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Introduction

Let M be a closed connected Riemannian manifold and K a
compact Lie group acting isometrically on M. Further, let

P0 : C∞(M) −→ L2(M)

be an elliptic, positive, symmetric K -invariant PDO with
principal symbol p and self-adjoint extension P.

↪→ (L2(M),P) represents a quantization of (T ∗M,p).

Let J : T ∗M −→ k∗ be the moment map and Ωζ := J−1(ζ).

Classical mechanics Quantum mechanics

Ωζ/K ←→ L2(M) '
⊕
σ∈K̂

L2(M)σ

symplectic reduction Peter-Weyl decomposition

Creed: • Correspondence principle (Bohr)
• [Q,R] = 0 (Guillemin-Sternberg)
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Questions:
• spectrum of P on L2(M)σ ↔ flow of p on Ω0/K
• shape of eigenfunctions of P ↔ symmetries
• equiv. cohomology H∗K (T ∗M)↔ cohomology H∗(Ω0/K )

• ergodicity, heat asymptotics, index theory, ...

Problem: In the presence of singular orbits, serious difficulties
arise.
Ultimately, one has to understand the asymptotic behavior of
the Witten integral

I(µ) =

∫
T∗M

∫
k

eiµ J(x,ξ)(X)a(x , ξ,X ) dX dx dξ, µ→ +∞,

via the stationary phase theorem, where a ∈ C∞c and

Φ(x , ξ,X ) = J(x , ξ)(X )

has, in general, a singular critical set.

↪→overcome this problem by using resolution of singularities.
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1.
Equivariant spectral geometry
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The spectral function of an elliptic operator

Consider
• a compact Riemannian manifold M of dimension n,
• a positive, symmetric, elliptic PDO P0 : C∞(M) −→ L2(M)

of order m on M with principal symbol p(x , ξ),
• its self-adjoint extension P with spectral resolution Ej ,

ONB of eigenfunctions ϕj , and eigenvalues λj .
Define for µ > 0, µj := m

√
λj , and x , y ∈ M

e(x , y , µ) :=
∑
µj≤µ

ϕj (x)ϕj (y) spectral function of Q :=
m
√

P.

Local Weyl law. By Hörmander one has

e(x , x , µ) =
µn

(2π)n

∫
p(x,ξ)<1

dξ + O(µn−1), µ→ +∞.

Proof: Via Fourier integral operators:
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Approximate sµ(x , y) = e(x , y , µ+ 1)− e(x , y , µ)

by the
Schwartz kernel of

s̃µ =
∞∑
j=0

%(µ− µj )Ej

where % ∈ S(R,R+), %(0) = 1, supp %̂ ⊂ (−δ, δ) for some δ > 0.
Now,

s̃µ =

∫
R

eitµ%̂(t)U(t) dt , U(t) = e−itQ .

The kernel of U(t) is locally given by an oscillatory integral

Ũ(t , x̃ , ỹ) =

∫
Rn

ei(ψ(t,x̃,η)−〈ỹ,η〉)a(t , x̃ , η)dη, x̃ , ỹ ∈ Rn,

where a ∈ S0
phg , and ψ solves the Hamilton-Jacobi problem

∂ψ

∂t
+

m

√
p
(

x ,
∂ψ

∂x̃

)
= 0, ψ(0, x̃ , η) = 〈x̃ , η〉.

Asymptotics for Ks̃µ(x , y) then yield the assertion.
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Ũ(t , x̃ , ỹ) =
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Now, let K be a compact Lie group acting isometrically on M
and P0 be K -invariant. Define for σ ∈ K̂

eσ(x , y , µ) :=
∑
µj≤µ,

ϕj∈L2(M)σ

ϕj (x)ϕj (y) reduced spectral function.

