Advances in the understanding of parabolic subgroups of Artin-Tits groups

María Cumplido Cabello

(with Volker Gebhardt, Juan González-Meneses and Bert Wiest)

Université de Rennes 1 - Universidad de Sevilla

7th February 2018

Advances in the understanding of parabolic su

- S finite set of generators.
- $M = (m_{s,t})_{s,t \in S}$ symmetric, $m_{s,t} = 1$, $m_{s,t} \in \{2, \dots, \infty\}$, $s \neq t$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへ⊙

- S finite set of generators.
- $M = (m_{s,t})_{s,t \in S}$ symmetric, $m_{s,t} = 1$, $m_{s,t} \in \{2,\ldots,\infty\}$, $s \neq t$

- S finite set of generators.
- $M = (m_{s,t})_{s,t \in S}$ symmetric, $m_{s,t} = 1$, $m_{s,t} \in \{2,\ldots,\infty\}$, $s \neq t$

- S finite set of generators.
- $M = (m_{s,t})_{s,t \in S}$ symmetric, $m_{s,t} = 1$, $m_{s,t} \in \{2,\ldots,\infty\}$, $s \neq t$

Artin-Tits group associated to M $A = \langle S \mid \underbrace{stst...}_{m_{s,t} \text{ elements}} = \underbrace{tsts...}_{m_{s,t} \text{ elements}} \forall s, t \in S, s \neq t, m_{s,t} \neq \infty \rangle.$

Coxeter group (finite)

$$W = \left\langle S \middle| \begin{array}{c} s^2 = 1, \\ \underbrace{stst...}_{m_{s,t} \text{ elements}} = \underbrace{tsts...}_{m_{s,t} \text{ elements}}, \\ \underbrace{tsts...}_{m_{s,t} \text{ elements}}, \\ \underbrace{\forall s \in S}_{\forall s, t \in S, s \neq t, m_{s,t} \neq \infty} \right\rangle.$$

Advances in the understanding of parabolic su

- S finite set of generators.
- $M = (m_{s,t})_{s,t \in S}$ symmetric, $m_{s,t} = 1$, $m_{s,t} \in \{2,\ldots,\infty\}$, $s \neq t$

María Cumplido Cabello

•
$$\mathcal{V} = S$$

Advances in the understanding of parabolic su

- $\mathcal{V} = S$
- Si *m*_{s,t} = 3

996

- $\mathcal{V} = S$
- Si *m*_{s,t} = 3

• Si $m_{s,t} \ge 4$

◆ロト ◆聞ト ◆ヨト ◆ヨト

臣

DQC

- $\mathcal{V} = S$
- Si $m_{s,t} = 3$
- Si $m_{s,t} \ge 4$

A is called irreducible if $A = A_1 \times A_2 \Rightarrow A_1 = 1$ or $A_2 = 1$,

3

イロト イポト イヨト イヨト

- $\mathcal{V} = S$
- Si *m*_{*s*,*t*} = 3

Si m_{s,t} ≥ 4

A is called irreducible if $A = A_1 \times A_2 \Rightarrow A_1 = 1$ or $A_2 = 1$, i.e., if its Coxeter graph is connected.

3

A braid group is an irreducible Artin-Tits group of spherical type.

= nar

イロト イポト イヨト イヨト

A braid group is an irreducible Artin–Tits group of spherical type.

Example: \mathcal{B}_4

$$M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$\mathcal{B}_4 = \left\langle \sigma_1, \sigma_2, \sigma_3 \middle| \begin{array}{c} \sigma_1 \sigma_3 = \sigma_3 \sigma_1, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, 2 \end{array} \right\rangle$$

María Cumplido Cabello

Advances in the understanding of parabolic su

-7th February 2018 4 / 20

3

A braid group is an irreducible Artin-Tits group of spherical type.

