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G-invariant scalar product.

S acts on LG, LG = LG x S.

Lie algebra zg = {a% + As} ,a € R,A €g.

In the sequel, we take a =1, {% + As} = connections
on G bundle over S!.

e Two connections gauge equivalent < they have
conjugate holonomies.
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A compact Lie group

G compact connected Lie group, g Lie algebra, B
G-invariant scalar product.

S acts on LG, LG = LG x S.
Lie algebra zg = {a% + As} ,a € R,A €g.

o In the sequel, we take a = 1, {% + As} = connections

on G bundle over S*.

Two connections gauge equivalent < they have
conjugate holonomies.

If g € G, O, C G adjoint orbit in G.

Coadjoint orbit O, C LG = smooth paths in G

connecting 1 and O,: % +A< g+ A =0.
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Loop groups and coadjoint orbits

The symplectic structure

(]

O, inherits canonical symplectic structure.

If Oé,ﬁ S Lgv wa (DAOK, DAB) = fsl <DAO[7 5>

St acts symplectically on O, and the corresponding
Hamiltonian is £ (A) = 3 f31 |A]? = : [s |g]* ds.

LG central extension of LG.
Full coadjoint orbit = {XL + A,, E (A)}.
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Heat kernels and equivariant localization

heat kernel on G and Atiyah-Frenkel

@ p; (g) smooth kernel for exp (tAG/Q).
e p; (g) Ad-invariant function.
e pi(g) = fog exp (— fsl |g|2ds/2t) tQ% path integral.

o I. Frenkel 84: p,; (g) numerator character loop group:
Kirillov-Lefschetz principle.

e Atiyah 85: p; (g) = fog exp (— (E+w) /).
e By DH, BV, should localize on 1-parameter

semigroups = correct formula in terms coroot lattice
(affine Weyl group).
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o X compact Riemannian manifold, K Killing vector
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Heat kernels and equivariant localization

Proof of DH, BV

o X compact Riemannian manifold, K Killing vector
field, Xy = (K = 0).
(] dK:d—I—ZK, d%(:LK

Theorem (BV)

If 41 form such that dgp = 0, then [, pu = fXK ﬁ
ex (Nxp/x

° a; =exp(—dgK'/2s), dgas, =0, fX,u = fX QL.
Sxpe
6K<NXK/X7VNXK/X>

e ‘Explains’ fantastic cancellations in local index theory.

e B8 As s = 0, agy — as a current.
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Heat kernels and equivariant localization

‘Evaluation’ for p; (¢) in Lagrangian formalism

o L, metric on Oy [64,* = [, |0A[ ds.
o K=A, |K[”= [, |Ads.
e Replace DH, BV integral for p; (¢) by
Jo, €50 (= (B +) /1) exp (—b'dic K 2),
o E =3 [qlgfds, |KI” = [q [j] ds.
o E+VKIP/2=1 [, g ds+ Y [oa ds...
o ...=1 %5+ g ds.
@ ...b — 400 localizes integral on g = 0.
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Heat kernels and equivariant localization

‘Evaluation’ for p; (¢) in Lagrangian formalism

o L, metric on Oy [64,* = [, |0A[ ds.

o K=A, |K[”= [, |Ads.

e Replace DH, BV integral for p; (¢) by

fog exp (— (E +w) /t) exp (—b*dx K'/2).

E =3 [algl ds,| K" = [g 15| ds.
E+W K /2=1 [ |l ds+ Y [. |a* ds. ..

.2
o ...=1 [ |V?G+g| ds.

