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A is called irreducible if A= A; X Ay = A1 =1or Ay =1,
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Coxeter graphs

e V=S

e Si msyt =3

@ Sims: >4

A'is called irreducible if A= A1 x Ap = Ay =1or Ab =1, i.e, if its
Coxeter graph is connected.
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A braid group is an irreducible Artin—Tits group of spherical type.
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Irreducible Coxeter graphs (of finite type)
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Parabolic subgroups

Standard parabolic subgroup Irreducible standard parabolic
of A subgroup

A subgroup generated by a A UCS

subset T C S, denoted by U= =

AT. with connected Coxeter graph.

Q = BAyS!

UCS,B8 e A, Ay has connected
Coxeter graph.
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Curves in D, and parabolic subgroups in braid groups
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Curves in D, and parabolic subgroups in braid groups
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Curve complex C in D,

@ Vertices: Isotopy classes of non-degenerate simple closed curves.

@ n-simplex: n+ 1 vertices with representatives which are pairwise
disjoint.
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Curve complex C in D,

@ Vertices: Isotopy classes of non-degenerate simple closed curves.

@ n-simplex: n+ 1 vertices with representatives which are pairwise
disjoint.

Interesting facts:

e C is hyperbolic. (Masur-Minsky 1999)
@ The action of B, on C provides geometrical tools to study braids:

e Nielsen-Thurston Classification
e Canonical Reduction System (Birman-Lubotzky-McCarthy 1983)

We want to use irreducible parabolic subgroups as an algebraic analogue of
the curve complex.

Maria Cumplido Cabello Advances in the understanding of parabolic st 7th February 2018 8 /20



NN
Analogue of disjoint curves

P, Q standard parabolic subgroups.

«O>r 4Fr «=Hr <= o



Analogue of disjoint curves

P, Q standard parabolic subgroups.
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Analogue of disjoint curves

P, Q standard parabolic subgroups.

PN Q={1} and xy = yx,
PCQorQCP YxeP ye@
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Central Garside element

Each Artin—Tits group of spherical type As has Garside structure, which
allows to define the following:

@ Ags has a special element Ag, called Garside element, such that
¢c€Z(As)fore=1ore=2.
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allows to define the following:

@ As has a special element Ag, called Garside element, such that
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Central Garside element

Each Artin—Tits group of spherical type As has Garside structure, which
allows to define the following:

@ As has a special element Ag, called Garside element, such that
g€ Z(As)fore=1ore=2.

Given a standard parabolic subgroup Ax, we define its central Garside
element, zx, as Ax if Ax € Z(Ax) and A% otherwise.

Given a parabolic subgroup P = a1 Axa, we define its central Garside
element, zp, as o~ lzxa.

Given P, Q parabolic subgroups and o € As
P=a1Qq <= zp = a_lea

o
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Main results

subgroup.

Let P and @ be two parabolic subgroups. Then PN Q is also a parabolic

The set of parabolic subgroups is a lattice with respect to the order

induced by the inclusion. That is, if P and @ are parabolic subgroups:
e ! maximal parabolic subgroup contained in PN Q.

@ 3! minimal parabolic subgroup containing P U Q.
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Main results

Let P and @ be two distinct irreducible parabolic subgroups of As. Then
zpzg = zgzp holds if and only if one of the following three conditions are
satisfied:

0 PCQ
@ QCP.

@ PNQ={1} and xy = yx for every x € P and y € Q.
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Complex of irreducible parabolic subgroups P

@ Vertices: Irreducible parabolic subgroups.

e n-simplex: {P(1),---,P(n+ 1)} such that zp(jyzp(jy = zp(j)zp(j) for
all1<i<j<n+l.
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Complex of irreducible parabolic subgroups P

@ Vertices: Irreducible parabolic subgroups.

e n-simplex: {P(1),---,P(n+ 1)} such that zp(jyzp(jy = zp(j)zp(j) for
all1<i<j<n+l.

Interesting things:

@ For the braid group P is isomorphic to C.
@ P is expected to be hyperbolic.

@ The action of As on P would allow to generalize results that are
known for braids.
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@ Given a, b € As we say that a is prefix of b if a=1b is positive.

@ The np-normal form of x € As with respect to A% is canonical way of
represent an element:

_ 1 -1
X_Xn ...Xl _yl..._y’n7

where x;, y; satisfies some coprimality conditions and are prefixes of A% for
every i,j and xy - -+ X, and y; - - - ¥, have no prefix in common.

@ Twisted cycling: €(x) = Xp_1---X; “y1 - YmX; "

@ Decycling: d(x) = ymXp - 'Xl_l}/1 o Ym—1.

