Analyticity of the Bargman projection and semiclassical asymptotics

San Vũ Ngọc

Université de Rennes 1

International Workshop on Geometric Quantization and Applications CIRM, October 8, 2018

Joint work with Ophélie Rouby and Johannes Sjöstrand

1 Semiclassical analysis, symplectic geometry, and non-selfadjoint operators

2 Brg-quantization and Bergman kernels

1 Semiclassical analysis, symplectic geometry, and non-selfadjoint operators

2 Brg-quantization and Bergman kernels

Quantum mechanics:

- Quantum state: $\psi \in \mathcal{H}$ (Hilbert). eg: $\mathcal{H} = L^2(X)$.
- Quantum observable (Q. Hamiltonian): selfadjoint operator \mathcal{L} .
- evolution: (Schrödinger equation)

$$\frac{\hbar}{i}\partial_t\psi = \mathcal{L}\psi.$$
 $\psi(t) = e^{\frac{it}{\hbar}\mathcal{L}}\psi(0).$

Stationary states $\psi(t,q) = e^{\frac{i\lambda t}{\hbar}}u(q)$: hence $\mathcal{L}u = \lambda u$.

Classical mechanics:

- Phase space: (M, ω) symplectic manifold. eg: $M = \mathbb{R}^{2n}$.
- Hamiltonian $H \in C^{\infty}(M)$.
- evolution: Hamiltonian flow

Semiclassical regime: $\hbar \rightarrow 0$

Morse Hamiltonian and Reeb graph

Georges Reeb

San Vű Ngọc, Université de Rennes 1

Analyticity of the Bargman projectionand semiclassical asymptotics

Morse Hamiltonian and Reeb graph

 (M, ω) a 2-dimensional symplectic manifold (surface). $p: M \to \mathbb{R}$ a Morse function. We are interested in the (singular) foliation of M by level sets of p. The **Reeb graph** is the set of leaves.

Morse Hamiltonian and Reeb graph

 (M, ω) a 2-dimensional symplectic manifold (surface). $p: M \to \mathbb{R}$ a Morse function. We are interested in the (singular) foliation of M by level sets of p. The **Reeb graph** is the set of leaves.

Question

What is the quantum analogue/footprint¹ of the singular foliation?

¹Cf Polterovich's talk

San Vű Ngọc, Université de Rennes 1

Inverse spectral theory for 1D pseudo-differential operators

Let $P := \operatorname{Op}_{\hbar}^{w}(p_{\hbar})$ where $p_{h} := p + \hbar p_{1} + \hbar^{2} p_{2} + \cdots$ is a symbol on \mathbb{R}^{2} , elliptic at infinity. Let $I \subset \mathbb{R}$ be an interval. We assume $M = p^{-1}(I)$ is compact ($\Rightarrow \sigma(P) \cap I$ is discrete).

Theorem ([VN,2011])

Suppose that $p_{\uparrow M}$ is a simple Morse function. Assume that the graphs of the periods of all trajectories of the hamiltonian flow defined by $p_{\uparrow M}$, as functions of the energy, intersect generically. Then the knowledge of the spectrum $\sigma(P) \cap I + \mathcal{O}(\hbar^2)$ determines the symplectic type of (M, ω, p) .

Strategy:

- detect singularities
- detect topology (Reeb graph)

- detect symplectic invariants
- use the [Dufour-Molino-Toulet, 1992] classification

Berezin-Toeplitz quantization on Kähler manifolds

Let M be a compact Kähler manifold with a prequantum line bundle $L \to M$. Let $H^0(X; L^k)$ be the space of holomorphic sections of L^k , for $k \ge 1$.

A family of linear operators $(A_k : H^0(X; L^k) \to H^0(X; L^k))_{k \ge 1}$ is a **Berezin-Toeplitz** operator if there is a smooth symbol $a : M \to \mathbb{R}$ with

 $a \sim a_0 + k^{-1}a_1 + k^{-2}a_2 + \cdots$

(in the C^{∞} topology) such that

 $A_k = BT(a) := u \mapsto \Pi_k(au),$

where $\Pi_k : L^2(X; L^k) \to H^0(X; L^k)$ is the orthogonal projection (Bergman projection).

Berezin-Toeplitz quantization on Kähler manifolds

Let M be a compact Kähler manifold with a prequantum line bundle $L \to M$. Let $H^0(X; L^k)$ be the space of holomorphic sections of L^k , for $k \ge 1$.