Approximate eσ(x , y , µ+ 1)− eσ(x , y , µ) by

Ks̃µ◦Πσ (x , y) =
∑
µj≤µ,

ϕj∈L2(M)σ

%(µ− µj )ϕj (x)ϕj (y)

where
Πσ = dσ

∫
K
χσ(k)π(k) dk

is the projector onto L2(M)σ,

• dσ = dimσ,
• χσ character of σ,
• (π,L2(M)) regular representation.
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Ks̃µ◦Πσ (x , y) is a superposition of Witten-type integrals of the
form

Ix,y (µ) =

∫
Σx

∫
K

eiµΦx,y (ω,k)a(x , y , ω, k) dk dω,

where a ∈ C∞c , Σx ≡ {ω ∈ Rn : q(x , ω) = 1}, (Y , κ) are
coordinates, and

Φx,y (ω, k) := 〈κ(x)− κ(k · y), ω〉Rn

has critical set

Crit Φx,y = {(ω, k) : κ(x)− κ(k · y) ∈ NωΣx , (k · y , ω) ∈ Ω0}.

Ω0 is a stratified space =⇒ Caustic behaviour

↪→ Study asymptotic behavior via stationary phase method
and desingularization.
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Equivariant Weyl law

Theorem (Reduced local Weyl law, 2016)

eσ(x , x , µ) = µn−κx
dσ[πσ|Kx : 1]

(2π)n−κx

∫
{(x,ξ)∈Ω0, p(x,ξ)<1}

dξ+Ox,σ(µ),

where Ox,σ(µ) = Ox,σ(µn−κx−1), κx = dim K · x.

Coefficients and exponents exhibit caustic behaviour in x .

Example. Let M = S2, G = SO(2), P0 = −∆ the Laplace
operator, Yk,m the spherical harmonic functions with
eigenvalues k(k + 1), Pk,m the Legendre polynomials. Then
(0 ≤ ϕ < 2π, 0 ≤ θ < π)

|Yk,0(ϕ, θ)|2 =
2k + 1

4π
|Pk,0(cos θ)|2 ≈

{
k θ = 0, π
(sin θ)−1 θ ∈ (0, π).

↪→ resolution of singularities yields pointwise description of
eσ(x , x , µ) and eigenfunctions.
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Consider the orbit type decomposition of M

M = M1 ∪ · · · ∪Mℵ.

Theorem (Singular reduced local Weyl law, 2016)

eσ(x , x , µ) =
µn−κdσ
(2π)n−κLx,σ(τ1, τ2, . . . ) + Ox,σ(µn−κ−1),

where Lx,σ, Ox,σ are rational functions in τℵ = dist (x ,Mℵ)
bounded in x and κ is the maximal orbit dimension.

Corollary (Reduced Weyl’s law, 2010)

∫
M

eσ(x , x , µ) dx =
dσ[πσ|H : 1]

(n − κ)(2π)n−κ vol[(Ω∩S∗M)/K ]µn−κ+Oµ,

where Oµ = O(µn−κ−1(logµ)Λ), Λ ∈ N, and

S∗M = {(x , ξ) ∈ T ∗M : p(x , ξ) = 1}.
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Convex bounds for eigenfunctions

Non-equivariant bounds. As a consequence of Hörmander’s
local Weyl law one obtains

‖ϕj‖∞ � λ
n−1
2m

j convex bound.

Seeger-Sogge: Lp-bounds.

Guiding idea. If the ϕj are simultaneous eigenfunctions of a
family of commuting differential operators, better bounds
should hold.

Equivariant bounds. Assume that K acts on M with orbits of
the same dimension κ ≤ n − 1.

Corollary (2018)

For ϕj ∈ L2(M)σ one has

‖ϕj‖∞ �σ λ
n−κ−1

2m
j equivariant convex bound.

Similarly, equivariant Lp-bounds can be derived.
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Subconvex bounds for Hecke–Maas forms

Spherical bounds. Let
• G = SL(2,R), K = SO(2),
• Γ ⊂ G arithmetic co-compact discrete subgroup,
• ∆ Laplace operator on Γ\G/K ,
• ϕj ONB of eigenfunctions of ∆ and the Hecke operators.

Iwaniec-Sarnak proved for ϕj ∈ L2(Γ\G/K ) and any ε > 0

‖ϕj‖∞ �ε λ
5/24+ε
j spherical subconvex bound.

Non-spherical bounds. Let ϕj be an ONB of eigenfunctions of
the Laplace operator ∆G on Γ\G and the Hecke operators.

Theorem (–,Wakatsuki, 2018)

For ϕj ∈ L2(Γ\G) one has uniformly in σ ∈ K̂

‖ϕj‖∞ �ε λ
5/24+ε
j non-spherical subconvex bound.

