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Classical-quantum correspondence

Quantum mechanics:

m Quantum state: ¢ € H (Hilbert). eg: H = L*(X).
® Quantum observable (Q. Hamiltonian): selfadjoint operator L.

m evolution: (Schrodinger equation)
h ity
Row =Ly, i) = o)

m Stationary states ¥ (¢, q) = e%u(q): hence Lu = \u.
Classical mechanics:

m Phase space: (M,w) symplectic manifold. eg: M = R?".

m Hamiltonian H € C*°(M).

m evolution: Hamiltonian flow

Semiclassical regime: 7 — 0
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Morse Hamiltonian and Reeb graph

Georges Reeb
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Morse Hamiltonian and Reeb graph

(M,w) a 2-dimensional symplectic manifold (surface). p: M — R
a Morse function. We are interested in the (singular) foliation of
M by level sets of p. The Reeb graph is the set of leaves.

wikimedia
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Morse Hamiltonian and Reeb graph

(M,w) a 2-dimensional symplectic manifold (surface). p: M — R
a Morse function. We are interested in the (singular) foliation of
M by level sets of p. The Reeb graph is the set of leaves.

wikimedia
Question

What is the quantum analogue/footprint! of the singular foliation?

LCf Polterovich's talk
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Inverse spectral theory for 1D pseudo-differential operators

Let P := Op}’(pp) where pj, := p+ hpy + R?pa + - - is a symbol
on R?, elliptic at infinity. Let I C R be an interval. We assume
M = p~Y(I) is compact (= o(P) NI is discrete).

Theorem ([VN,2011])

Suppose that par is a simple Morse function. Assume that the
graphs of the periods of all trajectories of the hamiltonian flow
defined by pinr, as functions of the energy, intersect generically.
Then the knowledge of the spectrum o(P) NI + O(h?) determines
the symplectic type of (M, w,p).

Strategy:
m detect symplectic invariants

detect si lariti .
| detect singularities m use the [Dufour-Molino-Toulet,

m detect topology (Reeb graph) 1992] classification
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Berezin-Toeplitz quantization on Kahler manifolds

Let M be a compact Kahler manifold with a prequantum line
bundle L — M. Let H°(X; L*) be the space of holomorphic
sections of L*, for k > 1.
A family of linear operators (A : HO(X; L¥F) — HO(X; LF))>1 is
a Berezin-Toeplitz operator if there is a smooth symbol
a: M — R with

a~ag+ktay +k2ag + - -

(in the C'™ topology) such that

A = BT(a) := u — I (au),

where Tl : L?(X; LF) — HO(X;LF)
is the orthogonal projection
(Bergman projection).
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Berezin-Toeplitz quantization on Kahler manifolds

Let M be a compact Kahler manifold with a prequantum line
bundle L — M. Let H°(X; L*) be the space of holomorphic
sections of L*, for k > 1.

A family of linear operators (A : HO(X; L¥F) — HO(X; LF))>1 is
a Berezin-Toeplitz operator if there is a smooth symbol

a: M — R with

a~ ag+ k_lal + k:_2a2 T [Berezin, 1975], [Boutet de

Monvel-Guillemin, — 1981],

(in the C'™ topology) such that [Bordemann-Meinrenken-
Schlichenmaier, 1994],
[Borthwick-Paul-Uribe,

Ay, = BT (a) := u > (au), 1998],  [Charles,  2003],

etc. ..

where Il : L2(X; Lk) - HO(X; Lk) and extension to more gen-

is the orthogonal projection eral symplectic manifolds:

(Bergman projection). [Ma-Marinescu, 2008],

[Charles, 2014], etc.
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Inverse spectral theorem for Berezin-Toeplitz operators

Theorem ([Le Floch, 2014))

Let M be a compact, connected Kahler manifold of real dimension
2, with a prequantum line bundle L. — M. Let (Aj)ren+ be a
self-adjoint Berezin-Toeplitz operator on M whose symbol a is a
simple Morse function (...) Then the knowledge of the spectrum
o(Ag) NI + O(k=2) determines the symplectic type of (M,w,a).
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self-adjoint Berezin-Toeplitz operator on M whose symbol a is a
simple Morse function (...) Then the knowledge of the spectrum
o(Ag) NI + O(k=2) determines the symplectic type of (M,w,a).