A family of linear operators $(A_k : H^0(X; L^k) \to H^0(X; L^k))_{k \ge 1}$ is a **Berezin-Toeplitz** operator if there is a smooth symbol $a : M \to \mathbb{R}$ with

$$a \sim a_0 + k^{-1}a_1 + k^{-2}a_2 + \cdots$$

(in the C^{∞} topology) such that

 $A_k = BT(a) := u \mapsto \Pi_k(au),$

where $\Pi_k : L^2(X; L^k) \to H^0(X; L^k)$ is the orthogonal projection (Bergman projection). [Berezin, 1975], [Boutet de Monvel-Guillemin, 1981], [Bordemann-Meinrenken-Schlichenmaier, 1994], [Borthwick-Paul-Uribe, 1998], [Charles, 2003], etc... and extension to more general symplectic manifolds:

[*Ma-Marinescu*, 2008], [*Charles*, 2014], etc.

Theorem ([Le Floch, 2014])

Let M be a compact, connected Kähler manifold of real dimension 2, with a prequantum line bundle $L \to M$. Let $(A_k)_{k \in \mathbb{N}^*}$ be a self-adjoint Berezin-Toeplitz operator on M whose symbol a is a simple Morse function (...) Then the knowledge of the spectrum $\sigma(A_k) \cap I + \mathcal{O}(k^{-2})$ determines the symplectic type of (M, ω, a) .

Theorem ([Le Floch, 2014])

Let M be a compact, connected Kähler manifold of real dimension 2, with a prequantum line bundle $L \to M$. Let $(A_k)_{k \in \mathbb{N}^*}$ be a self-adjoint Berezin-Toeplitz operator on M whose symbol a is a simple Morse function (...) Then the knowledge of the spectrum $\sigma(A_k) \cap I + \mathcal{O}(k^{-2})$ determines the symplectic type of (M, ω, a) .

In particular, we can recover from the spectrum the Reeb graph and its (singular) integral affine structure.

Theorem ([Le Floch, 2014])

Let M be a compact, connected Kähler manifold of real dimension 2, with a prequantum line bundle $L \to M$. Let $(A_k)_{k \in \mathbb{N}^*}$ be a self-adjoint Berezin-Toeplitz operator on M whose symbol a is a simple Morse function (...) Then the knowledge of the spectrum $\sigma(A_k) \cap I + \mathcal{O}(k^{-2})$ determines the symplectic type of (M, ω, a) .

In particular, we can recover from the spectrum the Reeb graph and its (singular) integral affine structure.

Remark: recovering the Reeb graph is *not obvious* (spectrum is 1D).

Non selfadjoint operators

An idea to "reveal" the topology in the spectrum is to make the spectrum complex. (Non-selfadjoint operators).

Non selfadjoint operators

An idea to "reveal" the topology in the spectrum is to make the spectrum complex. (Non-selfadjoint operators). But there is a (huge) price to pay: general non-selfadjoint operators have very unstable spectrum: Eg: limit of large Toeplitz matrices, from [Trefethen-Embree, 2005]:

Bohr-Sommerfeld for analytic non-selfadjoint operators

In order to fight non-selfadjoint instability, we need strong "rigidity" or "integrability" conditions.

Bohr-Sommerfeld for analytic non-selfadjoint operators

In order to fight non-selfadjoint instability, we need strong "rigidity" or "integrability" conditions. This was recently done for analytic 1D pseudodifferential operators that are close to selfadjoint:

Bohr-Sommerfeld for analytic non-selfadjoint operators

In order to fight non-selfadjoint instability, we need strong "rigidity" or "integrability" conditions. This was recently done for analytic 1D pseudodifferential operators that are close to selfadjoint:

Theorem ([Rouby, 2018])

Let P_{ϵ} be an analytic pseudodifferential operator on \mathbb{R} or S^1 of the form $P_{\epsilon} = P_0 + i\epsilon Q$, where P_0 is selfadjoint with discrete spectrum, and Q is P_0 -bounded.

Then, near any regular value of the symbol p_0 , the spectrum of P_{ϵ} is given by $\{g(\hbar m; \epsilon); m \in \mathbb{Z}\}$, where $g : \mathbb{C} \to \mathbb{C}$ is holomorphic and

$$g \sim g_0 + \hbar g_1 + \hbar^2 g_2 + \cdots$$

Moreover, g_0 is the inverse of the action variable, and

 $g_0 \sim p_0 + i\epsilon \langle q \rangle + \mathcal{O}(\epsilon^2)$

[Melin-Sjöstrand, 2003], [Hitrik-Sjöstrand 2004, 2016], [Hitrik-Sjöstrand-VN,

Towards Analytic Berezin-Toeplitz calculus

We would like to use this idea for Morse functions on compact manifolds.

Question

Can you extend Rouby's theorem to Berezin-Toeplitz quantization?

Towards Analytic Berezin-Toeplitz calculus

We would like to use this idea for Morse functions on compact manifolds.

Question

Can you extend Rouby's theorem to Berezin-Toeplitz quantization? Then, can you see the Reeb graph?