Example: B.

$$M = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
$$\mathcal{B}_4 = \left\langle \sigma_1, \sigma_2, \sigma_3 \middle| \begin{array}{c} \sigma_1 \sigma_3 = \sigma_3 \sigma_1, \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad i = 1, 2 \end{array} \right\rangle$$

María Cumplido Cabello

Advances in the understanding of parabolic su

3

∃ ► < ∃</p>

Irreducible Coxeter graphs (of finite type)

Advances in the understanding of parabolic su

7th February 2018 5 / 20

```
Standard parabolic subgroup
            of A
A subgroup generated by a
subset T \subseteq S, denoted by
A_T.
```

3

.

< 17 > <

Standard parabolic subgroup
of A
A subgroup generated by a
subset $T \subseteq S$, denoted by
A_T .

Parabolic subgroup of A
$P := \alpha A_T \alpha^{-1}$
$T \subseteq S,$

E

DQC

◆ロト ◆聞ト ◆ヨト ◆ヨト

Standard parabolic subgroup of <i>A</i>
A subgroup generated by a subset $T \subseteq S$, denoted by A_T .

Irreducible standard parabolic subgroup

 $A_U, \ U \subseteq S$

< 17 ▶

with connected Coxeter graph.

Parabolic subgroup of A $P := \alpha A_T \alpha^{-1}$ $T \subseteq S,$ $\alpha \in A.$

3

→ Ξ →

Standard parabolic subgroup of <i>A</i>
A subgroup generated by a subset $T \subseteq S$, denoted by Δ_T

Irreducible standard parabolic subgroup $A_U, U \subseteq S$

with connected Coxeter graph.

Parabolic subgroup of A

$$P := \alpha A_T \alpha^{-1}$$
$$T \subseteq S,$$
$$\alpha \in A.$$

Irreducible parabolic subgroup.

$$Q := \beta A_U \beta^{-1}$$

 $U \subseteq S, \beta \in A, A_U$ has connected Coxeter graph.

 σ_4 σ_3 σ_2

3

イロト イポト イヨト イヨト

590

María Cumplido Cabello

 $A_{\{\sigma_2,\sigma_3\}}$ σ_3 σ_4

María Cumplido Cabello

イロト イポト イヨト イヨト

E

 $A_{\{\sigma_2,\sigma_3\}}$ σ_4

María Cumplido Cabello

Advances in the understanding of parabolic su

-7th February 2018 7 / 20

3

< □ > < -

3

-

< /₽ > < E

$$P = \alpha^{-1} A_{\{\sigma_2, \sigma_3\}} \alpha$$
$$\alpha = \sigma_4$$

María Cumplido Cabello

Advances in the understanding of parabolic su

-7th February 2018 7 / 20

3

< 🗇 ▶

- Vertices: Isotopy classes of non-degenerate simple closed curves.
- *n*-simplex: *n* + 1 vertices with representatives which are pairwise disjoint.

3

イロト イポト イヨト イヨト

- Vertices: Isotopy classes of non-degenerate simple closed curves.
- *n*-simplex: *n* + 1 vertices with representatives which are pairwise disjoint.

Interesting facts:

• C is hyperbolic. (Masur-Minsky 1999)

3

- Vertices: Isotopy classes of non-degenerate simple closed curves.
- *n*-simplex: *n* + 1 vertices with representatives which are pairwise disjoint.

Interesting facts:

- C is hyperbolic. (Masur-Minsky 1999)
- The action of \mathcal{B}_n on \mathcal{C} provides geometrical tools to study braids:

- Vertices: Isotopy classes of non-degenerate simple closed curves.
- *n*-simplex: *n* + 1 vertices with representatives which are pairwise disjoint.

Interesting facts:

- C is hyperbolic. (Masur-Minsky 1999)
- The action of \mathcal{B}_n on \mathcal{C} provides geometrical tools to study braids:
 - Nielsen-Thurston Classification

- Vertices: Isotopy classes of non-degenerate simple closed curves.
- *n*-simplex: *n* + 1 vertices with representatives which are pairwise disjoint.

Interesting facts:

- C is hyperbolic. (Masur-Minsky 1999)
- The action of \mathcal{B}_n on \mathcal{C} provides geometrical tools to study braids:
 - Nielsen-Thurston Classification
 - Canonical Reduction System (Birman-Lubotzky-McCarthy 1983)

- Vertices: Isotopy classes of non-degenerate simple closed curves.
- *n*-simplex: *n* + 1 vertices with representatives which are pairwise disjoint.

