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Corsica next year, but NOT in June, July, or August.
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What’s geometric quantization about?

You have been paying attention this week, haven’t you?
Seek construction QUANTIZATION. HARD.

coadjt orbit X C g* ~~ unitary irr repn of G
Seek guidance from EASY classical limit
unitary irr repn of G ~~ coadijt orbit
This talk: define, compute classical limit(unitary rep).

What's wrong with this pic: EASY classical limit only
computes orbit at infinity. ...

@ Classical limit of rep = should mean Howe’s WF(r) C g*.
But proofs will use instead AV(7x) C (gc/€)¢

@ And it rained Monday, and Wednesday, and Thursday.
Tu vas pas nous sortir les violons?
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Cones

Some coadjoint orbits for SL(2, R)

Blue, green hyperboloids are two coadjoint orbits.

Dark green cone describes both orbits at infinity.
S C Vfin diml ~~ Coneg(S) = {lim;_,« €;Si}

(s — 07,5 € 8)
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Here’s what classical limits tell us about quantization. David Vogan
coadjt orbit ———— quantization —— unitary irr Intro 1: orbs/cones
. e
Coner quantization

\ / classical limit
nilp coadjt orbit(s) —

Desideratum for quantization: diagram commutes.

Coneg(nilp coadit orbit) = nilp coadjt orbit —

quantization of nilpotent X must be 7 with
classical limit(r) = X

compute classical limit(7) ~~
candidates for quantization(nilp orbit).



Something to do during the talk

G reductive/number field k, = = ®,m, automorphic rep
k, local field, G(k,) reductive, g(k,) = Lie(G(ky))-

4
Howe: 7, ~~ WF(m,) C g(k,)* nilp orbit closurel[s].
Conjecture (global coherence of WF sets)

Says G(ky) - x(m) controls asymptotics of 7|k, .
Orbit of x() ~ algebraic cone over k

N(m) = Coner(G(k) - x(r)) C N
closure of one G(k) nilpotent orbit N(r)°.

WF(my) C N(r)x,, but possibly WF(7,) 0 N(x)) = 0.
All m, same size EXCEPT for finite arithm set of v.
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Wavefront set of distribution (locally on R")

If ¢ integrable function of x € R", Fourier transform is

o6) = [ 96(x)0x.
Still makes sense if ¢ is compactly supported
distribution on R": apply ¢ to x —» e2™/(x:8)
¢ msre of cpt support — ¢ bounded fn of ¢.
Take m derivs of ¢ ~ multiply ¢ by degree m poly.
mth derivs(¢) = cpt supp msres = $(£) < Cm/(1 + [€])™.
Cptly supp ¢ is smooth <= ¢(¢&) < Cn/(1 +[£])™ (m > 0).

WF(¢) = directions ¢ where ¢(t¢) fails to decay.
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Wavefront set (globally on manifold)

Function f on manifold M has support:

supp(f) = closure of {m € M | f(m) # 0}.
Generalized fn ¢ is continuous linear fnl on test densities.
Can multiply ¢ by bump fy at mg to study “¢ near mg.”
Singular support of ¢ is where it isn’t smooth:

M — sing supp(¢) = {mp | 3 bump fy at mo, fy¢ smooth}.

Wavefront set of ¢ is closed cone WF(¢) C T*(M):
directions in T*(M) where FT(¢) fails to decay.

Refines sing supp: sing supp(¢) = {m € M| WFn(¢) # 0}.
Summary: WF(¢) c T*(M) ~» points m € M where ¢ not
smooth, directions ¢ € T;;,(M) causing non-smoothness.
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Behavior of solutions of PDEs

Suppose D is order k diff op on M.

D has symbol ox(D): fn on T*M, hom poly on T} (M)
~ characteristic variety of D

Ch(D) =get {(m,£) € T*(M) | ox(D)(m, §) = 0}

Dy =+ = WF(¢) C WF(y») UCh(D) :
solving D adds singularities only in Ch(D).