Advertisement

ANNALES HENRT LEBESGUE

CHIEF EDITOR DOMINIQUE CERVEAU

VINCENT GUIRARDEL | NICOLAS RAYMOND | CÉDRIC VILLANI

ANALYSIS AND SCIENTIFIC COMPUTING

NALINI ANANTHARAMAN | FLORENCE HUBERT ARNAUD DEBUSSCHE SHT JIN SØREN FOURNATS PATRICK GÉRARD LAURA GRIGORI ERÉDÉRIC HÉRAU

ALESSIO PORRETTA NICOLAS SEGUIN SAN VŨ NGOC

JOSEPH AYOUB	JORGE VITÓRIO PEREIRA
SERGE CANTAT	GEOFFREY POWELL
XAVIER CARUSO	ALAN WEINSTEIN
VINCENT COLIN	ANNA WIENHARD
BAS EDIXHOVEN	CHENYANG XU
JOHN PARDON	

PROBABILITY AND STATISTICS

NAVID ALDOUS TTAT BENJAMINI MTRFTILE BOUSQUET-MÉLOU LOÏC CHAUMONT YVES COUDÈNE SÉBASTIEN GOUËZEL

MASSIMULTANO GUBINELLI HUBERT LACOIN ANNE PHILIPPE JIM PITMAN NTCOLAS PRIVALLT

PARTNERS

CHL (CENTRE HENRI LEBESGUE) CENTRE NERGENNE (CNRS.UGA / GRENOBLE) ENS RENNES TRNAR (RENNES)

LNJL (NANTES) LNBA (BREST - VANNES) LARENA (ANGERS)

DESIGN MATHIEU DESAILLY WWW.LEJARDINGRAPHIQUE.COM / IMPRESSION MÉDIA GRAPHIC

1 Semiclassical analysis, symplectic geometry, and non-selfadjoint operators

2 Brg-quantization and Bergman kernels

Recall: $BT(a) := u \mapsto \Pi_k(au)$. All advances in the microlocal calculus of Berezin-Toeplitz operators rely on the nice semiclassical C^{∞} asymptotics of the **Bergman kernel** (Schwartz kernel of Π_k), as $k \to \infty$ [Fefferman, 1974], [Boutet-Sjöstrand, 1976], [Kashiwara, 1977],...

Recall: $BT(a) := u \mapsto \Pi_k(au)$. All advances in the microlocal calculus of Berezin-Toeplitz operators rely on the nice semiclassical C^{∞} asymptotics of the **Bergman kernel** (Schwartz kernel of Π_k), as $k \to \infty$ [Fefferman, 1974], [Boutet-Sjöstrand, 1976], [Kashiwara, 1977],...

Recall: $BT(a) := u \mapsto \Pi_k(au)$. All advances in the microlocal calculus of Berezin-Toeplitz operators rely on the nice semiclassical C^{∞} asymptotics of the **Bergman kernel** (Schwartz kernel of Π_k), as $k \to \infty$ [Fefferman, 1974], [Boutet-Sjöstrand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used in the treatment of non-selfadjoint operators).

Recall: $BT(a) := u \mapsto \Pi_k(au)$. All advances in the microlocal calculus of Berezin-Toeplitz operators rely on the nice semiclassical C^{∞} asymptotics of the **Bergman kernel** (Schwartz kernel of Π_k), as $k \to \infty$ [Fefferman, 1974], [Boutet-Sjöstrand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used in the treatment of non-selfadjoint operators).

Question (Zelditch, 2014. Also Charles, ...)

Does the Bergman projection Π_k admit an asymptotic expansion, as $k \to \infty$, in the topology of **analytic** symbols?

Recall: $BT(a) := u \mapsto \Pi_k(au)$. All advances in the microlocal calculus of Berezin-Toeplitz operators rely on the nice semiclassical C^{∞} asymptotics of the **Bergman kernel** (Schwartz kernel of Π_k), as $k \to \infty$ [Fefferman, 1974], [Boutet-Sjöstrand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used in the treatment of non-selfadjoint operators).

Question (Zelditch, 2014. Also Charles, ...)

Does the Bergman projection Π_k admit an asymptotic expansion, as $k \to \infty$, in the topology of **analytic** symbols?

[Rouby-Sjöstrand-VN, preprint 2018].

Recall: $BT(a) := u \mapsto \Pi_k(au)$. All advances in the microlocal calculus of Berezin-Toeplitz operators rely on the nice semiclassical C^{∞} asymptotics of the **Bergman kernel** (Schwartz kernel of Π_k), as $k \to \infty$ [Fefferman, 1974], [Boutet-Sjöstrand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used in the treatment of non-selfadjoint operators).

Question (Zelditch, 2014. Also Charles, ...)

