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Maŕıa Cumplido Cabello Advances in the understanding of parabolic subgroups of Artin-Tits groups7th February 2018 2 / 20



Artin-Tits groups

S finite set of generators.

M = (ms,t)s,t∈S symmetric, ms,t = 1, ms,t ∈ {2, . . . ,∞}, s 6= t

Artin-Tits group associated to M

A = 〈S | stst . . .︸ ︷︷ ︸
ms,t elements

= tsts . . .︸ ︷︷ ︸
ms,t elements

∀s, t ∈ S , s 6= t, ms,t 6=∞〉.
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Coxeter graphs

V = S

Si ms,t = 3

s t

Si ms,t ≥ 4

s t
ms,t

A is called irreducible if A = A1 × A2 ⇒ A1 = 1 or A2 = 1, i.e., if its
Coxeter graph is connected.
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A braid group is an irreducible Artin–Tits group of spherical type.

Example: B4

M =

 1 3 2
3 1 3
2 3 1


B4 =

〈
σ1, σ2, σ3

σ1σ3 = σ3σ1,
σiσi+1σi = σi+1σiσi+1, i = 1, 2

〉

A3

σ1 σ2 σ3
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Irreducible Coxeter graphs (of finite type)
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Parabolic subgroups

Standard parabolic subgroup
of A

A subgroup generated by a
subset T ⊆ S , denoted by
AT .

Parabolic subgroup of A

P := αATα
−1

T ⊆ S ,
α ∈ A.

Irreducible standard parabolic
subgroup

AU , U ⊆ S

with connected Coxeter graph.

Irreducible parabolic subgroup.

Q := βAUβ
−1

U ⊆ S , β ∈ A, AU has connected
Coxeter graph.
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Curves in Dn and parabolic subgroups in braid groups

σ1 σ2 σ3 σ4

xy

P = α−1A{σ2,σ3}α

α = σ4

xy

Irreducible
parabolic
subgroups

xy

Non-degenerate
simple closed

curves
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Maŕıa Cumplido Cabello Advances in the understanding of parabolic subgroups of Artin-Tits groups7th February 2018 7 / 20



Curves in Dn and parabolic subgroups in braid groups

A{σ2,σ3}
σ1 σ2 σ3 σ4

xy

P = α−1A{σ2,σ3}α

α = σ4

xy

Irreducible
parabolic
subgroups

xy

Non-degenerate
simple closed

curves
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Curve complex C in Dn

Vertices: Isotopy classes of non-degenerate simple closed curves.

n-simplex: n + 1 vertices with representatives which are pairwise
disjoint.

Interesting facts:

C is hyperbolic. (Masur-Minsky 1999)

The action of Bn on C provides geometrical tools to study braids:

Nielsen-Thurston Classification
Canonical Reduction System (Birman-Lubotzky-McCarthy 1983)

We want to use irreducible parabolic subgroups as an algebraic analogue of
the curve complex.
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Analogue of disjoint curves

P, Q standard parabolic subgroups.

P ( Q or Q ( P

P ∩ Q = {1} and xy = yx ,
∀x ∈ P, y ∈ Q
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Central Garside element

Each Artin–Tits group of spherical type AS has Garside structure, which
allows to define the following:

AS has a special element ∆S , called Garside element, such that
∆e

S ∈ Z (AS) for e = 1 or e = 2.

Central Garside element

Given a standard parabolic subgroup AX , we define its central Garside
element, zX , as ∆X if ∆X ∈ Z (AX ) and ∆2

X otherwise.

Given a parabolic subgroup P = α−1AXα, we define its central Garside
element, zP , as α−1zXα.

Lemma (Godelle 2003, C. 2017)

Given P,Q parabolic subgroups and α ∈ AS

P = α−1Qα⇐⇒ zP = α−1zQα
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Main results

Theorem (Intersection of parabolic subgroups)

Let P and Q be two parabolic subgroups. Then P ∩ Q is also a parabolic
subgroup.

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order
induced by the inclusion. That is, if P and Q are parabolic subgroups:

∃! maximal parabolic subgroup contained in P ∩ Q.

∃! minimal parabolic subgroup containing P ∪ Q.
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Main results

Theorem (“Disjointness” of parabolic subgroups)

Let P and Q be two distinct irreducible parabolic subgroups of AS . Then
zPzQ = zQzP holds if and only if one of the following three conditions are
satisfied:

1 P ( Q.

2 Q ( P.

3 P ∩ Q = {1} and xy = yx for every x ∈ P and y ∈ Q.
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Complex of irreducible parabolic subgroups P

Vertices: Irreducible parabolic subgroups.

n-simplex: {P(1), · · · ,P(n + 1)} such that zP(i)zP(j) = zP(j)zP(i) for
all 1 ≤ i ≤ j ≤ n + 1.