Proof: Via asymptotics for Ks̃µ◦Πσ (x , y) in a neighborhood of
the diagonal and arithmetic amplification.



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

12

Subconvex bounds for Hecke–Maas forms
Spherical bounds. Let

• G = SL(2,R), K = SO(2),
• Γ ⊂ G arithmetic co-compact discrete subgroup,
• ∆ Laplace operator on Γ\G/K ,
• ϕj ONB of eigenfunctions of ∆ and the Hecke operators.

Iwaniec-Sarnak proved for ϕj ∈ L2(Γ\G/K ) and any ε > 0

‖ϕj‖∞ �ε λ
5/24+ε
j spherical subconvex bound.

Non-spherical bounds. Let ϕj be an ONB of eigenfunctions of
the Laplace operator ∆G on Γ\G and the Hecke operators.

Theorem (–,Wakatsuki, 2018)

For ϕj ∈ L2(Γ\G) one has uniformly in σ ∈ K̂

‖ϕj‖∞ �ε λ
5/24+ε
j non-spherical subconvex bound.

Proof: Via asymptotics for Ks̃µ◦Πσ (x , y) in a neighborhood of
the diagonal and arithmetic amplification.



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

12

Subconvex bounds for Hecke–Maas forms
Spherical bounds. Let

• G = SL(2,R), K = SO(2),
• Γ ⊂ G arithmetic co-compact discrete subgroup,
• ∆ Laplace operator on Γ\G/K ,
• ϕj ONB of eigenfunctions of ∆ and the Hecke operators.

Iwaniec-Sarnak proved for ϕj ∈ L2(Γ\G/K ) and any ε > 0

‖ϕj‖∞ �ε λ
5/24+ε
j spherical subconvex bound.

Non-spherical bounds. Let ϕj be an ONB of eigenfunctions of
the Laplace operator ∆G on Γ\G and the Hecke operators.

Theorem (–,Wakatsuki, 2018)

For ϕj ∈ L2(Γ\G) one has uniformly in σ ∈ K̂

‖ϕj‖∞ �ε λ
5/24+ε
j non-spherical subconvex bound.

Proof: Via asymptotics for Ks̃µ◦Πσ (x , y) in a neighborhood of
the diagonal and arithmetic amplification.



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

12

Subconvex bounds for Hecke–Maas forms
Spherical bounds. Let

• G = SL(2,R), K = SO(2),
• Γ ⊂ G arithmetic co-compact discrete subgroup,
• ∆ Laplace operator on Γ\G/K ,
• ϕj ONB of eigenfunctions of ∆ and the Hecke operators.

Iwaniec-Sarnak proved for ϕj ∈ L2(Γ\G/K ) and any ε > 0

‖ϕj‖∞ �ε λ
5/24+ε
j spherical subconvex bound.

Non-spherical bounds. Let ϕj be an ONB of eigenfunctions of
the Laplace operator ∆G on Γ\G and the Hecke operators.

Theorem (–,Wakatsuki, 2018)

For ϕj ∈ L2(Γ\G) one has uniformly in σ ∈ K̂

‖ϕj‖∞ �ε λ
5/24+ε
j non-spherical subconvex bound.

Proof: Via asymptotics for Ks̃µ◦Πσ (x , y) in a neighborhood of
the diagonal and arithmetic amplification.
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Application. Let C be the Casimir operator on G, so that
∆ = −C + l2/4 on L2(Γ\G)σl , K̂ 3 σl ≡ l ∈ Z. For fixed Casimir
eigenvalue one obtains

‖ϕj‖∞ �ε (1 + |l |)5/12+ε, ϕj ∈ L2(Γ\G)σl .

↪→ Previously shown by Venkatesh using equidistribution
methods. Best known bound by Reznikov reads (1 + |l |)1/3+ε.

Corollary (–, Wakatsuki, 2018)

If f : H→ C is a classical automorphic form of weight l ∈ N,
then

‖f‖∞ �ε l5/12+ε.

Remark. The best previously known exponent was 1
2 −

1
33 = 31

66
and shown by Das-Sengupta.