Does the Bergman projection Π_k admit an asymptotic expansion, as $k \to \infty$, in the topology of **analytic** symbols?

[Rouby-Sjöstrand-VN, preprint 2018]. Recent simultaneous works by [Hezari-Xu, preprint 2018] and [Deleporte, in preparation].

Analytic symbols

[Boutet de Monvel-Kree, 1967], [Sjöstrand, 1982]

Definition

A formal classical analytic symbol \hat{a}_{\hbar} in $\Omega \subset \mathbb{C}^n$ is a formal series $\hat{a}_{\hbar} = \sum_{j=0}^{\infty} a_j \hbar^j$, where $a_j \in \text{Hol}(\Omega)$ satisfies:

 $\forall K \Subset \Omega, \exists C > 0, \forall j \ge 0, \quad \sup_K |a_j| \le C^{j+1} j^j.$

Definition

We say that $a_{\hbar} \in S^0(\Omega)$ is a **classical analytic symbol** if there exists a formal cas $\hat{a}_{\hbar} = \sum_{j=0}^{\infty} a_j \hbar^j$, with the asymptotic expansion: $\forall K \Subset \Omega, \exists C > 0, \forall N \ge 0$,

$$\sup_{K} \left| a_{\hbar} - \sum_{j=0}^{N-1} a_{j} \hbar^{j} \right| \leq \hbar^{N} C^{N+1} N^{N}.$$

San Vű Ngọc, Université de Rennes 1

Holomorphic Hermitian Line Bundles

Let X be a compact complex manifold of complex dimension n, let L be a holomorphic line bundle over X, equipped with a Hermitian metric g, giving rise to a metric g^k on the tensor product L^k , $k \in \mathbb{N}^*$.

Assume that g has strictly positive curvature: near any point $|s(x)|_L = e^{-\Phi(x)}$, where s is a trivializing section and such that $\omega := i\partial\overline{\partial}\Phi$ is a Kähler form.

 ω induces a volume form ω_n on X, and hence a scalar product $\langle \cdot, \cdot \rangle_k$ on the space of sections of L^k . The orthogonal projection

 $\Pi_k: L^2(X, L^k) \to \mathcal{H}^0(X, L^k)$

is called the Bergman projection. Its distribution kernel is a smooth section $K(\cdot, \cdot; k)$ of $F_k \boxtimes F_k^*$:

$$\Pi_k u(x) = \int_X K(x,y;k) u(y) \omega_n(\mathrm{d} y).$$

Bergman kernels on compact Kähler manifolds

Using trivializing sections s, t near x_0 and y_0 , we can write $K(x, y; k) = b(x, \overline{y}; k)s_k(x) \otimes t_k(y)^*.$

Theorem (first part: off diagonal)

Assume that the Hermitian metric g is real-analytic.

If $x_0 \neq y_0$ then there exists C > 0 such that, uniformly in a neighborhood $\Omega_0 \times V_0$ of (x_0, y_0) ,

$$|K(x,y;k)|_{F_{k,x}\otimes F_{k,y}^*} \le Ce^{-\frac{k}{C}}.$$

Equivalently, in local trivializations:

 $e^{-k(\Phi_{x_0}(x)+\Phi_{y_0}(y))}|b(x,\bar{y};k)| = \mathcal{O}(e^{-\frac{k}{C}}).$

Bergman kernels on compact Kähler manifolds

Using trivializing sections s, t near x_0 and y_0 , we can write $K(x, y; k) = b(x, \overline{y}; k)s_k(x) \otimes t_k(y)^*.$

Theorem (first part: off diagonal)

Assume that the Hermitian metric g is real-analytic.

If $x_0 \neq y_0$ then there exists C > 0 such that, uniformly in a neighborhood $\Omega_0 \times V_0$ of (x_0, y_0) ,

$$|K(x,y;k)|_{F_{k,x}\otimes F_{k,y}^*} \le Ce^{-\frac{k}{C}}.$$

Equivalently, in local trivializations:

 $e^{-k(\Phi_{x_0}(x)+\Phi_{y_0}(y))}|b(x,\bar{y};k)| = \mathcal{O}(e^{-\frac{k}{C}}).$

Mentioned by [*Hezari-Lu-Xu*, 2018] and [*Christ*, 2018]. There are many related results in the literature; see also [*Ma-Marinescu*, 2015].

