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Braids as loops in the space of polynomials

Let Ṽd be the set of monic complex polynomials with d disjoint
simple roots.
Let p ∈ Ṽd .

p = 0

We can think of loops in Ṽd as braids on d strands (formed by the
roots of the polynomials).
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Critical braids

Instead of taking the roots of p, we could have focused on the
critical points of p, i.e. p′(cj) = 0 or the critical values p(cj).

p′(cj) = 0 p(cj) = vj
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The covering map

Let

Vd = {monic polynomials p ∈ C[z ] of degree d and
with d−1 disjoint, non-zero critical values
and constant term equal to 0}

and

Wd = {(v1,v2, . . . ,vd−1) : vj ∈C\{0} and vi 6= vj for all i 6= j}/Sd−1.

Theorem (Beardon, Carne, Ng)
The map φd : Vd →Wd that sends a polynomial p ∈ Vd to its set of
critical values is a covering map of degree dd−1.

This means that we can lift loops γ in Wd to paths in Vd and these
lifts only depend on the homotopy class of γ.
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How can this be used for braid invariants
Easiest example: d = 2.
We want to know if two given braids A and B are equal, i.e. is
AB−1 = e?

First easy test: Is the permutation rep of AB−1 the trivial
permutation?
(For d = 2: AB−1 ∼ σk for some k ∈ Z. Is k even?)
If AB−1 is a pure braid, we can find a parametrisation of AB−1,
where one strand is stationary (at zero). AB−1 is therefore a loop γ

in Wd .
(For d = 2: v1(t) = e2π ikt/2, t ∈ [0,1].)
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How can this be used for braid invariants

The loop γ is acting on the dd−1 preimage points of the base point.
If AB−1 = e, then this action must again be the trivial permutation.

(For d = 2 this is true iff k is even.)

If the permutation is trivial, then all the lifted paths are in fact
loops in Vd , i.e. their roots form braids on d strands and if
AB−1 = e, all of them are trivial braids.
(For d = 2: The 2 lifts are σk/2.)
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How can this be used for braid invariants

Keep lifting!

(For d = 2: Every lift halves the exponent of σ . Thus either k = 0
or we obtain a nontrivial permutation after at most log2 |k| steps.)
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