D
Dy, ..., Dy diff ops on M ~ char var of system

Ch(D1 R Dm) =def Ch(D1) N---N Ch(Dm)
Solns of systems: if Dj¢ = 0, all /, then

Dj® =0,V = WF(gf)) C Ch(D1, . Dm) i
solving system adds singularities only in Ch(D;

..., Dm).
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Behavior of solutions of PDEs

Suppose D is order k diff op on M.
D has symbol o« (D): fn on T*M, hom poly on T3 (M).
~ characteristic variety of D

Ch(D) =ger {(m, &) € T*(M) | ox(D)(m, &) = 0}
Dy =+ = WF(¢) C WF(y») UCh(D) :
solving D adds singularities only in Ch(D).
Dy, ..., Dy diff ops on M ~~ char var of system
Ch(D1 N Dm) =def Ch(D1) n---N Ch(Dm)

Solns of systems: if Dj¢ = 0, all /, then
Dj¢ =0,¥j = WF(¢) C Ch(Dy,...,Dn):

solving system adds singularities only in Ch(Dy, ..., Dp).
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Summary of the PDE story

PDE on M «~ module for diff op alg D(M).
Noncomm alg D(M) ~ comm alg Poly(T*(M))
= Smooth fns that are polys along each T;,(M).
Solns of PDE =~ (graded) modules for Poly(T
(graded) Poly(T*(M))-module «~ alg cone in T*(

(M)
Cone is common zeros of all symbols of diff eqs
Cone controls where solutions can have WF

)-
M).
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Summary of the PDE story

PDE on M «~ module for diff op alg D(M).
Noncomm alg D(M) ~ comm alg Poly(T*(M)).

= Smooth fns that are polys along each T;,(M).

Solns of PDE =~ (graded) modules for Poly(T*(M)).
(graded) Poly(T*(M))-module «~ alg cone in T*(M).
Cone is common zeros of all symbols of diff egs.
Cone controls where solutions can have WF.
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Summary of the representation theory story

| know | didn’t tell you the story yet, but | get excited. ..
Representation of G «~ module for algebra U(gc).
Noncomm alg U(gc) ~ comm alg Poly(g¢.).

Polynomial functions on Lie(G)¢..

Repn of G ~ (graded) module for algebra Poly(gg).
(graded) Poly(g)-module «~ alg cone in gg.

Cone is zeros of symbols of U(gc) elts “killing” repn.
Representation ~ algebraic functions on cone.
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What groups?

G = G(R, o) real points of complex connected
reductive algebraic group G, o, compact real form of
G commuting with o, K = G(R, o) N G(R, o¢)
maximal compact subgroup of G.

(That's for postdocs. They should sweat a little.)

G C GL(n,R) closed, transpose-stable, K = O(n) N G.
(That’s for the PDE people. Thank you for showing up!)
Also keep in mind G = GL(m,H), G = SO(p, q).

(That's what should think about.)

«O0>» «F» «=Hr «E)»

nae
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reductive algebraic group G, o, compact real form of
G commuting with o, K = G(R, o) N G(R, o¢)
maximal compact subgroup of G.

(That's for postdocs. They should sweat a little.)

G C GL(n,R) closed, transpose-stable, K = O(n) N G.
(That's for the PDE people. Thank you for showing up!)
Also keep in mind G = GL(m,H), G = SO(p, q).
G = GL(n,R), K = O(n).
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What representations?

Secs of K(C)-eqvt reg holonomic D-mod on flag variety.

Example: Normal derivs of Borel-Weil-Bott realization of
K(C)-repon K(C)/BNn K(C) c G(C)/B.

(That’s for postdocs. Sweat a medium amount.)
Finite length quasisimple Fréchet rep of moderate growth.
Example: Smooth secs of eqvt vec bdle on Gr(k, n).

(That’s for PDE people. Although demise of language
requirements means only the French will know whether
the accent on “Fréchet” is correct.)

, as module for
Span(d/df,cos(20)d/d0,sin(20)d/d) ~ sl(2, R).

( should think about that. By now they
are asleep, so question is purely theoretical.)

«O0>» «F» «=Hr «E)»
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What representations? Fitted

geometri