Using a trivializing section s near x_0 , we can write, for x, y near x_0 :

 $K(x,y;k) = b(x,\bar{y};k)s_k(x) \otimes s_k(y)^*.$

Theorem (second part: near diagonal)

2 For any $x_0 \in X$, there exists a neighborhood Ω_0 of x_0 , and a classical analytic symbol a on $\Omega_0 \times \overline{\Omega_0}$, such that, for all $(x, y) \in \Omega_0 \times \Omega_0$, for all $k \ge 1$,

$$e^{-k(\Phi(x)+\Phi(y))} \left| b_k(x,\bar{y}) - \frac{(2k)^n}{\pi^n} a(x,\bar{y};k^{-1}) e^{2k\psi(x,\bar{y})} \right| \le C e^{-\frac{k}{C}}$$

for some constant C > 0, where ψ is the polarized form of Ψ .

Cf also [Hezari-Lu-Xu, 2018], [Hezari-Xu, preprint 2018].

- Construct an approximate Bergman projection that has the required properties.
- Prove that the approximate projection is close to the true projection.

- Construct an approximate Bergman projection that has the required properties.
- Prove that the approximate projection is close to the true projection.

Similar strategy has been used *e.g.* in [Berman-Berndtsson-Sjöstrand, 2008].

- Construct an approximate Bergman projection that has the required properties.
- Prove that the approximate projection is close to the true projection.

Similar strategy has been used *e.g.* in [Berman-Berndtsson-Sjöstrand, 2008].

The "novelty" here is mainly in the way we do item 1. We simultaneously **microlocalize** and **generalize** the problem.

- Construct an approximate Bergman projection that has the required properties.
- Prove that the approximate projection is close to the true projection.

Similar strategy has been used *e.g.* in [Berman-Berndtsson-Sjöstrand, 2008].

The "novelty" here is mainly in the way we do item 1. We simultaneously **microlocalize** and **generalize** the problem.

• We consider **all** operators of the form required by the Theorem with an analytic symbol a_{\hbar} (call them Brg-operators).

- Construct an approximate Bergman projection that has the required properties.
- Prove that the approximate projection is close to the true projection.

Similar strategy has been used *e.g.* in [Berman-Berndtsson-Sjöstrand, 2008].

The "novelty" here is mainly in the way we do item 1. We simultaneously **microlocalize** and **generalize** the problem.

- We consider **all** operators of the form required by the Theorem with an analytic symbol a_{\hbar} (call them Brg-operators).
- And then prove that this quantization is equivalent (by an elliptic analytic FIO) to the complex Weyl quantization.

- Construct an approximate Bergman projection that has the required properties.
- Prove that the approximate projection is close to the true projection.

Similar strategy has been used *e.g.* in [Berman-Berndtsson-Sjöstrand, 2008].

The "novelty" here is mainly in the way we do item 1. We simultaneously **microlocalize** and **generalize** the problem.

- We consider **all** operators of the form required by the Theorem with an analytic symbol a_{\hbar} (call them Brg-operators).
- And then prove that this quantization is equivalent (by an elliptic analytic FIO) to the complex Weyl quantization.
- Finally, in the Weyl quantization, it is obvious to construct an approximate Bergman projection.

Brg quantization

Mimicking the formula:

$$\Pi_k u(x) = \int_X K(x, y; k) u(y) \omega_n(\mathrm{d}y),$$

and working locally in \mathbb{C}^n (Φ is a spsh real-analytic function: $\partial \overline{\partial} \Phi \geq m \operatorname{Id}, m > 0$, and $\hbar = 1/k$), we define $\operatorname{Op}_r^{\operatorname{Brg}}(a_{\hbar})$:

Definition

Let a_{\hbar} be defined near the anti-diagonal $\{(x, \bar{x})\} \subset \mathbb{C}^n \times \mathbb{C}^n$.

$$[\mathsf{Op}_r^{\mathrm{Brg}}(a_\hbar)u](x) := \int_{B(x,r)} k_\hbar(x,y)u(y)L(\mathrm{d}y),$$

where r > 0 and

$$k_{\hbar}(x,y) := \frac{2^n}{(\pi\hbar)^n} e^{\frac{2}{\hbar}(\psi(x,\overline{y}) - \Phi(y))} a_{\hbar}(x,\overline{y}) \det\left(\partial_{\hat{w}}\partial_x\psi\right)(x,\overline{y})$$

Brg quantization

Mimicking the formula:

$$\Pi_k u(x) = \int_X K(x, y; k) u(y) \omega_n(\mathrm{d}y),$$

and working locally in \mathbb{C}^n (Φ is a spsh real-analytic function: $\partial \overline{\partial} \Phi \geq m \operatorname{Id}, m > 0$, and $\hbar = 1/k$), we define $\operatorname{Op}_r^{\operatorname{Brg}}(a_{\hbar})$:

Definition

Let a_{\hbar} be defined near the anti-diagonal $\{(x, \bar{x})\} \subset \mathbb{C}^n \times \mathbb{C}^n$.

$$[\mathsf{Op}_r^{\mathrm{Brg}}(a_{\hbar})u](x) := \int_{B(x,r)} k_{\hbar}(x,y)u(y)L(\mathrm{d}y),$$

where r > 0 and

$$k_{\hbar}(x,y) := \frac{2^n}{(\pi\hbar)^n} e^{\frac{2}{\hbar}(\psi(x,\overline{y}) - \Phi(y))} a_{\hbar}(x,\overline{y}) \det\left(\partial_{\tilde{w}}\partial_x\psi\right)(x,\overline{y})$$

Remark: When Φ is quadratic, we have formally $\Pi_{\Phi} = \mathsf{Op}_{\infty}^{\mathrm{Brg}}(1)$.