Interesting facts:

- C is hyperbolic. (Masur-Minsky 1999)
- The action of \mathcal{B}_n on \mathcal{C} provides geometrical tools to study braids:
 - Nielsen-Thurston Classification
 - Canonical Reduction System (Birman-Lubotzky-McCarthy 1983)

We want to use irreducible parabolic subgroups as an algebraic analogue of the curve complex.

イロト 不得下 イヨト イヨト

3

8 / 20

Analogue of disjoint curves

P, Q standard parabolic subgroups.

Analogue of disjoint curves

P, *Q* standard parabolic subgroups.

$$P \subsetneq Q$$
 or $Q \subsetneq P$

< 17 ▶

Analogue of disjoint curves

P, Q standard parabolic subgroups.

Central Garside element

Each Artin–Tits group of spherical type A_S has Garside structure, which allows to define the following:

• A_S has a special element Δ_S , called Garside element, such that $\Delta_S^e \in Z(A_S)$ for e = 1 or e = 2.
Central Garside element

Each Artin–Tits group of spherical type A_S has Garside structure, which allows to define the following:

• A_S has a special element Δ_S , called Garside element, such that $\Delta_S^e \in Z(A_S)$ for e = 1 or e = 2.

Central Garside element

Given a standard parabolic subgroup A_X , we define its central Garside element, z_X , as Δ_X if $\Delta_X \in Z(A_X)$ and Δ_X^2 otherwise.

- 4 同 ト 4 三 ト - 三 - シックや

Central Garside element

Each Artin–Tits group of spherical type A_S has Garside structure, which allows to define the following:

• A_S has a special element Δ_S , called Garside element, such that $\Delta_S^e \in Z(A_S)$ for e = 1 or e = 2.

Central Garside element

Given a standard parabolic subgroup A_X , we define its central Garside element, z_X , as Δ_X if $\Delta_X \in Z(A_X)$ and Δ_X^2 otherwise.

Given a parabolic subgroup $P = \alpha^{-1}A_X\alpha$, we define its central Garside element, z_P , as $\alpha^{-1}z_X\alpha$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

Central Garside element

Each Artin–Tits group of spherical type A_S has Garside structure, which allows to define the following:

• A_S has a special element Δ_S , called Garside element, such that $\Delta_S^e \in Z(A_S)$ for e = 1 or e = 2.

Central Garside element

Given a standard parabolic subgroup A_X , we define its central Garside element, z_X , as Δ_X if $\Delta_X \in Z(A_X)$ and Δ_X^2 otherwise.

Given a parabolic subgroup $P = \alpha^{-1}A_X\alpha$, we define its central Garside element, z_P , as $\alpha^{-1}z_X\alpha$.

Lemma (Godelle 2003, C. 2017)

Given P, Q parabolic subgroups and $\alpha \in A_S$ $P = \alpha^{-1}Q\alpha \iff z_P = \alpha^{-1}z_Q\alpha$

Main results

Theorem (Intersection of parabolic subgroups)

Let P and Q be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

イロト 不得 トイヨト イヨト 二日

Main results

Theorem (Intersection of parabolic subgroups)

Let P and Q be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

イロト 不得 トイヨト イヨト 二日

Theorem ("Disjointness" of parabolic subgroups)

Let *P* and *Q* be two distinct irreducible parabolic subgroups of A_S . Then $z_P z_Q = z_Q z_P$ holds if and only if one of the following three conditions are satisfied:

- $Q \subsetneq P.$
- **3** $P \cap Q = \{1\}$ and xy = yx for every $x \in P$ and $y \in Q$.

(4個) (4回) (4回) (日)

- Vertices: Irreducible parabolic subgroups.
- *n*-simplex: $\{P(1), \dots, P(n+1)\}$ such that $z_{P(i)}z_{P(j)} = z_{P(j)}z_{P(i)}$ for all $1 \le i \le j \le n+1$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

13 / 20

- Vertices: Irreducible parabolic subgroups.
- *n*-simplex: $\{P(1), \dots, P(n+1)\}$ such that $z_{P(i)}z_{P(j)} = z_{P(j)}z_{P(i)}$ for all $1 \le i \le j \le n+1$.

