Lifting braids

Benjamin Bode

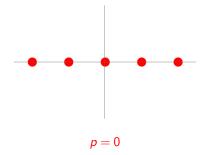
University of Bristol

Winterbraids VIII CIRM, 6th February 2018

SPOCK Scientific Properties Of Complex Knots

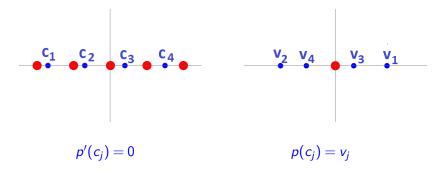
Braids as loops in the space of polynomials

Let \tilde{V}_d be the set of monic complex polynomials with d disjoint simple roots. Let $p \in \tilde{V}_d$.



We can think of loops in \tilde{V}_d as braids on d strands (formed by the roots of the polynomials).

Instead of taking the roots of p, we could have focused on the critical points of p, i.e. $p'(c_j) = 0$ or the critical values $p(c_j)$.



The covering map

Let

$$V_d = \{ \text{monic polynomials } p \in \mathbb{C}[z] \text{ of degree } d \text{ and}$$

with $d-1$ disjoint, non-zero critical values
and constant term equal to $0 \}$

and

$$W_d = \{ (v_1, v_2, \dots, v_{d-1}) : v_j \in \mathbb{C} \setminus \{0\} \text{ and } v_i \neq v_j \text{ for all } i \neq j \} / S_{d-1}.$$

Theorem (Beardon, Carne, Ng)

The map $\phi_d : V_d \to W_d$ that sends a polynomial $p \in V_d$ to its set of critical values is a covering map of degree d^{d-1} .

This means that we can lift loops γ in W_d to paths in V_d and these lifts only depend on the homotopy class of γ .

Easiest example: d = 2. We want to know if two given braids A and B are equal, i.e. is $AB^{-1} = e$?

Easiest example: d = 2.

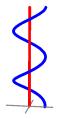
We want to know if two given braids A and B are equal, i.e. is $AB^{-1} = e$?

First easy test: Is the permutation rep of AB^{-1} the trivial permutation?

(For d = 2: $AB^{-1} \sim \sigma^k$ for some $k \in \mathbb{Z}$. Is k even?)

Easiest example: d = 2. We want to know if two given braids A and B are equal, i.e. is $AB^{-1} = e$? First easy test: Is the permutation rep of AB^{-1} the trivial permutation? (For d = 2: $AB^{-1} \sim \sigma^k$ for some $k \in \mathbb{Z}$. Is k even?) If AB^{-1} is a pure braid, we can find a parametrisation of AB^{-1} , where one strand is stationary (at zero). AB^{-1} is therefore a loop γ in W_d .

(For d=2: $v_1(t)=e^{2\pi i k t/2}$, $t\in[0,1]$.)



The loop γ is acting on the d^{d-1} preimage points of the base point. If $AB^{-1} = e$, then this action must again be the trivial permutation.

The loop γ is acting on the d^{d-1} preimage points of the base point. If $AB^{-1} = e$, then this action must again be the trivial permutation. (For d = 2 this is true iff k is even.)

The loop γ is acting on the d^{d-1} preimage points of the base point. If $AB^{-1} = e$, then this action must again be the trivial permutation. (For d = 2 this is true iff k is even.)

If the permutation is trivial, then all the lifted paths are in fact loops in V_d , i.e. their roots form braids on d strands and if $AB^{-1} = e$, all of them are trivial braids.

The loop γ is acting on the d^{d-1} preimage points of the base point. If $AB^{-1} = e$, then this action must again be the trivial permutation. (For d = 2 this is true iff k is even.)

If the permutation is trivial, then all the lifted paths are in fact loops in V_d , i.e. their roots form braids on d strands and if $AB^{-1} = e$, all of them are trivial braids. (For d = 2: The 2 lifts are $\sigma^{k/2}$.)

Keep lifting!

(For d = 2: Every lift halves the exponent of σ . Thus either k = 0 or we obtain a nontrivial permutation after at most $\log_2 |k|$ steps.)