@ RSSSp(x): The set of conjugates of x that are in a period under twisted
cycling and decycling. RSS5Sx0(x) = (1,<; RSSSp(x)-
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Proofs

o If a € As is positive, we define its support Supp(x) as the set of generators
appearing in any positive word representing x.
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Proofs

o If a € As is positive, we define its support Supp(x) as the set of generators
appearing in any positive word representing x.

1

@ For any a € As with np-normal form a = x,; -~-x1_1y1 -+ yYm we define

Supp() = Supp(x1 - xp) U Supp(y1 - - - Ym)-
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Proofs

o If a € As is positive, we define its support Supp(x) as the set of generators
appearing in any positive word representing x.

1

@ For any a € As with np-normal form a = x,; -~-x1_1y1 -+ yYm we define

Supp() = Supp(x1 - xp) U Supp(y1 - - - Ym)-
@ Given o € RSSS..(a), we define p(a) = |Asypp(ayl-
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Let P and @ be two parabolic subgroups. Then PN Q is also a parabolic

@ For every a € As, take o/ = a3 € RSSS.(a) and define
Py = /6A5upp(a’)ﬁ_1-
containing a.

@ Lemma: For every a € Ag, P, is the minimal parabolic subgroup
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Proofs

Let P and @ be two parabolic subgroups. Then PN Q is also a parabolic
subgroup.

Sketch of the proof.

@ For every a € As, take o/ = a3 € RSSS.(a) and define
Py = /6A5upp(a’)ﬁ_1-

@ Lemma: For every a € Ag, P, is the minimal parabolic subgroup
containing a.

@ Take o € PN Q such that ¢(a) is maximal.
@ Standardize P, having Az.
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Proofs

Let P and @ be two parabolic subgroups. Then PN Q is also a parabolic
subgroup.

Sketch of the proof.

@ For every a € As, take o/ = a3 € RSSS.(a) and define
Py = /6A5upp(a’)ﬁ_1-

@ Lemma: For every a € Ag, P, is the minimal parabolic subgroup
containing a.

@ Take o € PN Q such that ¢(a) is maximal.
@ Standardize P, having Az.
@ Prove A = PN Q.

=] F = = £ DA
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Proofs

The set of parabolic subgroups is a lattice with respect to the order induced by
the inclusion. That is, if P and @ are parabolic subgroups:

@ 3! maximal parabolic subgroup contained in PN Q.

@ ! minimal parabolic subgroup containing P U Q.
Sketh of the proof.
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Proofs

The set of parabolic subgroups is a lattice with respect to the order induced by
the inclusion. That is, if P and @ are parabolic subgroups:

@ 3! maximal parabolic subgroup contained in PN Q.
@ ! minimal parabolic subgroup containing P U Q.

Sketh of the proof: We need to prove the second point

@ The set of parabolic subgroups T; containing P N Q is countable.
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Proofs

Let P and Q@ be two distinct irreducible parabolic subgroups of As. Then

zpzg = zqgzp holds if and only if one of the following three conditions are
satisfied:

QPCQ

Q@ QRCP.

© PN Q={1} and xy = yx for every x € P and y € Q.
Sketch of the proof:
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Proofs

Let P and Q be two distinct irreducible parabolic subgroups of As. Then

zpzg = zqgzp holds if and only if one of the following three conditions are
satisfied:

Q@ PCQ.

Q@ QRCP.

© PN Q={1} and xy = yx for every x € P and y € Q.
Sketch of the proof: Suppose that zpzg = zgzp.

@ We show that we can standardize P and @ conjugating by the same
element, having Ax and Ay.
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Proofs

Let P and Q be two distinct irreducible parabolic subgroups of As. Then

zpzg = zqgzp holds if and only if one of the following three conditions are
satisfied:

Q@ PCQ.

Q@ QRCP.

© PN Q={1} and xy = yx for every x € P and y € Q.
Sketch of the proof: Suppose that zpzg = zgzp.

@ We show that we can standardize P and @ conjugating by the same
element, having Ax and Ay.

@ 1,23 are preserved under conjugacy.
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Proofs

@ We need to prove that one of the following conditions holds: X C Y, Y C X
or XN'Y = {1} and all elements of X commute with all elements if Y.
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Proofs

@ We need to prove that one of the following conditions holds: X C Y, Y C X
or XN'Y = {1} and all elements of X commute with all elements if Y.

@ Lemma: Let sp,...,s¢ € S be standard generators such that s;s;11 # Si+15;,
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Thank you!
Merci!

iGracias!
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