H_{Φ} spaces

In local coordinates, the holomorphic sections $\mathcal{H}^0(X, L^k)$ are of the form $\tilde{u}(x) = u(x)s_k(x)$ for a holomorphic function u such that

$$\|\tilde{u}\|_k^2 = \int |u|^2 e^{-2k\Phi} \omega_n < +\infty,$$

where Φ is spsh: $\partial \overline{\partial} \Phi \geq m \operatorname{Id}, m > 0$.

H_{Φ} spaces

In local coordinates, the holomorphic sections $\mathcal{H}^0(X, L^k)$ are of the form $\tilde{u}(x) = u(x)s_k(x)$ for a holomorphic function u such that

$$\|\tilde{u}\|_k^2 = \int |u|^2 e^{-2k\Phi} \omega_n < +\infty,$$

where Φ is spsh: $\partial \overline{\partial} \Phi \geq m \operatorname{Id}, m > 0$. Thus $u \in H_{\Phi} := \operatorname{Hol} \cap L_{\Phi}^2$ where $L_{\Phi}^2 := L^2(e^{-2k\Phi})$.

H_{Φ} spaces

In local coordinates, the holomorphic sections $\mathcal{H}^0(X, L^k)$ are of the form $\tilde{u}(x) = u(x)s_k(x)$ for a holomorphic function u such that

$$\|\tilde{u}\|_k^2 = \int |u|^2 e^{-2k\Phi} \omega_n < +\infty,$$

where Φ is spsh: $\partial \overline{\partial} \Phi \geq m \mathsf{Id}$, m > 0. Thus $u \in H_{\Phi} := \mathrm{Hol} \cap L_{\Phi}^2$ where $L_{\Phi}^2 := L^2(e^{-2k\Phi})$.

If $\Phi = \frac{1}{2} |z|^2$, then $H_{\Phi}(\mathbb{C}^n)$ is the usual **Bargmann space**.

H_Φ spaces

In local coordinates, the holomorphic sections $\mathcal{H}^0(X, L^k)$ are of the form $\tilde{u}(x) = u(x)s_k(x)$ for a holomorphic function u such that

$$\|\tilde{u}\|_k^2 = \int |u|^2 e^{-2k\Phi} \omega_n < +\infty,$$

where Φ is spsh: $\partial \overline{\partial} \Phi \geq m \operatorname{Id}, m > 0$. Thus $u \in H_{\Phi} := \operatorname{Hol} \cap L_{\Phi}^2$ where $L_{\Phi}^2 := L^2(e^{-2k\Phi})$.

- If $\Phi = \frac{1}{2} |z|^2$, then $H_{\Phi}(\mathbb{C}^n)$ is the usual **Bargmann space**.
- Let $u \in H_{\Phi}(\mathbb{C}^n)$, and $\hbar := 1/k$. We have $u = e^{\Phi/\hbar}v$, with $v \in L^2(\mathbb{C}^n, |\mathrm{d}z|)$, and the condition $\overline{\partial}u = 0$ writes:

 $(\hbar\partial_{\bar{z}} + \partial_{\bar{z}}\Phi)v = 0.$

It is a semiclassical equation with characteristic set

 $\tilde{\Lambda}_{\Phi} := \{ (x, y; \xi, \eta); (\xi + i\eta) = 2i\partial_{\bar{z}}\Phi(x, y) \} \subset T^*(\mathbb{R}^{2n})$

Assume here that Φ is quadratic. Then $\tilde{\Lambda}_{\Phi}$ is a linear subspace of $T^*\mathbb{R}^{2n}$. If we consider $T^*\mathbb{R}^{2n} \simeq (T^*\mathbb{R}^n) \otimes \mathbb{C}$, then $\tilde{\Lambda}_{\Phi} \simeq \Lambda_{\Phi}$ becomes the image of $T^*\mathbb{R}^n$ under a complex symplectic map.

Assume here that Φ is quadratic. Then Λ_{Φ} is a linear subspace of $T^*\mathbb{R}^{2n}$. If we consider $T^*\mathbb{R}^{2n} \simeq (T^*\mathbb{R}^n) \otimes \mathbb{C}$, then $\tilde{\Lambda}_{\Phi} \simeq \Lambda_{\Phi}$ becomes the image of $T^*\mathbb{R}^n$ under a complex symplectic map.