Interesting things:

• For the braid group \mathcal{P} is isomorphic to \mathcal{C} .

- Vertices: Irreducible parabolic subgroups.
- *n*-simplex: $\{P(1), \dots, P(n+1)\}$ such that $z_{P(i)}z_{P(j)} = z_{P(j)}z_{P(i)}$ for all $1 \le i \le j \le n+1$.

Interesting things:

- For the braid group \mathcal{P} is isomorphic to \mathcal{C} .
- \mathcal{P} is expected to be hyperbolic.

- Vertices: Irreducible parabolic subgroups.
- *n*-simplex: $\{P(1), \dots, P(n+1)\}$ such that $z_{P(i)}z_{P(j)} = z_{P(j)}z_{P(i)}$ for all $1 \le i \le j \le n+1$.

Interesting things:

- For the braid group \mathcal{P} is isomorphic to \mathcal{C} .
- \mathcal{P} is expected to be hyperbolic.
- The action of A_S on \mathcal{P} would allow to generalize results that are known for braids.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

Some definitions from Garside theory:

Some definitions from Garside theory:

• Given $a, b \in A_S$ we say that a is prefix of b if $a^{-1}b$ is positive.

Some definitions from Garside theory:

- Given $a, b \in A_S$ we say that a is prefix of b if $a^{-1}b$ is positive.
- The *np*-normal form of x ∈ A_S with respect to Δ^p_S is canonical way of represent an element:

$$x = x_n^{-1} \cdots x_1^{-1} y_1 \cdots y_m,$$

where x_i , y_j satisfies some coprimality conditions and are prefixes of Δ_S^p for every i, j and $x_1 \cdots x_n$ and $y_1 \cdots y_m$ have no prefix in common.

Some definitions from Garside theory:

- Given $a, b \in A_S$ we say that a is prefix of b if $a^{-1}b$ is positive.
- The *np*-normal form of x ∈ A_S with respect to Δ^p_S is canonical way of represent an element:

$$x = x_n^{-1} \cdots x_1^{-1} y_1 \cdots y_m,$$

where x_i , y_j satisfies some coprimality conditions and are prefixes of Δ_S^p for every i, j and $x_1 \cdots x_n$ and $y_1 \cdots y_m$ have no prefix in common.

• Twisted cycling: $\tilde{c}(x) = x_{n-1} \cdots x_1^{-1} y_1 \cdots y_m x_n^{-1}$.

Some definitions from Garside theory:

- Given $a, b \in A_S$ we say that a is prefix of b if $a^{-1}b$ is positive.
- The *np*-normal form of x ∈ A_S with respect to Δ^p_S is canonical way of represent an element:

$$x = x_n^{-1} \cdots x_1^{-1} y_1 \cdots y_m,$$

where x_i , y_j satisfies some coprimality conditions and are prefixes of Δ_S^p for every i, j and $x_1 \cdots x_n$ and $y_1 \cdots y_m$ have no prefix in common.

• Twisted cycling: $\tilde{c}(x) = x_{n-1} \cdots x_1^{-1} y_1 \cdots y_m x_n^{-1}$.

• Decycling:
$$d(x) = y_m x_n \cdots x_1^{-1} y_1 \cdots y_{m-1}$$
.

Some definitions from Garside theory:

- Given $a, b \in A_S$ we say that a is prefix of b if $a^{-1}b$ is positive.
- The *np*-normal form of x ∈ A_S with respect to Δ^p_S is canonical way of represent an element:

$$x = x_n^{-1} \cdots x_1^{-1} y_1 \cdots y_m,$$

where x_i , y_j satisfies some coprimality conditions and are prefixes of Δ_S^p for every i, j and $x_1 \cdots x_n$ and $y_1 \cdots y_m$ have no prefix in common.