Equivariant subconvex bounds can be shown also for rather
general algebraic groups, based on previous work of Marshall.
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2.
Equivariant quantum ergodicity
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Classical and quantum ergodicity

As before, let M be a compact Riemannian manifold M of
dimension n,

∆ : C∞(M) −→ L2(M)

the Laplacian, and ϕj an ONB of eigenfunctions ϕj with
eigenvalues λj .

Classical mechanics:
• S∗M co-shpere bundle ≡ phase space of free particle
• a ∈ C∞(S∗M) function ≡ observable
• Φt : S∗M → S∗M geodesic flow ≡ motion

Quantum mechanics:
• L2(M) ≡ space of states
• A self-adjoint operator ≡ observable
• 〈Aϕ,ϕ〉L2 ≡ expectation values

Quantization map. Sl (M) 3 a 7−→ Op~(a), ~ Planck’s constant.
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By the correspondence principle,

distribution ←→ distribution
of trajectories of eigenfunctions

↪→ Study weak convergence of the measures |ϕj |2 dM.

Quantum ergodicity theorem. Consider the distributions

µj : C∞(S∗M) −→ C, a 7→ 〈Op~(a)ϕj , ϕj〉L2

If Φt is ergodic, Shnirelman, CdV, and Zelditch showed that ∃
subsequence {ϕjk } of density 1 such that

µjk → d(S∗M), |ϕjk |2 dM → dM.

Problem. Study ergodicity in the presence of symmetries.

↪→ Both the classical and quantum system behave less
chaotically. By dividing out symmetries (i.e. order), ergodic
properties should emerge.
↪→ Singular symplectic reduction (Sjamaar-Lerman-Bates)

and desingularization yield
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Symmetries and ergodicity

Let Φ̃t be the reduced geodesic flow on (Ω0 ∩Mreg)/K , σ ∈ K̂ .

Theorem (Equivariant quantum ergodicity, Küster, –, 2016)

Assume that Φ̃t is ergodic, and let ϕσj be an ONB of L2(M)σ of
eigenfunctions of −∆. Then ∃ subsequence {ϕσjk } of density 1
such that ∀a ∈ C∞(M)

〈
Op(a)ϕσjk , ϕ

σ
jk

〉
L2 → c ·

∫
S∗M ∩Ωreg

a
dµ

volO
.

Furthermore, |ϕσjk |
2 dM → c · dM/volO.

↪→ already shown by Kordyukov if M/K is an orbifold.

Example. Let M ⊂ R3 be a surface of revolution,
el,m(ϕ, θ) = fl,m(θ)eilϕ a basis of L2(M)σl . Then

|el,m|2 dM → c · dM/R,

R distance to symmetry axis.
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Atiyah-Bott-Berline-Vergne localization

Consider
• a manifold M with C∞-action of a compact Lie group K ,
• A := (S(k∗)⊗ Λ(M))K ,
• D%(X ) := d(%(X ))− ιX̃ (%(X )), % ∈ A, X ∈ k,
• H∗G(M) := Ker D/Im D equivariant cohomology of M.

Let % ∈ A have compact support, M0 = {m ∈ M : Ỹm = 0}
where Y ∈ k, χNM0 equivariant Euler form. If D% = 0,∫

M
%(Y ) =

∫
M0

%(Y )

χNM0 (Y )
Atiyah-Berline-Bott-Vergne localization.

Let (M, ω) be a compact Hamiltonian K -space, J : M → k∗,
JX (p) = J(p)(X ) the moment map, ω̄ := J− ω. As a special
case, if K = T is a torus, localization implies that

X 7−→
∫

M
eiω̄(X) Duistermaat-Heckman integral

is given by its exact stationary phase approximation. Its t-FT
J∗(ωn/n!) is a piecewise polynomial measure on t∗.
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Residue formulae

More generally, consider the tempered distribution

k 3 X 7−→ L%(X ) :=

∫
M

eiω̄(X)%(X ), % ∈ Λ∗K (M).

If 0 ∈ k∗ is a regular value of J, Kirwan showed that

K : H∗K (M)
ι∗−→ HK (J−1(0))

(π∗)−1

−→ H∗(J−1(0)/K )

is surjective, where ι : J−1(0) ↪→ M, π : J−1(0)→ J−1(0)/K .

↪→ Express H∗(J−1(0)/K ) in terms of HK (M) by studying the
k-FT of L%.

