRAID_n)$ of dimension n - 1.

(ロ) (同) (三) (三) (三) (○) (○)

Let $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ be the Cayley graph. The flag complex of $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ is the dual braid complex $CX(BRAID_n)$ of dimension n - 1.

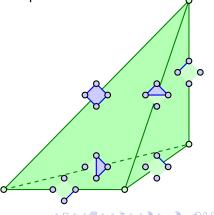


Let $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ be the Cayley graph. The flag complex of $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ is the dual braid complex $CX(BRAID_n)$ of dimension n - 1.



Let $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ be the Cayley graph. The flag complex of $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ is the dual braid complex $CX(BRAID_n)$ of dimension n - 1. BRAID_n acts on it freely and cocompactly.

Theorem (Brady '01). The dual braid complex is contractible.

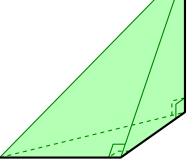


Let $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ be the Cayley graph. The flag complex of $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ is the dual braid complex $CX(BRAID_n)$ of dimension n - 1.

BRAID_n acts on it freely and cocompactly.

Theorem (Brady '01). The dual braid complex is contractible.

The dual braid complex carries the orthoscheme metric by Brady and McCammond.



Let $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ be the Cayley graph. The flag complex of $CAY(B_n, (\delta_{\pi})_{\pi \in NC_n})$ is the dual braid complex $CX(BRAID_n)$ of dimension n - 1. BRAID_n acts on it freely and cocompactly.

Theorem (Brady '01). The dual braid complex is contractible.

The dual braid complex carries the orthoscheme metric by Brady and McCammond.

Conjecture (Brady–McCammond '10). The dual braid complex is CAT(0).

Theorem (Brady–McCammond '10). $Cx(BRAID_n)$ is CAT(0) for $n \le 5$.

Theorem (Haettel–Kielak–Schwer '16). $Cx(BRAID_n)$ is CAT(0) for n = 6.

Outline

Boundary braids

The dual braid complex

Decomposing boundary braids

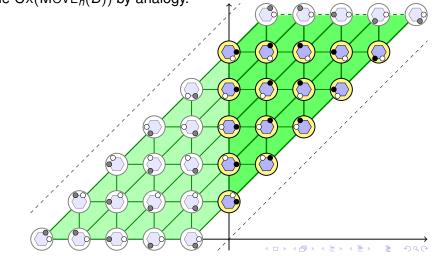
Define $Cx(Fix_n(B)) \le Cx(BRAID_n(B) \le Cx(BRAID_n))$ to be the full subcomplexes supported on $Fix_n(B)$ and $BRAID_n(B)$.

Define $Cx(Fix_n(B)) \le Cx(BRAID_n(B) \le Cx(BRAID_n))$ to be the full subcomplexes supported on $Fix_n(B)$ and $BRAID_n(B)$.

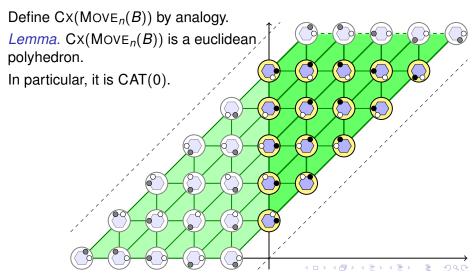
Define $Cx(MOVE_n(B))$ by analogy.

Define $Cx(Fix_n(B)) \le Cx(BRAID_n(B) \le Cx(BRAID_n))$ to be the full subcomplexes supported on $Fix_n(B)$ and $BRAID_n(B)$.

Define $Cx(MOVE_n(B))$ by analogy.



Define $Cx(Fix_n(B)) \leq Cx(BRAID_n(B) \leq Cx(BRAID_n))$ to be the full subcomplexes supported on $Fix_n(B)$ and $BRAID_n(B)$.



Theorem (DMW). There is a decomposition of metric spaces

$$Cx(BRAID_n(B)) = \underbrace{Cx(FIX_n(B))}_{Cx(MOVE_n(B))} \times \underbrace{Cx(MOVE_n(B))}_{Cx(MOVE_n(B))}$$
.

 $\cong Cx(BRAID_{n-k})$ euclidean polyhedron

(ロ)、

Theorem (DMW). There is a decomposition of metric spaces

$$Cx(BRAID_n(B)) = Cx(FIX_n(B)) \times Cx(MOVE_n(B))$$
.

 $\cong Cx(BRAID_{n-k})$ euclidean polyhedron

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

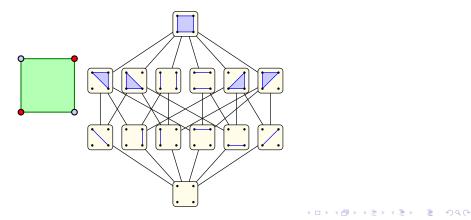
Corollary. If $Cx(BRAID_{n-k})$ is CAT(0) then so is $Cx(BRAID_n(B))$.

Theorem (DMW). There is a decomposition of metric spaces

$$Cx(BRAID_n(B)) = Cx(FIX_n(B)) \times Cx(MOVE_n(B))$$
.

 $\cong Cx(BRAID_{n-k})$ euclidean polyhedron

Corollary. If $Cx(BRAID_{n-k})$ is CAT(0) then so is $Cx(BRAID_n(B))$.



Theorem (DMW). There is a decomposition of metric spaces

$$Cx(BRAID_n(B)) = \underbrace{Cx(FIX_n(B))}_{Cx(MOVE_n(B))} \times \underbrace{Cx(MOVE_n(B))}_{Cx(MOVE_n(B))}$$
.

 $\cong Cx(BRAID_{n-k})$ euclidean polyhedron

Corollary. If $Cx(BRAID_{n-k})$ is CAT(0) then so is $Cx(BRAID_n(B))$.