- Twisted cycling: $\tilde{c}(x) = x_{n-1} \cdots x_1^{-1} y_1 \cdots y_m x_n^{-1}$.
- Decycling: $d(x) = y_m x_n \cdots x_1^{-1} y_1 \cdots y_{m-1}$.
- RSSS_p(x): The set of conjugates of x that are in a period under twisted cycling and decycling. RSSS_∞(x) = ∩_{p<1} RSSS_p(x).

If α ∈ A_S is positive, we define its support Supp(x) as the set of generators appearing in any positive word representing x.

15 / 20

- If α ∈ A_S is positive, we define its support Supp(x) as the set of generators appearing in any positive word representing x.
- For any $\alpha \in A_S$ with *np*-normal form $\alpha = x_n^{-1} \cdots x_1^{-1} y_1 \cdots y_m$ we define $Supp(\alpha) = Supp(x_1 \cdots x_n) \cup Supp(y_1 \cdots y_m)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

- If α ∈ A_S is positive, we define its support Supp(x) as the set of generators appearing in any positive word representing x.
- For any $\alpha \in A_S$ with *np*-normal form $\alpha = x_n^{-1} \cdots x_1^{-1} y_1 \cdots y_m$ we define $Supp(\alpha) = Supp(x_1 \cdots x_n) \cup Supp(y_1 \cdots y_m)$.
- Given $\alpha' \in RSSS_{\infty}(\alpha)$, we define $\varphi(\alpha) = |\Delta_{Supp(\alpha)}|$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Theorem (Intersection of parabolic subgroups)

Let *P* and *Q* be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Sketch of the proof:

イロト 不得 トイヨト イヨト 二日

Theorem (Intersection of parabolic subgroups)

Let P and Q be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Sketch of the proof:

• For every $\alpha \in A_S$, take $\alpha' = \beta^{-1} \alpha \beta \in RSSS_{\infty}(\alpha)$ and define $P_{\alpha} = \beta A_{Supp(\alpha')} \beta^{-1}$.

Theorem (Intersection of parabolic subgroups)

Let *P* and *Q* be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Sketch of the proof:

- For every $\alpha \in A_S$, take $\alpha' = \beta^{-1} \alpha \beta \in RSSS_{\infty}(\alpha)$ and define $P_{\alpha} = \beta A_{Supp(\alpha')} \beta^{-1}$.
- Lemma: For every α ∈ A_S, P_α is the minimal parabolic subgroup containing α.

▲口 ▶ ▲掃 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

Theorem (Intersection of parabolic subgroups)

Let *P* and *Q* be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Sketch of the proof:

- For every $\alpha \in A_S$, take $\alpha' = \beta^{-1} \alpha \beta \in RSSS_{\infty}(\alpha)$ and define $P_{\alpha} = \beta A_{Supp(\alpha')} \beta^{-1}$.
- Lemma: For every α ∈ A_S, P_α is the minimal parabolic subgroup containing α.
- Take $\alpha \in P \cap Q$ such that $\varphi(\alpha)$ is maximal.

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

Theorem (Intersection of parabolic subgroups)

Let *P* and *Q* be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Sketch of the proof:

- For every $\alpha \in A_S$, take $\alpha' = \beta^{-1} \alpha \beta \in RSSS_{\infty}(\alpha)$ and define $P_{\alpha} = \beta A_{Supp(\alpha')} \beta^{-1}$.
- Lemma: For every α ∈ A_S, P_α is the minimal parabolic subgroup containing α.
- Take $\alpha \in P \cap Q$ such that $\varphi(\alpha)$ is maximal.
- Standardize P_{α} having A_Z .

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

Theorem (Intersection of parabolic subgroups)

Let *P* and *Q* be two parabolic subgroups. Then $P \cap Q$ is also a parabolic subgroup.

Sketch of the proof:

- For every $\alpha \in A_S$, take $\alpha' = \beta^{-1} \alpha \beta \in RSSS_{\infty}(\alpha)$ and define $P_{\alpha} = \beta A_{Supp(\alpha')} \beta^{-1}$.
- Lemma: For every α ∈ A_S, P_α is the minimal parabolic subgroup containing α.
- Take $\alpha \in P \cap Q$ such that $\varphi(\alpha)$ is maximal.
- Standardize P_{α} having A_Z .
- Prove $A_Z = P \cap Q$.