In particular, we can recover from the spectrum the Reeb graph
and its (singular) integral affine structure.
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Inverse spectral theorem for Berezin-Toeplitz operators

Theorem ([Le Floch, 2014))

Let M be a compact, connected Kahler manifold of real dimension
2, with a prequantum line bundle L. — M. Let (Aj)ren+ be a
self-adjoint Berezin-Toeplitz operator on M whose symbol a is a
simple Morse function (...) Then the knowledge of the spectrum
o(Ag) NI + O(k=2) determines the symplectic type of (M,w,a).

In particular, we can recover from the spectrum the Reeb graph
and its (singular) integral affine structure.

Remark: recovering the Reeb graph is not obvious (spectrum is
1D).
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Non selfadjoint operators

An idea to “reveal” the topology in the spectrum is to make the
spectrum complex. (Non-selfadjoint operators).
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Non selfadjoint operators

An idea to “reveal” the topology in the spectrum is to make the
spectrum complex. (Non-selfadjoint operators).

But there is a (huge) price to pay: general non-selfadjoint
operators have very unstable spectrum:

Eg: limit of large Toeplitz matrices, from [Trefethen-Embree, 2005]:
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Bohr-Sommerfeld for analytic non-selfadjoint operators

In order to fight non-selfadjoint instability, we need strong
“rigidity” or “integrability” conditions.
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Bohr-Sommerfeld for analytic non-selfadjoint operators

In order to fight non-selfadjoint instability, we need strong
“rigidity” or “integrability” conditions. This was recently done for
analytic 1D pseudodifferential operators that are close to
selfadjoint:
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Bohr-Sommerfeld for analytic non-selfadjoint operators

In order to fight non-selfadjoint instability, we need strong
“rigidity” or “integrability” conditions. This was recently done for
analytic 1D pseudodifferential operators that are close to
selfadjoint:

Theorem ([Rouby, 2018))

Let P. be an analytic pseudodifferential operator on R or S' of the
form P. = Py + ieQ, where Py is selfadjoint with discrete
spectrum, and () is Py-bounded.
Then, near any regular value of the symbol pg, the spectrum of P.
is given by {g(hm;e€);m € Z}, where g : C — C is holomorphic
and

g~ go+ hg1 + h2go + - -
Moreover, gq is the inverse of the action variable, and

go ~ po +ie(q) + O(€?)

[Melin-Siéstrand, 2003], [Hitrik-Sjéstrand 2004, 2016], [Hitrik-Sjéstrand-VN,
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Towards Analytic Berezin-Toeplitz calculus

We would like to use this idea for Morse functions on compact
manifolds.

Question

Can you extend Rouby's theorem to Berezin-Toeplitz quantization?
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Towards Analytic Berezin-Toeplitz calculus

We would like to use this idea for Morse functions on compact

manifolds.

Question

Can you extend Rouby's theorem to Berezin-Toeplitz quantization?

Then, can you see the Reeb graph?
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Semiclassical analysis, symplectic geometry, and non-selfadjoint
operators

Brg-quantization and Bergman kernels
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Zelditch’s question

Recall: BT(a) := u +— g (au).

All advances in the microlocal calculus of Berezin-Toeplitz
operators rely on the nice semiclassical C>° asymptotics of the
Bergman kernel (Schwartz kernel of 1), as k — oo
[Fefferman, 1974], [Boutet-Sj6strand, 1976], [Kashiwara, 1977],...
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Bergman kernel (Schwartz kernel of 1), as k — oo
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It is not enough for working with analytic symbols (which are used
in the treatment of non-selfadjoint operators).
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Zelditch’s question

Recall: BT(a) := u +— g (au).

All advances in the microlocal calculus of Berezin-Toeplitz
operators rely on the nice semiclassical C'>° asymptotics of the
Bergman kernel (Schwartz kernel of 1), as k — oo
[Fefferman, 1974], [Boutet-Sjostrand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used
in the treatment of non-selfadjoint operators).

Question (Zelditch, 2014. Also Charles, ...)

Does the Bergman projection II; admit an asymptotic expansion,
as k — oo, in the topology of analytic symbols?
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Bergman kernel (Schwartz kernel of 1), as k — oo
[Fefferman, 1974], [Boutet-Sj6strand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used
in the treatment of non-selfadjoint operators).

Question (Zelditch, 2014. Also Charles, ...)

Does the Bergman projection II; admit an asymptotic expansion,
as k — oo, in the topology of analytic symbols?

[Rouby-Sjostrand-VN, preprint 2018].
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Zelditch’s question

Recall: BT(a) := u +— g (au).