Let T ⊂ G be a maximal torus. Using localization and
Paley-Wiener theorems, Kirwan-Jeffrey showed for % ∈ H∗K (M)∫

J−1(0)/K
K(%eiω̄) = Res

(∑
F

uF

)
Residue formulae,

where F are the components of MT and uF (X ) ≡
∫

F
%(X)eiω

χNF (X) .



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

20

Residue formulae

More generally, consider the tempered distribution

k 3 X 7−→ L%(X ) :=

∫
M

eiω̄(X)%(X ), % ∈ Λ∗K (M).

If 0 ∈ k∗ is a regular value of J, Kirwan showed that

K : H∗K (M)
ι∗−→ HK (J−1(0))

(π∗)−1

−→ H∗(J−1(0)/K )

is surjective, where ι : J−1(0) ↪→ M, π : J−1(0)→ J−1(0)/K .

↪→ Express H∗(J−1(0)/K ) in terms of HK (M) by studying the
k-FT of L%.

Let T ⊂ G be a maximal torus. Using localization and
Paley-Wiener theorems, Kirwan-Jeffrey showed for % ∈ H∗K (M)∫

J−1(0)/K
K(%eiω̄) = Res

(∑
F

uF

)
Residue formulae,

where F are the components of MT and uF (X ) ≡
∫

F
%(X)eiω

χNF (X) .



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

20

Residue formulae

More generally, consider the tempered distribution

k 3 X 7−→ L%(X ) :=

∫
M

eiω̄(X)%(X ), % ∈ Λ∗K (M).

If 0 ∈ k∗ is a regular value of J, Kirwan showed that

K : H∗K (M)
ι∗−→ HK (J−1(0))

(π∗)−1

−→ H∗(J−1(0)/K )

is surjective, where ι : J−1(0) ↪→ M, π : J−1(0)→ J−1(0)/K .

↪→ Express H∗(J−1(0)/K ) in terms of HK (M) by studying the
k-FT of L%.

Let T ⊂ G be a maximal torus. Using localization and
Paley-Wiener theorems, Kirwan-Jeffrey showed for % ∈ H∗K (M)∫

J−1(0)/K
K(%eiω̄) = Res

(∑
F

uF

)
Residue formulae,

where F are the components of MT and uF (X ) ≡
∫

F
%(X)eiω

χNF (X) .



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

20

Residue formulae

More generally, consider the tempered distribution

k 3 X 7−→ L%(X ) :=

∫
M

eiω̄(X)%(X ), % ∈ Λ∗K (M).

If 0 ∈ k∗ is a regular value of J, Kirwan showed that

K : H∗K (M)
ι∗−→ HK (J−1(0))

(π∗)−1

−→ H∗(J−1(0)/K )

is surjective, where ι : J−1(0) ↪→ M, π : J−1(0)→ J−1(0)/K .

↪→ Express H∗(J−1(0)/K ) in terms of HK (M) by studying the
k-FT of L%.

Let T ⊂ G be a maximal torus. Using localization and
Paley-Wiener theorems, Kirwan-Jeffrey showed for % ∈ H∗K (M)∫

J−1(0)/K
K(%eiω̄) = Res

(∑
F

uF

)
Residue formulae,

where F are the components of MT and uF (X ) ≡
∫

F
%(X)eiω

χNF (X) .



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

20

Residue formulae

More generally, consider the tempered distribution

k 3 X 7−→ L%(X ) :=

∫
M

eiω̄(X)%(X ), % ∈ Λ∗K (M).

If 0 ∈ k∗ is a regular value of J, Kirwan showed that

K : H∗K (M)
ι∗−→ HK (J−1(0))

(π∗)−1

−→ H∗(J−1(0)/K )

is surjective, where ι : J−1(0) ↪→ M, π : J−1(0)→ J−1(0)/K .

↪→ Express H∗(J−1(0)/K ) in terms of HK (M) by studying the
k-FT of L%.

Let T ⊂ G be a maximal torus. Using localization and
Paley-Wiener theorems, Kirwan-Jeffrey showed for % ∈ H∗K (M)∫

J−1(0)/K
K(%eiω̄) = Res

(∑
F

uF

)
Residue formulae,

where F are the components of MT and uF (X ) ≡
∫

F
%(X)eiω

χNF (X) .



