Braided Embeddings

Sudipta Kolay

School of Mathematics Georgia Institute of Technology

February 5, 2018

Sudipta Kolay

Braided embeddings

February 5, 2018 1 / 20

イロト イヨト イヨト イヨト ヨー のへで

Introduction

A *braid* is a collection of strands in 3-space going from left to right which are allowed to pass under or over each other.

Figure : A braid

If we close up the ends of a braid, then we get a link.

Figure : Closure of the above braid

Sudipta Kolay

Braided embeddings

February 5, 2018 2 / 20

Introduction

Closing up the ends of a braid gives a link, called a *closed braid*.

Figure : Closure of a braid

Question

Is every link a closed braid?

Sudipta Kolay

Braided embeddings

February 5, 2018

- 32

3/20

Introduction

Closing up the ends of a braid gives a link, called a *closed braid*.

Figure : Closure of a braid

Alexander's Theorem (1923)

Every oriented link in \mathbb{R}^3 is isotopic to a closed braid.

Sudipta Kolay

Braided embeddings

February 5, 2018

3/20

The Braid Group B_n (Artin, 1925)

- ▶ Group structure on braids with *n*-strands:
 - multiplication: concatenation
 - ▶ identity: braid with no crossings
 - ▶ inverse: mirror image

Presentation of braid group

The braid group B_n on n-strands has a presentation

$$B_n = \{\sigma_1, \dots, \sigma_{n-1} | \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \text{ for } 1 \le i \le n-2$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \ if \ |i - j| > 1\}$$

• Forget: $B_n \to S_n$ is a group homomorphism.

Sudipta Kolay

Braided embeddings

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

February 5, 2018

4 / 20

The Braid Group II

Configuration space point of view (Hurwitz, 1891; Fox-Neuwirth, 1962)

Sudipta Kolay

Braided embeddings

February 5, 2018 5 / 20

3

・ロト ・ 同ト ・ ヨト ・ ヨト

The Braid Group II

Let's slide a disk along the stands

Sudipta Kolay

Braided embeddings

The Braid Group II

Fox-Neuwirth (1962) moreover showed that:

Sudipta Kolay

Braided embeddings

February 5, 2018 5 / 20

- 32

イロト イヨト イヨト イヨト

Braided embedding

Definition

An embedding $f: M^k \hookrightarrow N^k \times D^d$ so that $pr_1 \circ f$ is an (oriented) branched covering map will be called a *braided* embedding, and denoted $f: M^k \rightsquigarrow N^k \times D^d$.

Sudipta Kolay

Braided embeddings

February 5, 2018 6 / 20

Braided embedding

Definition

An embedding $f: M^k \hookrightarrow N^k \times D^d$ so that $pr_1 \circ f$ is an (oriented) branched covering map will be called a *braided* embedding, and denoted $f: M^k \rightsquigarrow N^k \times D^d$.

Braided embeddings have been studied by

- ► Etnyre
- Furukawa
- ► Carter
- ▶ Kamada

- ► Hilden
- ► Lozano
- ► Montesinos
- ► Viro

- \blacktriangleright Rudolph
- ► Hansen
- Petersen
- ► Melikhov

Braided embeddings

February 5, 2018 6 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Braided embedding

Definition

An embedding $f: M^k \hookrightarrow N^k \times D^d$ so that $pr_1 \circ f$ is an (oriented) branched covering map will be called a *braided* embedding, and denoted $f: M^k \rightsquigarrow N^k \times D^d$.

Natural Questions

- 1. (Existence) Is there a braided embedding of M^k in $N^k \times D^d$?
- 2. (Lifting) Which branched covers can be lifted to braided embeddings?
- 3. (Isotopy) When can a given embedding of M^k a closed oriented manifold in \mathbb{R}^{k+2} be isotoped to a braided embedding?

Sudipta Kolay

Braided embeddings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

February 5, 2018 6 / 20

Question

Does $M^k \rightsquigarrow S^k \times D^d$?

Braided embeddings

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ○ ○ ○
February 5, 2018 7 / 20

Question

Does $M^k \rightsquigarrow S^k \times D^d$?

• $M^1 \rightsquigarrow S^1 \times D^1$ for all closed M^1 .

Braided embeddings

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ○ ○ ○
February 5, 2018 7 / 20

Question

Does $M^k \rightsquigarrow S^k \times D^d$?

•
$$M^1 \rightsquigarrow S^1 \times D^1$$
 for all closed M^1 .

• For
$$g \ge 1$$
, $\Sigma_g \rightsquigarrow S^2 \times D^d \iff d \ge 2$.

Sudipta Kolay

Braided embeddings

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ○ ○ ○
February 5, 2018 7 / 20

Question

Does $M^k \rightsquigarrow S^k \times D^d$?