All advances in the microlocal calculus of Berezin-Toeplitz
operators rely on the nice semiclassical C'>° asymptotics of the
Bergman kernel (Schwartz kernel of 1), as k — oo
[Fefferman, 1974], [Boutet-Sj6strand, 1976], [Kashiwara, 1977],...

It is not enough for working with analytic symbols (which are used
in the treatment of non-selfadjoint operators).

Question (Zelditch, 2014. Also Charles, ...)

Does the Bergman projection II; admit an asymptotic expansion,
as k — oo, in the topology of analytic symbols?

[Rouby-Sjostrand-VN, preprint 2018].
Recent simultaneous works by [Hezari-Xu, preprint 2018] and
[Deleporte, in preparation].
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Analytic symbols

San Vii Ngoc

[Boutet de Monvel-Kree, 1967], [Sjostrand, 1982]
Definition
A formal classical analytic symbol d; in Q C C” is a formal

series aj, = 2 ajh, where a; € Hol(f2) satisfies:

VK € Q,3C > 0,Vj >0, supg |aj| < CIFTL5i.
Definition
We say that aj € S°(Q2) is a classical analytic symbol if there

exists a formal cas a, = » 22 a;jh, with the asymptotic
expansion: VK € ,3C > 0,VN > 0,

sup |ap — ajhj < AR Y
K

tionand semiclassical asymptotics 16/27
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Holomorphic Hermitian Line Bundles

Let X be a compact complex manifold of complex dimension n, let
L be a holomorphic line bundle over X, equipped with a Hermitian
metric g, giving rise to a metric g* on the tensor product L*,

k € N*.

Assume that g has strictly positive curvature: near any point
|s(x)|;, = e~®@), where s is a trivializing section and such that

w :=i00P is a Kahler form.

w induces a volume form w,, on X, and hence a scalar product
(-,)1 on the space of sections of L*. The orthogonal projection

I, : L2(X, LF) — HO(X, LF)

is called the Bergman projection. lts distribution kernel is a
smooth section K (-,-; k) of Fj, X F}!:

Myu(z) = /X K (2,9 K)u(y)wn(dy).
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Bergman kernels on compact Kahler manifolds
Using trivializing sections s,t near zg and yg, we can write
K (2,5 k) = bz, 5 k)se(2) @ ta(y)"
Theorem (first part: off diagonal)

Assume that the Hermitian metric g is real-analytic.

If xg # yo then there exists C > 0 such that, uniformly in a
neighborhood Qy x Vjy of (x9, o),

_k
K (z,9: k)5, ,opy < CeTC.

Equivalently, in local trivializations:

k(@20 @)+ 200 1) |p(z, §: k)| = O(e~B).
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Bergman kernels on compact Kahler manifolds

Using trivializing sections s,t near zg and yg, we can write
K(z,y; k) = bz, g5 k) s () @ t(y)"

Theorem (first part: off diagonal)

Assume that the Hermitian metric g is real-analytic.

If xg # yo then there exists C > 0 such that, uniformly in a
neighborhood Qy x Vjy of (x9, o),

| K (z,y; k)
Equivalently, in local trivializations:
eh®20 @20 W) [b(, g k)] = O(e~0).

Mentioned by [Hezari-Lu-Xu, 2018] and [Christ, 2018]. There are many
related results in the literature; see also [Ma-Marinescu, 2015].
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Bergman kernels on compact Kahler manifolds

Using a trivializing section s near xg, we can write, for x,y near xg:
K(z,y; k) = b(z, g k)sk(x) @ sk(y)".
Theorem (second part: near diagonal)
For any xq € X, there exists a neighborhood €y of x(, and a

classical analytic symbol a on Qg x Qq, such that, for all
(z,y) € Qo x Q, forall k > 1,

2k)" -
@30 |y (1,5) - B g gty < cene,

for some constant C > 0, where 1) is the polarized form of U.

Cf also [Hezari-Lu-Xu, 2018], [Hezari-Xu, preprint 2018].
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Proof strategy

Construct an approximate Bergman projection that has the
required properties.

Prove that the approximate projection is close to the true
projection.
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[Berman-Berndtsson-Sjéstrand, 2008].
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Proof strategy

Construct an approximate Bergman projection that has the
required properties.

Prove that the approximate projection is close to the true
projection.