Introduction

1. Equivariant spectral
geometry
The spectral function of an
elliptic operator

Equivariant Weyl law

Convex bounds for
eigenfunctions

Subconvex bounds for
Hecke–Maass forms

2. Equivariant
quantum ergodicity
Classical and quantum
ergodicity

Symmetries and ergodicity

3. Equivariant
cohomology
Atiyah-Bott-Berline-Vergne
localization

Residue formulae

Residue formulae for circle
actions

21

Proof. Via stationary phase asymptotics for the Witten integral

Iζ(µ) :=

∫
k

∫
M

eiµ (J−ζ)a
ωn

n!
dX ∼

∞∑
j=0

µ−κ−jLj (ζ),

where ζ ∈ k∗, µ→ +∞, a ∈ C∞c , κ := dim K/Hprin, and

Crit(J− ζ) = {(p,X ) : p ∈ Ωζ , X ∈ kp}

is clean, that is, (J(p)− ζ)(X ) is a Morse-Bott function.

Remarks.
• Full asymptotic expansion required.
• ζ is a classical parameter, µ a quantum parameter.
• Continuity of Lj (ζ) in ζ needed =⇒ Limits can be

interchanged, [Q,R] = 0 is fulfilled.

Problem. If 0 ∈ k∗ is not a regular value of J, the critical set is
singular =⇒ stationary phase fails.
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Residue formulae for circle actions

In what follows, assume that
• (M, ω) is a (not necessarily compact) 2n-dimensional

Hamiltonian K -space with K = SO(2) ' S1.
• 0 ∈ k∗ ' R is not a regular value.

By the Marle-Guillemin-Sternberg normal form of the
momentum map, the Witten integral reduces to integrals

Jζ(µ) :=

∫
R

∫
R2n

eixµ(〈Q w,w〉−ζ)b(x ,w) dw dx ,

where Q ∈ M(2n,R) is symmetric and non-degenerate.

Proposition (Kuester,Konstantis,–, 2018)

Jζ(µ) ∼
∞∑
j=0

µ−1−j
∞∑
l=0

Θl+j,l (ζµ)ζ l Singular stationary phase,

where Θj,l are known coefficients with |Θj,l (ζµ)| �j,l 1 given by
distributions supported on the strata of {〈Q w ,w〉 = 0}, and
possibly not continuous in ζ.
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Consider
• S2 ⊂ R3 ' so(3) co-adjoint orbit of SO(3) with symplectic

form ωS2 (X̃ , Ỹ )ξ =: −〈ξ, [X ,Y ]〉
• Hamiltonian action of K = SO(2) on S2 with moment map
JS2 (ξ1, ξ2, ξ3) = −ξ3.

•
M = S2 × S2 =

⋃
ℵ

Mℵ = Mreg ∪Msing

with product symplectic form and K -action.

Ω0 =
{
ξ ∈ M ⊂ R6 : ξ3 + ξ6 = 0

}
' ΣT 2, Ω0/S1 ' ΣS1 ' S2

are stratified spaces and we define the stratified Kirwan map

K̃ℵ : H∗S1 (Mℵ)
ι∗−→ HS1 (Ω0 ∩Mℵ)

(π∗)−1

−→ H∗((Ω0 ∩Mℵ)/S1).

Theorem (Kuester, Konstantis, –, 2018)

Res
∑

F

uF =

∫
(Ω0∩Mreg)/S1

K̃reg(%eiω̄)+

∫
(Ω0∩Msing)/S1

K̃sing(%eiω̄).
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Consider
• S2 ⊂ R3 ' so(3) co-adjoint orbit of SO(3) with symplectic

form ωS2 (X̃ , Ỹ )ξ =: −〈ξ, [X ,Y ]〉
• Hamiltonian action of K = SO(2) on S2 with moment map
JS2 (ξ1, ξ2, ξ3) = −ξ3.

•
M = S2 × S2 =

⋃
ℵ

Mℵ = Mreg ∪Msing

with product symplectic form and K -action.

Ω0 =
{
ξ ∈ M ⊂ R6 : ξ3 + ξ6 = 0

}
' ΣT 2, Ω0/S1 ' ΣS1 ' S2

are stratified spaces and we define the stratified Kirwan map
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Thank you!
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