イロト 不得 トイヨト イヨト ヨー シタウ

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

Sketh of the proof:

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

Sketh of the proof: We need to prove the second point

• The set of parabolic subgroups T_i containing $P \cap Q$ is countable.

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

Sketh of the proof: We need to prove the second point

- The set of parabolic subgroups T_i containing $P \cap Q$ is countable.
- Define $U_n = \bigcap_{i=1}^n T_i$ (is a parabolic subgroup).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

Sketh of the proof: We need to prove the second point

- The set of parabolic subgroups T_i containing $P \cap Q$ is countable.
- Define $U_n = \bigcap_{i=1}^n T_i$ (is a parabolic subgroup).
- We cannot have an infinite chain of nested parabolic subgroups.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

Sketh of the proof: We need to prove the second point

- The set of parabolic subgroups T_i containing $P \cap Q$ is countable.
- Define $U_n = \bigcap_{i=1}^n T_i$ (is a parabolic subgroup).
- We cannot have an infinite chain of nested parabolic subgroups.
- $\bigcap_{i=1}^{\infty} T_i$ is a parabolic subgroup.

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by the inclusion. That is, if P and Q are parabolic subgroups:

- \exists ! maximal parabolic subgroup contained in $P \cap Q$.
- \exists ! minimal parabolic subgroup containing $P \cup Q$.

Sketh of the proof: We need to prove the second point

- The set of parabolic subgroups T_i containing $P \cap Q$ is countable.
- Define $U_n = \bigcap_{i=1}^n T_i$ (is a parabolic subgroup).
- We cannot have an infinite chain of nested parabolic subgroups.
- $\bigcap_{i=1}^{\infty} T_i$ is a parabolic subgroup.

Theorem ("Disjointness" of parabolic subgroups)

Let *P* and *Q* be two distinct irreducible parabolic subgroups of A_S . Then $z_P z_Q = z_Q z_P$ holds if and only if one of the following three conditions are satisfied:

Sketch of the proof:

イロト 不得下 イヨト イヨト 二日

Theorem ("Disjointness" of parabolic subgroups)

Let *P* and *Q* be two distinct irreducible parabolic subgroups of A_S . Then $z_P z_Q = z_Q z_P$ holds if and only if one of the following three conditions are satisfied:

- $Q \subsetneq Q \subsetneq P.$

 $P \cap Q = \{1\} \text{ and } xy = yx \text{ for every } x \in P \text{ and } y \in Q.$

Sketch of the proof: Suppose that $z_P z_Q = z_Q z_P$.

▲口 ▶ ▲掃 ▶ ▲目 ▶ ▲目 ▶ ■ ● ● ● ●

Theorem ("Disjointness" of parabolic subgroups)

Let *P* and *Q* be two distinct irreducible parabolic subgroups of A_S . Then $z_P z_Q = z_Q z_P$ holds if and only if one of the following three conditions are satisfied:

P ⊊ Q.
Q ⊊ P.
P ∩ Q = {1} and xy = yx for every x ∈ P and y ∈ Q.

Sketch of the proof: Suppose that $z_P z_Q = z_Q z_P$.

• We show that we can standardize P and Q conjugating by the same element, having A_X and A_Y .

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

Theorem ("Disjointness" of parabolic subgroups)

Let *P* and *Q* be two distinct irreducible parabolic subgroups of A_S . Then $z_P z_Q = z_Q z_P$ holds if and only if one of the following three conditions are satisfied:

P ⊊ Q.
Q ⊊ P.
P ∩ Q = {1} and xy = yx for every x ∈ P and y ∈ Q.

Sketch of the proof: Suppose that $z_P z_Q = z_Q z_P$.

- We show that we can standardize P and Q conjugating by the same element, having A_X and A_Y .
- 1,2,3 are preserved under conjugacy.

・ロト ・ 一 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ つ

• We need to prove that one of the following conditions holds: $X \subseteq Y, Y \subseteq X$ or $X \cap Y = \{1\}$ and all elements of X commute with all elements if Y.