Interesting things:

For the braid group P is isomorphic to C.

P is expected to be hyperbolic.

The action of AS on P would allow to generalize results that are
known for braids.
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Maŕıa Cumplido Cabello Advances in the understanding of parabolic subgroups of Artin-Tits groups7th February 2018 13 / 20



Proofs

Some definitions from Garside theory:

Given a, b ∈ AS we say that a is prefix of b if a−1b is positive.

The np-normal form of x ∈ AS with respect to ∆p
S is canonical way of

represent an element:

x = x−1
n · · · x−1

1 y1 · · · ym,

where xi , yj satisfies some coprimality conditions and are prefixes of ∆p
S for

every i , j and x1 · · · xn and y1 · · · ym have no prefix in common.

Twisted cycling: c̃(x) = xn−1 · · · x−1
1 y1 · · · ymx−1

n .

Decycling: d(x) = ymxn · · · x−1
1 y1 · · · ym−1.

RSSSp(x): The set of conjugates of x that are in a period under twisted
cycling and decycling. RSSS∞(x) =

⋂
p≤1 RSSSp(x).
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Proofs

If α ∈ AS is positive, we define its support Supp(x) as the set of generators
appearing in any positive word representing x .

For any α ∈ AS with np-normal form α = x−1
n · · · x−1

1 y1 · · · ym we define
Supp(α) = Supp(x1 · · · xn) ∪ Supp(y1 · · · ym).

Given α′ ∈ RSSS∞(α), we define ϕ(α) = |∆Supp(α)|.
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Proofs

Theorem (Intersection of parabolic subgroups)

Let P and Q be two parabolic subgroups. Then P ∩ Q is also a parabolic
subgroup.

Sketch of the proof:

For every α ∈ AS , take α′ = β−1αβ ∈ RSSS∞(α) and define
Pα = βASupp(α′)β

−1.

Lemma: For every α ∈ AS , Pα is the minimal parabolic subgroup
containing α.

Take α ∈ P ∩ Q such that ϕ(α) is maximal.

Standardize Pα having AZ .

Prove AZ = P ∩ Q.
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Proofs

Theorem (Lattice of parabolic subgroups)

The set of parabolic subgroups is a lattice with respect to the order induced by
the inclusion. That is, if P and Q are parabolic subgroups:

∃! maximal parabolic subgroup contained in P ∩ Q.

∃! minimal parabolic subgroup containing P ∪ Q.

Sketh of the proof:

We need to prove the second point

The set of parabolic subgroups Ti containing P ∩ Q is countable.

Define Un =
⋂n

i=1 Ti (is a parabolic subgroup).

We cannot have an infinite chain of nested parabolic subgroups.⋂∞
i=1 Ti is a parabolic subgroup.
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Proofs

Theorem (“Disjointness” of parabolic subgroups)

Let P and Q be two distinct irreducible parabolic subgroups of AS . Then
zPzQ = zQzP holds if and only if one of the following three conditions are
satisfied:

1 P ( Q.

2 Q ( P.

3 P ∩ Q = {1} and xy = yx for every x ∈ P and y ∈ Q.

Sketch of the proof:

Suppose that zPzQ = zQzP .

We show that we can standardize P and Q conjugating by the same
element, having AX and AY .

1,2,3 are preserved under conjugacy.
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Maŕıa Cumplido Cabello Advances in the understanding of parabolic subgroups of Artin-Tits groups7th February 2018 18 / 20



Proofs

We need to prove that one of the following conditions holds: X ( Y , Y ( X
or X ∩ Y = {1} and all elements of X commute with all elements if Y .

Lemma: Let s0, . . . , sk ∈ S be standard generators such that si si+1 6= si+1si ,
and si 6= si+2 ∀i . If an element α is represented by a positive word w which
contains the subsequence s0s1 · · · sk , then all positive words representing α
contain the same subsequence.

Suppose that the conditions are not fulfilled. We prove that then we have a
simple path in the Coxeter graph of AX∪Y , a = s1, · · · , sn = b with
a ∈ X \ Y , b ∈ Y \ X and si ∈ Y , satisfying the Lemma.

Show that zX zY contains s1, · · · , sn as a subsequence.

But zY zX does not contain s1, · · · , sn, having a contradiction.
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Thank you!

Merci!

¡Gracias!
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