•
$$M^1 \rightsquigarrow S^1 \times D^1$$
 for all closed M^1 .

• For
$$g \ge 1$$
, $\Sigma_g \rightsquigarrow S^2 \times D^d \iff d \ge 2$.

Theorem (Hilden-Lozano-Montesinos, 1983)

 $M^3 \rightsquigarrow S^3 \times D^2$ for every closed oriented manifold M^3 .

Sudipta Kolay

Braided embeddings

Question

What is the smallest d such that a given branched cover $\pi: M^k \to N^k$ lifts to $M^k \rightsquigarrow N^k \times D^d$?

Covering map	smallest such d

Sudipta Kolay

Braided embeddings

Question

What is the smallest d such that a given branched cover $\pi: M^k \to N^k$ lifts to $M^k \rightsquigarrow N^k \times D^d$?

Covering map	smallest such d
$\pi:S^1\to S^1$	
$z \mapsto z^n$	

Sudipta Kolay

Braided embeddings

Question

What is the smallest d such that a given branched cover $\pi: M^k \to N^k$ lifts to $M^k \rightsquigarrow N^k \times D^d$?

Covering map	smallest such d
$\pi:S^1\to S^1$	0 for $n = 1$
$z \mapsto z^n$	2 for $n \ge 2$

Sudipta Kolay

Braided embeddings

Question

What is the smallest d such that a given branched cover $\pi: M^k \to N^k$ lifts to $M^k \rightsquigarrow N^k \times D^d$?

Covering map	smallest such d
$\pi:S^1\to S^1$	0 for $n = 1$
$z \mapsto z^n$	2 for $n \ge 2$
$\pi: S^k \to \mathbb{R}P^k$	
$z \mapsto [\pm z]$	

Sudipta Kolay

Braided embeddings

Question

What is the smallest d such that a given branched cover $\pi: M^k \to N^k$ lifts to $M^k \rightsquigarrow N^k \times D^d$?

Covering map	smallest such d
$\pi:S^1\to S^1$	0 for $n = 1$
$z \mapsto z^n$	2 for $n \ge 2$
$\pi: S^k \to \mathbb{R}P^k$	
$z\mapsto [\pm z]$	k+1

Sudipta Kolay

Braided embeddings

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ ○ ○
February 5, 2018 8 / 20

Lifting Covers, d = 2

Question

When can a cover $M^k \to N^k$ be lifted to $M^k \rightsquigarrow N^k \times D^2$?

Sudipta Kolay

Braided embeddings

<ロ > < (回) < (回) < (目) < (目) < (目) < (目) < (日) < (日) < (日) < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

Lifting Covers, d = 2

Question

When can a cover
$$M^k \to N^k$$
 be lifted to $M^k \rightsquigarrow N^k \times D^2$?

Theorem (Hansen, 1978)

Sudipta Kolay

Braided embeddings

February 5, 2018 9 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● 今へ⊙

PL Braided Embeddings over S^2

(Kamada) A braid tuple $(\alpha_1, ..., \alpha_n)$ with $\alpha_1 ... \alpha_n = 1$ and each $\hat{\alpha}_i$ is an unknot, describes a PL braided embeddings over S^2 .

Sudipta Kolay

Lifting Branched Covers over S^2

Theorem

In the PL category, every branched cover $\pi: M^2 \to S^2$ lifts to $f: M^2 \rightsquigarrow S^2 \times D^2$.

- ▶ (Carter and Kamada, 2013) for simple branched covers.
- ▶ (K., 2018) in general.

Braided embeddings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

11 / 20

Lifting Branched Covers over S^2

Theorem

In the PL category, every branched cover $\pi: M^2 \to S^2$ lifts to $f: M^2 \rightsquigarrow S^2 \times D^2$.

- ▶ (Carter and Kamada, 2013) for simple branched covers.
- ▶ (K., 2018) in general.

This is not true in the smooth category, for example the branched cover ((123), (123), (123)) does not lift.

Sudipta Kolay

Braided embeddings

11 / 20

Lifting to Braided immersions

Question

When can a branched cover $M^k \rightarrow N^k$ be lifted to a co-dimension 2 braided immersion?

Sudipta Kolay

Braided embeddings

Lifting to Braided immersions

Question

When can a branched cover $M^k \rightarrow N^k$ be lifted to a co-dimension 2 braided immersion?

Theorem (Etnyre-Furukawa, 2017)

Let $\pi: M \to N$ be a nice (= branch locus is a submanifold with trivial normal bundle) smooth branched cover. Then π always lifts to a braided immersion $f: M \to N \times D^2$.