Similar strategy has been used e.g. in
[Berman-Berndtsson-Sjéstrand, 2008].
The “novelty” here is mainly in the way we do item 1. We
simultaneously microlocalize and generalize the problem.
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[Berman-Berndtsson-Sjéstrand, 2008].
The “novelty” here is mainly in the way we do item 1. We
simultaneously microlocalize and generalize the problem.
m We consider all operators of the form required by the Theorem
with an analytic symbol a; (call them Brg-operators).
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The “novelty” here is mainly in the way we do item 1. We
simultaneously microlocalize and generalize the problem.
m We consider all operators of the form required by the Theorem
with an analytic symbol a; (call them Brg-operators).
m And then prove that this quantization is equivalent (by an
elliptic analytic FIO) to the complex Weyl quantization.
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Proof strategy

Construct an approximate Bergman projection that has the
required properties.

Prove that the approximate projection is close to the true
projection.

Similar strategy has been used e.g. in
[Berman-Berndtsson-Sjéstrand, 2008].
The “novelty” here is mainly in the way we do item 1. We
simultaneously microlocalize and generalize the problem.
m We consider all operators of the form required by the Theorem
with an analytic symbol a; (call them Brg-operators).
m And then prove that this quantization is equivalent (by an
elliptic analytic FIO) to the complex Weyl quantization.
m Finally, in the Weyl quantization, it is obvious to construct an
approximate Bergman projection.
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Brg quantization
Mimicking the formula:

(e / K (2, y; k)u(y)wn(dy),

and working locally in C™ (® is a spsh real-analytic function:
00® > mld, m > 0, and h = 1/k), we define OpE™8(ay):

Definition

Let ay be defined near the anti-diagonal {(z,z)} C C" x C".

(OB (an)u](x) = /B @ (o)D),

where » > 0 and

kn(e,y) = neF @D W) 0y (2,7) det (920,9) (. T)
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Brg quantization
Mimicking the formula:

(e / K (2, y; k)u(y)wn(dy),

and working locally in C™ (® is a spsh real-analytic function:
00® > mld, m > 0, and h = 1/k), we define OpE™8(ay):

Definition

Let ay, be defined near the anti-diagonal {(z,z)} C C" x C".

(OB (an)u](x) = /B @ (o)D),

where r > 0 and

kn(,y) 1= Zyreh PN g, (2, 7) det (950:1) (2, 7)

Remark: When ® is quadratic, we have formally Il = OpEr8(1).
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Hg spaces

In local coordinates, the holomorphic sections H(X, L*) are of
the form u(x) = u(x)sk(x) for a holomorphic function u such that

l|a)|? :/|u|2e2k%n < 400,

where ® is spsh: HOD > mld, m > 0.
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Hg spaces

In local coordinates, the holomorphic sections H°(X, L*) are of
the form u(x) = u(x)sk(x) for a holomorphic function u such that

a2 = / fuf? =2, < +oo,

where ® is spsh: HOD > mld, m > 0.
Thus u € Hg := Hol N L2, where L2 := L?(e2*®).
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Hg spaces

In local coordinates, the holomorphic sections H°(X, L*) are of
the form u(x) = u(x)sk(x) for a holomorphic function u such that

a2 = / uf? e 200, < toc,

where ® is spsh: HOD > mld, m > 0.
Thus u € Hg := Hol N L2, where L2 := L?(e2*®).

B lf®= % 2|2, then Hg(C") is the usual Bargmann space.
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Hg spaces

San Vi

In local coordinates, the holomorphic sections H°(X, L*) are of
the form u(x) = u(x)sk(x) for a holomorphic function u such that

a2 = / uf? e 200, < toc,

where ® is spsh: HOD > mld, m > 0.
Thus u € Hg := Hol N L2, where L2 := L?(e2*®).

B lf®= % 2|2, then Hg(C") is the usual Bargmann space.

w Let u € Hy(C"), and i := 1/k. We have u = /", with
v € L2(C™, |dz|), and the condition du = 0 writes:

(hdz 4+ 0:P)v = 0.
It is a semiclassical equation with characteristic set

Ao = {(z,y;€,m); (€ +in) = 2i0:9(x,y)} C T*(R*")
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FBI transforms
Assume here that ® is quadratic. Then Ag is a linear subspace of

T*R?". If we consider T*R2" ~ (T*R"™) ® C, then Ag ~ Ag
becomes the image of T*R"™ under a complex symplectic map.
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FBI transforms

