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Universitat Politècnica de Catalunya

Geometric Quantization and applications

Eva Miranda (UPC) Geometric Quantization of semitoric systems October 8, 2018 1 / 35



Outline

1 Quantization: The general picture

2 Bohr-Sommerfeld leaves and action-angle coordinates

3 Quantization via sheaf cohomology

4 Quantization of toric manifolds and hyperbolic singularities

5 Quantization of semitoric/almost toric 4-manifolds

Eva Miranda (UPC) Geometric Quantization of semitoric systems October 8, 2018 2 / 35



Joint work with

Eva Miranda (UPC) Geometric Quantization of semitoric systems October 8, 2018 3 / 35



Classical vs. Quantum: a love & hate story

1 Classical systems
2 Observables C∞(M)
3 Bracket {f, g}

1 Quantum System
2 Operators in H (Hilbert)
3 Commutator

[A,B]h = 2πi
h (AB −BA)
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Quantization via real polarizations

(M2n, ω) symplectic manifold with integral [ω].
(L,∇) a complex line bundle with a connection ∇ such that
curv(∇) = −iω (prequantum line bundle).
A real polarization P is a Lagrangian foliation.
Integrable systems provide natural examples of real polarizations.
Flat sections equation: ∇Xs = 0, ∀X tangent to P.
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Bohr-Sommerfeld leaves

Definition
A Bohr-Sommerfeld leaf is a leaf of a polarization admitting global flat
sections.

Example: Take M = S1 × R with ω = dt ∧ dθ, P =< ∂
∂θ >, L the trivial

bundle with connection 1-form Θ = tdθ  ∇Xσ = X(σ)− i < Θ, X > σ
 Flat sections: σ(t, θ) = a(t).eitθ  Bohr-Sommerfeld leaves are given
by the condition t = 2πk, k ∈ Z.

Liouville-Mineur-Arnold ! this example is the canonical one.
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Bohr-Sommerfeld leaves: continued...

Theorem (Guillemin-Sternberg)
If the polarization is a regular fibration with compact leaves over a simply
connected base B, then the Bohr-Sommerfeld set is given by,

BS = {p ∈M, (f1(p), . . . , fn(p)) ∈ Zn}

where f1, . . . , fn are global action coordinates on B.

For toric manifolds the base B may be identified with the image of the
moment map.
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Bohr-Sommerfeld leaves and Delzant polytopes

Theorem (Delzant)
Toric manifolds are classified by Delzant’s polytopes and the bijective
correspondence is given by the image of the moment map:
{toric manifolds} −→ {Delzant polytopes}
(M2n, ω,Tn, F ) −→ F (M)

µ = h

R

CP2 µ

(t1, t2) · [z0 : z1 : z2] = [z0 : eit1z1 : eit2z2]
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The case of fibrations

“Quantize” these systems counting Bohr-Sommerfeld leaves.
For real polarization given by integrable systems Bohr-Sommerfeld
leaves are just “integral” Liouville tori.

Theorem (Sniatycki)
If the leaf space Bn is Hausdorff and the natural projection π : M2n → Bn

is a fibration with compact fibers, then quantization is given by the count
of Bohr-Sommerfeld leaves.

But how exactly?
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Quantization: The cohomological approach

Following the idea of Kostant when there are no global sections we
define the quantization of (M2n, ω,L,∇, P ) as

Q(M) =
⊕
k≥0

Hk(M,J ).

J is the sheaf of flat sections.

Then quantization is given by:

Theorem (Sniatycki)
Q(M2n) = Hn(M2n,J ), with dimension the number of Bohr-Sommerfeld
leaves.

Eva Miranda (UPC) Geometric Quantization of semitoric systems October 8, 2018 10 / 35



What is this cohomology?

1 Define the sheaf: Ωi
P(U) = Γ(U,∧iP)..

2 Define C as the sheaf of complex-valued functions that are locally
constant along P. Consider the natural (fine) resolution

0→ C i→ Ω0
P
dP→ Ω1

P
dP→ Ω1

P
dP→ Ω2

P
dP→ · · ·

The differential operator dP is the one of foliated cohomology.
3 Use this resolution to obtain a fine resolution of J by twisting the

previous resolution with the sheaf J .