• Λ_{Φ} is the "real phase space" associated with functions in $H_{\Phi}(\mathbb{C}^n)$. (*i.e.*, $H_{\Phi}(\mathbb{C}^n)$ is the quantization of Λ_{Φ} .)

Assume here that Φ is quadratic. Then Λ_{Φ} is a linear subspace of $T^*\mathbb{R}^{2n}$. If we consider $T^*\mathbb{R}^{2n} \simeq (T^*\mathbb{R}^n) \otimes \mathbb{C}$, then $\tilde{\Lambda}_{\Phi} \simeq \Lambda_{\Phi}$ becomes the image of $T^*\mathbb{R}^n$ under a complex symplectic map.

- Λ_{Φ} is the "real phase space" associated with functions in $H_{\Phi}(\mathbb{C}^n)$. (*i.e.*, $H_{\Phi}(\mathbb{C}^n)$ is the quantization of Λ_{Φ} .)
- At the operator level, we have a unitary transform:

 $T_{\Phi}: L^2(\mathbb{R}^n) \to H_{\Phi} \subset L^2_{\Phi}(\mathbb{C}^n)$

Assume here that Φ is quadratic. Then Λ_{Φ} is a linear subspace of $T^*\mathbb{R}^{2n}$. If we consider $T^*\mathbb{R}^{2n} \simeq (T^*\mathbb{R}^n) \otimes \mathbb{C}$, then $\tilde{\Lambda}_{\Phi} \simeq \Lambda_{\Phi}$ becomes the image of $T^*\mathbb{R}^n$ under a complex symplectic map.

- Λ_{Φ} is the "real phase space" associated with functions in $H_{\Phi}(\mathbb{C}^n)$. (*i.e.*, $H_{\Phi}(\mathbb{C}^n)$ is the quantization of Λ_{Φ} .)
- At the operator level, we have a unitary transform:

 $T_{\Phi}: L^2(\mathbb{R}^n) \to H_{\Phi} \subset L^2_{\Phi}(\mathbb{C}^n)$

Thus, the usual Weyl quantization of $T^*\mathbb{R}^n$ (acting on $L^2(\mathbb{R}^n)$) can be transported into a **complex Weyl quantization** of Λ_{Φ} (acting on H_{Φ}). (complex metaplectic representation)

Assume here that Φ is quadratic. Then Λ_{Φ} is a linear subspace of $T^*\mathbb{R}^{2n}$. If we consider $T^*\mathbb{R}^{2n} \simeq (T^*\mathbb{R}^n) \otimes \mathbb{C}$, then $\tilde{\Lambda}_{\Phi} \simeq \Lambda_{\Phi}$ becomes the image of $T^*\mathbb{R}^n$ under a complex symplectic map.

- Λ_{Φ} is the "real phase space" associated with functions in $H_{\Phi}(\mathbb{C}^n)$. (*i.e.*, $H_{\Phi}(\mathbb{C}^n)$ is the quantization of Λ_{Φ} .)
- At the operator level, we have a unitary transform:

 $T_{\Phi}: L^2(\mathbb{R}^n) \to H_{\Phi} \subset L^2_{\Phi}(\mathbb{C}^n)$

Thus, the usual Weyl quantization of $T^*\mathbb{R}^n$ (acting on $L^2(\mathbb{R}^n)$) can be transported into a **complex Weyl quantization** of Λ_{Φ} (acting on H_{Φ}). (complex metaplectic representation)

■ [Sjöstrand, 1982] showed how to extend this to the non-linear setting (Φ not necessarily quadratic), up to exponentially small errors $O(e^{-\epsilon/\hbar})$.

Complex Weyl quantization [Sjöstrand, 1982]

Let b_{\hbar} be a classical analytic symbol defined in a neighborhood of $(x_0, \theta_0) \in \Lambda_{\Phi}$ (*i.e.* $\theta_0 := \frac{2}{i} \frac{\partial \Phi}{\partial x}(x_0)$).

Complex Weyl quantization [Sjöstrand, 1982]

Let b_{\hbar} be a classical analytic symbol defined in a neighborhood of $(x_0, \theta_0) \in \Lambda_{\Phi}$ (*i.e.* $\theta_0 := \frac{2}{i} \frac{\partial \Phi}{\partial x}(x_0)$).