イロト イポト イヨト イヨト
- We need to prove that one of the following conditions holds: X ⊆ Y, Y ⊆ X or X ∩ Y = {1} and all elements of X commute with all elements if Y.
- Lemma: Let s₀,..., s_k ∈ S be standard generators such that s_is_{i+1} ≠ s_{i+1}s_i, and s_i ≠ s_{i+2} ∀i. If an element α is represented by a positive word w which contains the subsequence s₀s₁...s_k, then all positive words representing α contain the same subsequence.

- We need to prove that one of the following conditions holds: X ⊆ Y, Y ⊆ X or X ∩ Y = {1} and all elements of X commute with all elements if Y.
- Lemma: Let s₀,..., s_k ∈ S be standard generators such that s_is_{i+1} ≠ s_{i+1}s_i, and s_i ≠ s_{i+2} ∀i. If an element α is represented by a positive word w which contains the subsequence s₀s₁...s_k, then all positive words representing α contain the same subsequence.
- Suppose that the conditions are not fulfilled. We prove that then we have a simple path in the Coxeter graph of A_{X∪Y}, a = s₁, · · · , s_n = b with a ∈ X \ Y, b ∈ Y \ X and s_i ∈ Y, satisfying the Lemma.

- We need to prove that one of the following conditions holds: X ⊆ Y, Y ⊆ X or X ∩ Y = {1} and all elements of X commute with all elements if Y.
- Lemma: Let s₀,..., s_k ∈ S be standard generators such that s_is_{i+1} ≠ s_{i+1}s_i, and s_i ≠ s_{i+2} ∀i. If an element α is represented by a positive word w which contains the subsequence s₀s₁...s_k, then all positive words representing α contain the same subsequence.
- Suppose that the conditions are not fulfilled. We prove that then we have a simple path in the Coxeter graph of A_{X∪Y}, a = s₁, · · · , s_n = b with a ∈ X \ Y, b ∈ Y \ X and s_i ∈ Y, satisfying the Lemma.
- Show that $z_X z_Y$ contains s_1, \dots, s_n as a subsequence.

- We need to prove that one of the following conditions holds: X ⊆ Y, Y ⊆ X or X ∩ Y = {1} and all elements of X commute with all elements if Y.
- Lemma: Let s₀,..., s_k ∈ S be standard generators such that s_is_{i+1} ≠ s_{i+1}s_i, and s_i ≠ s_{i+2} ∀i. If an element α is represented by a positive word w which contains the subsequence s₀s₁...s_k, then all positive words representing α contain the same subsequence.
- Suppose that the conditions are not fulfilled. We prove that then we have a simple path in the Coxeter graph of A_{X∪Y}, a = s₁, · · · , s_n = b with a ∈ X \ Y, b ∈ Y \ X and s_i ∈ Y, satisfying the Lemma.
- Show that $z_X z_Y$ contains s_1, \dots, s_n as a subsequence.
- But $z_Y z_X$ does not contain s_1, \dots, s_n , having a contradiction.

- We need to prove that one of the following conditions holds: X ⊆ Y, Y ⊆ X or X ∩ Y = {1} and all elements of X commute with all elements if Y.
- Lemma: Let s₀,..., s_k ∈ S be standard generators such that s_is_{i+1} ≠ s_{i+1}s_i, and s_i ≠ s_{i+2} ∀i. If an element α is represented by a positive word w which contains the subsequence s₀s₁...s_k, then all positive words representing α contain the same subsequence.
- Suppose that the conditions are not fulfilled. We prove that then we have a simple path in the Coxeter graph of A_{X∪Y}, a = s₁, · · · , s_n = b with a ∈ X \ Y, b ∈ Y \ X and s_i ∈ Y, satisfying the Lemma.
- Show that $z_X z_Y$ contains s_1, \dots, s_n as a subsequence.
- But $z_Y z_X$ does not contain s_1, \dots, s_n , having a contradiction.

Thank you! Merci! ¡Gracias!

э

590

・ロン ・四 と ・ ヨン