0→ J i→ S ∇P→ S ⊗ Ω1
P
∇P→ S ⊗ Ω2

P → · · ·

with S the sheaf of sections of the line bundle L(⊗N1/2).
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Applications to the general case of Lagrangian foliations
This fine resolution approach can be useful for polarizations given by
general Lagrangian foliations.
Classification of foliations on the torus (Kneser-Denjoy-Schwartz theorem).
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The case of the torus: irrational slope.

Let (T2, ω) be the 2-torus with a symplectic structure ω of integer class
and consider the foliation Pη given by Xη = η ∂

∂x + ∂
∂y , with η ∈ R \Q.

Theorem (Presas-M.)
Q(T 2,J ) is always infinite dimensional.
For the limit case of foliated cohomology ω = 0 Q(T2,J ) = C

⊕
C if

the irrationality measure of η is finite and Q(T2,J ) is infinite
dimensional if the irrationality measure of η is infinite.

This generalizes a result El Kacimi for foliated cohomology.
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”Quantization Computation kit” for regular foliations

Most computations rely on
1 Künneth formula: Let (M1,P1) and (M2,P2) be symplectic

manifolds endowed with Lagrangian foliations and let J12 be the
induced sheaf of basic sections, then under some mild conditions:
Hn(M1 ×M2,J12) =

⊕
p+q=nH

p(M1,J1)⊗Hq(M2,J2).
2 Mayer-Vietoris: Consider M ← U t V ←← U ∩ V , then the following

sequence is exact,
0→ S⊗Ω∗P(M) r→ S⊗Ω∗P(U)⊕S⊗Ω∗P(V ) r0−r1−→ S⊗Ω∗P(U∩V )→ 0.
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Application II: Regular integrable system
Ij = (−ε, ε), j = 1, 2.
Computation 1: Q(I1 × I2, ω = dx1 ∧ dx2;P = ∂

∂x2
).

H0(I1 × I2;J ) = C∞(I1,C),
H1(I1 × I2;J ) = 0.

Computation 2: Q(I1 × S1
2, ω = dx1 ∧ dθ2;P = ∂

∂θ1
).

H0(I1 × S1
2;J ) = 0 since BS leaves are isolated.

Consider I1 × S1
2 = U ∪ V = (I1 × (0.4, 1.1)) ∪ (I1 × (−0.1, 0.6)).
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Regular integrable system

Apply Mayer-Vietoris and computation 1 to obtain

H0(V )⊕H0(U) ↪→ H0(W1)⊕H0(W2)� H1(I1 × S1
2).

H0(V ) = H0(U) = H0(W1) = C∞(I1 × {0};C) and
H0(W2) = C∞(I1 × {0.5};C).Take f0 ∈ H0(V ) and
f1 ∈ H0(U) = C∞(I1×{0};C). The first map of the sequence is given by(

f2
f3

)
=
(

1 −1
eiθx e−iθx

)(
f0
f1

)

Thus

H1(I1 × S1
2) =

{
0 if non BS,
C if there is one BS.
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Regular integrable system

Computation 3: Q(Ik × Tk;Tk).
By Künneth Hj(Ik × Tk;J ) = 0, if j 6= k, and

Hk(Ik × Tk;J ) =
{

0 if non BS,
C if there is one BS.

Computation 4:

Q(M2n
Tor,Reg;P(Torus)) =

n⊕
j=1

Hj(M ;J ) = Cb, b = #BS.
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Toric Manifolds

What happens if we go to the edges and vertexes of Delzant’s polytope?

There are two leaves of the polarization which are singular and correspond
to fixed points of the action.

Eva Miranda (UPC) Geometric Quantization of semitoric systems October 8, 2018 18 / 35



Quantization of toric manifolds

Theorem (Hamilton)
For a 2n-dimensional compact toric manifold

Q(M) = Hn(M ;J ) ∼=
⊕

l∈BSr

C

with a BSr the set of regular Bohr-Sommerfeld leaves.

In the example of the sphere Bohr-Sommerfeld leaves are given by integer values
of height (or, equivalently) leaves which divide out the manifold in integer areas.
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Action-angle coordinates with singularities

The theorem of Marle-Guillemin-Sternberg for fixed points of toric actions
can be generalized to non-degenerate singularities of integrable systems.