Definition (Complex pseudodifferential operator)

$$\mathsf{Op}_{\hbar}^{\mathsf{w}}(b_{\hbar})u(x) = \frac{1}{(2\pi\hbar)^{n}} \iint_{\Gamma(x)} e^{\frac{i}{\hbar}(x-y)\cdot\theta} b_{\hbar}\left(\frac{x+y}{2},\theta\right) u(y) \mathrm{d}y \mathrm{d}\theta,$$

where $\Gamma(x)$ is a "good contour": $\Gamma(x) := \left\{ (y, \theta) \in \Omega \times \mathbb{C}^n; \quad \theta = \frac{2}{i} \frac{\partial \Phi}{\partial x}(x) + iR\overline{(x-y)}; \quad |x-y| \le r \right\}.$

Theorem

- If b is bounded then $Op_{\hbar}^{w}(b_{\hbar})$ is bounded: $H_{\Phi} \to H_{\Phi} \mod \mathcal{O}(e^{-\epsilon/\hbar})$.
- If $b \equiv 1$ then $\mathsf{Op}^{\mathsf{w}}_{\hbar}(b_{\hbar}) = \mathsf{Id} + \mathcal{O}(e^{-\epsilon/\hbar}).$

Theorem ([Rouby-Sjöstrand-VN])

Up to exponentially small errors,

- Any Brg-operator $Op_r^{Brg}(a_{\hbar})$ can be written as a complex pseudodifferential $Op_{\hbar}^{W}(b_{\hbar})$.
- Any complex pseudodifferential $Op_{\hbar}^{W}(b_{\hbar})$ can be written as a Brg-operator $Op_{r}^{Brg}(a_{\hbar})$;

We shall use item 2 to construct an approximate Bergman projection.

Theorem ([Rouby-Sjöstrand-VN])

Up to exponentially small errors,

- Any Brg-operator $Op_r^{Brg}(a_{\hbar})$ can be written as a complex pseudodifferential $Op_{\hbar}^{W}(b_{\hbar})$.
- Any complex pseudodifferential $Op_{\hbar}^{W}(b_{\hbar})$ can be written as a Brg-operator $Op_{r}^{Brg}(a_{\hbar})$;

We shall use item 2 to construct an approximate Bergman projection.

Moreover, the map $b_{\hbar} \rightarrow a_{\hbar}$ is an elliptic, analytic FIO. Therefore, if b_{\hbar} is an analytic symbol, then a_{\hbar} is also an analytic symbol.

Approximate Bergman projections

Corollary

There exists a classical analytic symbol a_{\hbar} such that $P := \mathsf{Op}_{r}^{\mathrm{Brg}}(a_{\hbar})$ is an approximate Bergman projection:

- **1** *P* is selfadjoint;
- 2 The range of P is H_{Φ} (modulo $\mathcal{O}(e^{-\epsilon}/\hbar)$);
- $P \simeq \mathsf{Id} \ on \ H_{\Phi}.$

Approximate Bergman projections

Corollary

There exists a classical analytic symbol a_{\hbar} such that $P := \operatorname{Op}_{r}^{\operatorname{Brg}}(a_{\hbar})$ is an approximate Bergman projection: 1 P is selfadjoint; 2 The range of P is H_{Φ} (modulo $\mathcal{O}(e^{-\epsilon}/\hbar)$);

 $P \simeq \mathsf{Id} \text{ on } H_{\Phi}.$

Proof: Take the Brg-symbol a_h corresponding to the constant Weyl symbol $b_h := 1$.

Approximate Bergman projections

Corollary

There exists a classical analytic symbol a_{\hbar} such that $P := \operatorname{Op}_{r}^{\operatorname{Brg}}(a_{\hbar})$ is an approximate Bergman projection: 1 P is selfadjoint; 2 The range of P is H_{Φ} (modulo $\mathcal{O}(e^{-\epsilon}/\hbar)$);

 $P \simeq \mathsf{Id} \ on \ H_{\Phi}.$

Proof: Take the Brg-symbol a_h corresponding to the constant Weyl symbol $b_h := 1$.

Finally, since the true Bergman projection Π_{Φ} is another Brg-operator with the same properties, one can show that its kernel must be exponentially close to the kernel of $P := \mathsf{Op}_r^{\mathrm{Brg}}(a_{\hbar})$. This proves the main theorem. A large number of potential applications

- Develop symbolic calculus modulo exponentially small remainders for analytic Berezin-Toeplitz operators (Deleporte?)
- Prove Bohr-Sommerfeld spectrum for non-selfadjoint analytic BT operators.
- Non-selfadjoint semitoric operators
- Bergman kernel for non compact manifolds?

. . . .

A large number of potential applications

- Develop symbolic calculus modulo exponentially small remainders for analytic Berezin-Toeplitz operators (Deleporte?)
- Prove Bohr-Sommerfeld spectrum for non-selfadjoint analytic BT operators.
- Non-selfadjoint semitoric operators
- Bergman kernel for non compact manifolds?
-

Thank you for your attention!