WINTER BRAIDS 8 - flashtalk 5

LOOP BRAIDS

AND OTHER

MOTION GROUPS

Celeste DAMIANI (Osaka City University) - February 6th 2018, CIRM – Appear a lot in the literature ...

MAPPING CLASS GROUP (MOTION GROUP) OF THE 3-BALL W.R.T. A TRIVIAL LINK Cn WITH <u>h</u> COMPONENTS (ORIETATION PRESERVED ON B³ AND Cn

AUTOMORPHISMS OF
THE FREE GROUP F_n
OF TYPE:

$$\begin{cases} X_i \longrightarrow \partial_i^{-4} \times_{\pi(i)} \partial_i \\ X_j \longrightarrow X_j \end{cases}$$

s.t. $a_i \in F_{n,i}$ $\pi \in S_n$

MAPPING CLASS GROUP (MOTION GROUP) OF THE 3-BALL B³ W.R.T. A TRIVIAL LINK Cn WITH N COMPONENTS (ORIETATION PRESERVED ON B³ AND Cn)

LOOP BRAID GROUPS LB

s.t. a; EFn, TESn

OF TYPE:

AUTOMORPHISMS OF THE FREE GROUP F.

 $\begin{cases} X_i \longrightarrow \partial_i^{-4} \times_{\pi(i)} \partial_i \\ X_j \longrightarrow X_j \end{cases}$

Symmetric group relations

$$P_i P_j = P_j P_i$$
 $|i-j|>1$
 $P_i P_{i+a} P_i = P_{i+a} P_i P_i P_{i+a} P_i = 1$
 $P_i^2 = 1$ $i=4,..., n-1$
 $P_i^2 = 1$ $i=4,..., n-1$
 $P_i^2 = 1$ $i=4,..., n-1$

Mixed relations

$$\sigma_i \rho_j = \rho_j \sigma_i \quad |i-j| > 1$$

 $\sigma_i \rho_{i+4} \rho_i = \rho_{i+4} \rho_i \sigma_i$
 $\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
 $\rho_i \sigma_{i+4} \sigma_i = \sigma_{i+4} \sigma_i \rho_{i+4}$
 $\rho_i \sigma_{i+4} \sigma_i = \sigma_{i+4} \sigma_i \rho_{i+4}$

EQUI VALENCE

Different people, different parts! Theorem (Savushkina, Fenn-Rimány-Rourke, Brendle-Hatcher, Baez-Wise-Crans, D.) All these formulations are equivalent.

· LINEAR ?

• ... ?

· LINEAR ?

OF B THAT EXTEND TO LBn

MOTION GROUPS

The elements

<u>Definition</u> A motion of N in M is an ambient isotopy of M who returns N to itself.

Coincides with $\pi_1(H_c(M), H_c(M,N); id_m)$

Joint work with SEIICHI KAMADA

H - trivial link $\bigcirc \bigcirc \bigcirc \bigcirc \frown \frown \bigcirc \frown \frown \bigcirc + \bigcirc \bigcirc$ \bigcirc trivial link Hopf links know a presentation for we know a presentation for we $\mathcal{M}(S^3,C)$ $\mathcal{M}(S^3,H;)$ $\underline{\mathcal{S}}$ just one Hopf LOOP BRAID GROUP (GOLDSMITH , 1982)

H Hopf link, C Euclidean circle
$$c S^{3}$$

Lemma (kamada, D.)
The motion group $\mathcal{M}(S^{3} \cdot H, C)$ admits the presentation
 $(g_{2}, g_{2}, g_{2}, g_{2}, g_{2}, g_{3}, g_{4}, g_{5}, g_{2}, g_{5}, g_{5},$

Next baby steps

we have the exact sequence:

Next baby steps

Recall that we have the exact sequence:

we know a presentation

We know a presentation

Next baby steps

Recall that we have the exact sequence:

$$A \rightarrow \mathcal{M}(S^3 \setminus H, C) \rightarrow \mathcal{M}(S^3, H, C) \rightarrow \mathcal{M}(S^3, H) \rightarrow A$$

We know a presentation we know a presentation
We can write
a presentation