Assume here that ® is quadratic. Then Ag is a linear subspace of
T*R?". If we consider T*R?" ~ (T*R") @ C, then Ap ~ Ag
becomes the image of T*R™ under a complex symplectic map.
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Assume here that ® is quadratic. Then Ag is a linear subspace of
T*R?". If we consider T*R?" ~ (T*R") @ C, then Ap ~ Ag
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FBI transforms

Assume here that ® is quadratic. Then Ag is a linear subspace of
T*R?". If we consider T*R?" ~ (T*R") @ C, then Ap ~ Ag
becomes the image of T*R™ under a complex symplectic map.

m Ag is the “real phase space” associated with functions in
Hg(C™). (i.e., Hp(C™) is the quantization of Ag.)
m At the operator level, we have a unitary transform:
Ty : L*(R™) — Hg C L% (C™)
m Thus, the usual Weyl quantization of T*R"™ (acting on
L?(R™)) can be transported into a complex Weyl

quantization of Ag (acting on Hg). (complex metaplectic
representation)

m [Sjéstrand, 1982] showed how to extend this to the non-linear
setting (® not necessarily quadratic), up to exponentially
small errors O(e=</M).
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Complex Weyl quantization [Sjéstrand, 1982]

Let by be a classical analytic symbol defined in a neighborhood of
(1‘0,90) € Ag (i.e. Oy := %g%(:l,‘o))
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Complex Weyl quantization [Sjéstrand, 1982]

Let by be a classical analytic symbol defined in a neighborhood of
(:L'o, 90) S A@ (I e. 90 3%? (:Eo))

Definition (Complex pseudodifferential operator)

o T
Op (br)u( 27rh //F( er (#=v) b <x y 9) u(y)dyda,

where T'(z) is a “good contour”:

2 0P
1 Ox

F(x):{(yﬁ)eﬂxcn% 0 ==——(z) +iR(z — y); Iw—yISr}.

Theorem

m Ifb is bounded then Op} (by,) is bounded: Hy — Hg
mod O(e=</M).
m Ifb=1 then Op} (by) = Id + O(e=/M).
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A microlocal equivalence

San Vi

Theorem ([Rouby-Sjostrand-VN])

Up to exponentially small errors,

B Any Brg-operator OpS™(ay) can be written as a complex
pseudodifferential Opy (by,).

Any complex pseudodifferential Opj/ (bs) can be written as a
Brg-operator Op2™(ay,);

We shall use item 2 to construct an approximate Bergman
projection.
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A microlocal equivalence

San Vi

Theorem ([Rouby-Sjéstrand-VN)J)

Up to exponentially small errors,

B Any Brg-operator OpS™(ay) can be written as a complex
pseudodifferential Opy (by,).

Any complex pseudodifferential Opj/ (bs) can be written as a
Brg-operator Op2'8(ay,);

We shall use item 2 to construct an approximate Bergman
projection.

Moreover, the map by — ay is an elliptic, analytic FIO.
Therefore, if by, is an analytic symbol, then ay is also an analytic
symbol.
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Approximate Bergman projections

Corollary

There exists a classical analytic symbol ay, such that

P := OpB™(ay) is an approximate Bergman projection:
P s selfadjoint;
The range of P is Hy (modulo O(e~/h));
P ~Id on Hg.
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Proof: Take the Brg-symbol aj corresponding to the constant
Weyl symbol b; := 1. O
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Approximate Bergman projections

Corollary

There exists a classical analytic symbol ay, such that

P := OpE'(ay,) is an approximate Bergman projection:
P is selfadjoint;
The range of P is Hy (modulo O(e~/h));
P ~Id on Hg.

Proof: Take the Brg-symbol aj corresponding to the constant
Weyl symbol b; := 1. O

Finally, since the true Bergman projection 1l is another
Brg-operator with the same properties, one can show that its
kernel must be exponentially close to the kernel of

P := Op2*8(ay). This proves the main theorem.
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What's next

A large number of potential applications

Develop symbolic calculus modulo exponentially small
remainders for analytic Berezin-Toeplitz operators
(Deleporte?)

m Prove Bohr-Sommerfeld spectrum for non-selfadjoint analytic
BT operators.

Non-selfadjoint semitoric operators

Bergman kernel for non compact manifolds?
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A large number of potential applications

m Develop symbolic calculus modulo exponentially small
remainders for analytic Berezin-Toeplitz operators
(Deleporte?)

m Prove Bohr-Sommerfeld spectrum for non-selfadjoint analytic
BT operators.

Non-selfadjoint semitoric operators

Bergman kernel for non compact manifolds?

Thank you for your attention!
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