Theorem (Eliasson)
There exists symplectic Morse normal forms for integrable systems with
non-degenerate singularities.

Liouville torus ke comp. elliptic kh hyperbolic kf focus-focus
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Description of singularities

The local model is given by N = Dk × Tk ×D2(n−k) and
ω =

∑k
i=1 dpi ∧ dθi +

∑n−k
i=1 dxi ∧ dyi. and the components of the

moment map are:
1 Regular fi = pi for i = 1, ..., k;
2 Elliptic fi = x2

i + y2
i for i = k + 1, ..., ke;

3 Hyperbolic fi = xiyi for i = ke + 1, ..., ke + kh;
4 focus-focus fi = xiyi+1 − xi+1yi, fi+1 = xiyi + xi+1yi+1 for
i = ke + kh + 2j − 1, j = 1, ..., kf .

We say the system is semitoric if there are no hyperbolic components.
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Hyperbolic singularities

We consider the following covering
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Key point in the computation

We may choose a trivializing section of such that the potential one-form of
the prequantum connection is Θ0 = (xdy − ydx).

Theorem
Leafwise flat sections in a neighborhood of the singular point in the first
quadrant are given by

a(xy)e
i
2xy ln x

y

where a is a smooth complex function of one variable which is flat at the
origin.
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The case of surfaces

We can use Čech cohomology computation and a Mayer-Vietoris argument
to prove:

Theorem (Hamilton-M.)
The quantization of a compact surface endowed with an integrable system
with non-degenerate singularities is given by,

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN ⊕ CN)⊕
⊕
l∈BSr

C ,

where H is the set of hyperbolic singularities.
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The rigid body

Using this recipe and the quantization of this system is

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN
p )2 ⊕

⊕
b∈BS

Cb.

Comparing this system with the one of rotations on the sphere  This
quantization depends strongly on the polarization.
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CP 2, CP 2#3CP
2, and CP 2#9CP

2

Let us construct toric systems blowing up at 9 singular points using
symplectic cutting.
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(Symington’s) Nodal trades on CP 2#9CP
2
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We can convert elliptic points into focus-focus points using nodal trading

(Symington).
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K3 surface=(CP 2#9CP
2)#T2(CP 2#9CP

2)

K3

We may glue two copies to obtain a K3 surface.
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Other examples: Spin-spin system

s��� s
s s

-f f
s

s s
s

We may perform a nodal trade on CP 1 × CP 1 to obtain a spin-spin
system.
This is a toy model of the spin-spin system of Sadovskíı and Zĥilinskíı{

f1 = z1
2 + x1x2+y1y2+z1z2

2
f2 = z1 + z2
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Spherical pendulum
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Coupled classical spin and harmonic oscillator CP 1 × C

{
f1 = z + 1

2(u2 + v2)
f2 = 1

2(xu+ yv)
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Quantization of 4-dimensional almost toric manifolds

Theorem (M-Presas-Solha)
For a 4-dimensional compact almost toric manifold M ,

Q(M) ∼=

 ⊕
p∈BSr

C

⊕
 ⊕
p∈BSf

⊕n(p)C
∞(R;C)

 ,

where with BSr and BSf denotes the image of the regular and
focus-focus Bohr–Sommerfeld fibers respectively on the base and n(p) the
number of nodes on the fiber whose image is p ∈ BSf .
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Application: Real geometric quantization of a K3 surface

For a K3 surface with 24 Bohr–Sommerfeld focus-focus fibers;

Q(K3) ∼= C14 ⊕
⊕

j∈{1,...,24}
C∞(R;C) .
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Bohr-Sommerfeld leaves in Gompf decomposition of K3

s s s
s s

s s
s s
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Kähler geometric quantization of a K3 surface

Dimension of H0(K3;L) is 1
2c1(L)2 + 2. and c1(L)2 =

∫
K3

ω ∧ ω

The symplectic volume of a symplectic sum is the sum of the
symplectic volumes K3 =

(
CP 2#9CP 2)#T 2

(
CP 2#9CP 2).

The symplectic volume of a toric 4-manifold is simply twice the
Euclidean volume of its Delzant polytope; thus,

1
2c1(L)2 + 2 = 1

2(2 · 24 + 2 · 24) + 2 = 50 .

and Q(K3) ∼= C50.
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