Sudipta Kolay

Braided embeddings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

February 5, 2018 12 / 20

Lifting to Braided immersions

Theorem (Etnyre-Furukawa, 2017)

Let $\pi: M \to N$ be a nice (= branch locus is a submanifold with trivial normal bundle) smooth branched cover. Then π always lifts to a braided immersion $f: M \to N \times D^2$.

Corollary (Etnyre-Furukawa, 2017)

- For k > 1, \mathbb{CP}^k cannot be a nice branched cover over S^{2k} .
- For k > 7, \mathbb{RP}^k cannot be a nice branched cover over S^k .

Sudipta Kolay

Braided embeddings

February 5, 2018 12 / 20

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Braided Embeddings in \mathbb{R}^{k+2}

 $f:M^k \hookrightarrow \mathbb{R}^{k+2}$ is an embedding of a closed oriented k-manifold.

Definition

f(M) is a closed braid if it misses ℓ and the composition

$$M^k \xrightarrow{f} \mathbb{R}^{k+2} \setminus \ell \xrightarrow{\pi} \mathbb{R}^{k+1} \setminus O \xrightarrow{p} S^k$$

is an oriented branched covering map.

lsotopy

Question

When can a k-link in \mathbb{R}^{k+2} be isotoped to a closed braid?

The answer is affirmative in the following cases:

- k = 1, Alexander (1923).
- smooth ribbon surfaces in \mathbb{R}^4 , Rudolph (1983).
- k = 2 Viro (1990), Kamada (1994).
- k = 3 in the PL category, K. (2017).

Braided embeddings

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

February 5, 2018 14 / 20

Sudipta Kolay

Braided embeddings

Sudipta Kolay

Braided embeddings

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ○ ○ ○
February 5, 2018 15 / 20

Sudipta Kolay

Braided embeddings

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ○ ○ ○
February 5, 2018 15 / 20

k = 1: Proof

Alexander's Theorem

Every oriented link in \mathbb{R}^3 is isotopic to a closed braid.

- ► Claim 1. If a negative simplex has only over-crossings, then can find such a triangle crossing ℓ by going over.
- Claim 2. The result of a cellular move along such a triangle is that a negative simplex is replaced by positive simplices.

Sudipta Kolay

Braided embeddings

February 5, 2018 16 / 20

The standard torus

Sudipta Kolay

Braided embeddings

Translating the torus

Sudipta Kolay

Braided embeddings

Cellular move

Sudipta Kolay

Braided embeddings

◆ □ ▶ 〈 ■ ▶ 〈 ■ ▶ 〈 ■ ▶ 〈 ■ ▶ 〈 ■ ▶ 〈 ■ ▶ 〈 ■ ▶ 〈 ■ ▶ ○ Q ○
February 5, 2018 17 / 20

Braided torus

Sudipta Kolay

Braided embeddings

Transverse Contact Embeddings

- ► A *contact structure* is a maximally non-integrable hyperplane field on an odd dimensional manifold.
- ► Example: On $S^{2n-1} \subset \mathbb{C}^n$, $\xi_{std} = TS^{2n-1} \cap iTS^{2n-1}$.
- ► A smooth embedding $\iota : (M^3, \xi) \hookrightarrow (S^5, \xi_{std})$ is called a transverse contact embedding if $\iota \pitchfork \xi_{std}$ and $d\iota(\xi) \subset \xi_{std}$.

Theorem (Etnyre-Furukawa, 2017)

In the smooth category, if an embedding $M^3 \hookrightarrow S^5$ can be isotoped $M^3 \rightsquigarrow S^3 \times D^2 \subset S^5$ nicely, then it can be isotoped to be a transverse contact embedding.

Sudipta Kolay

Braided embeddings

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

February 5, 2018 18 / 20

Higher codimension

Theorem (K., 2017)

Any closed oriented PL k-link in \mathbb{R}^n can be PL isotoped to be a closed braid for $2n \ge 3k + 2$.

Corollary

Every closed oriented PL k-manifold embeds in \mathbb{R}^{2k} , and moreover every embedding is PL isotopic to a closed braid.

Sudipta Kolay

Braided embeddings

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

19 / 20

Questions

- ▶ What is the commutator length of the braid group?
- If there are two band factorizations of a braid closing to the unknot, do the band factorizations have to be slide equivalent?
- Given a braid closing to the unknot, is its centralizer always generated by itself and Δ_n^2 ?

Braided embeddings

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

20 / 20

Questions

- ▶ What is the commutator length of the braid group?
- ▶ If there are two band factorizations of a braid closing to the unknot, do the band factorizations have to be slide equivalent?
- Given a braid closing to the unknot, is its centralizer always generated by itself and Δ_n^2 ?

THANK YOU!

Sudipta Kolay

Braided embeddings

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

20 / 20