@ ...b — 400 localizes integral on g = 0.

e b’j + g = w Gaussian suggests appearance of

hypoelliptic operator.
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Rigorous proof in the Hamiltonian formalism

The Dirac operator of Kostant

o DX° c2(g) @ U (g).

o DKo elliptic first order operator on G.

o DKo2 = AG _ 472 |p|.

o A% acts on C™ (G, R), DX° on C (G,R) @ A (g*).
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Rigorous proof in the Hamiltonian formalism

The Dirac operator of Kostant

o DX° c2(g) @ U (g).

o DKe elliptic first order operator on G.

o DKo2 = AG _ 472 |p|.

o A% acts on C™ (G, R), DX° on C (G,R) @ A (g*).

e We will delete A" (g*) by tensoring with S" (g*), and
use Bargmann isomorphism.
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Rigorous proof in the Hamiltonian formalism

de Rham, Witten, and Bargmann

o A (g*) =95 (g") ® A" (g*) polynomial forms on g.

o (A (g*),d®) algebraic de Rham complex.

o d¥ =iy, [d®iy] = Ly = NA©),

e Poincaré lemma and Hodge theory hold.

o Via Bargmann, S (g*) ~ L?(g), d® + d®" maps to

T (P +Y A +d” +iy).

...and Ly to H+ NY@)

with H =1 (—A® + Y| - n) harmonic oscillator.
These operators act on C* (g) ® A" (g*).
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A deformed Dirac operator

@ Operators will act on
C*(G)@A(g") ~C=(G xg) @A (g%).
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A deformed Dirac operator

@ Operators will act on
C*(G)@A(g*) ~C>® (G x g) @A (g).
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Rigorous proof in the Hamiltonian formalism

A deformed Dirac operator

@ Operators will act on

C*(G)@A(g*) ~C>® (G x g) @A (g).
o Dy = DX 4 L(d0 + Y A +d% +iy).
e As b — 0, ®, deforms 0.
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A deformed Dirac operator

@ Operators will act on
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Rigorous proof in the Hamiltonian formalism

A deformed Dirac operator

@ Operators will act on
C*(G)@A(g*) ~C>® (G x g) @A (g).
o Dy = DX 4 L(d0 + Y A +d% +iy).
e As b — 0, ®, deforms 0.
o Ly=1 (—ZA?KO’Q + 592).

o Ly = o (A4 V]2 = ) + L (Vy +E(ad (V).
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Rigorous proof in the Hamiltonian formalism

A deformed Dirac operator

@ Operators will act on
C*(G)@A(g*) ~C>® (G x g) @A (g).
© Dy =DK 4 2 (d"+ Y A+d™ +iy).
e As b — 0, ®, deforms 0.
o L= (~D2 4 2).
o Ly= 50 (AT +|Y]P —n) + 1 (Vy +2(ad (YV))).
e L, hypoelliptic by Hérmander.
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Rigorous proof in the Hamiltonian formalism

A deformed Dirac operator

@ Operators will act on
C*(G)@A(g*) ~C>® (G x g) @A (g).
o @b:DKO+%(dg+Y/\+dg*+iy).
e As b — 0, ®, deforms 0.
o L= (~D2 4 2).
o Ly= 50 (AT +|Y]P —n) + 1 (Vy +2(ad (YV))).
e L, hypoelliptic by Hérmander.
o As b — 0, by collapsing, £, deforms % (—AG + c).
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Rigorous proof in the Hamiltonian formalism

The invariance of the trace under deformation

Theorem (B08)
Fort > 0,91, € G,

Tr [Lg, Rg_21 exp (¢ (AG —¢) /2)] = Trs [Ly, R;; exp (—tLy)] .
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Rigorous proof in the Hamiltonian formalism

The invariance of the trace under deformation

Theorem (B08)
Fort > 0,91, € G,

Tr [Lg, Rg_zl exp (¢ (AG —¢) /2)] = Trs [Ly, Rg_; exp (—tLy)] .

Independence of b like in index theorem, and convergence
as b — 0.

Jean-Michel Bismut Hypoelliptic Laplacian, index theory 11 /32



Rigorous proof in the Hamiltonian formalism

The invariance of the trace under deformation

Theorem (B08)
For t > 0,971,990 € G,

Tr [Lg, Rg_zl exp (¢ (AG —¢) /2)] = Trs [Ly, Rg_; exp (—tLy)] .

Independence of b like in index theorem, and convergence
as b — 0.

Remark

Hamiltonian counterpart to Lagrangian deformation for
DH, BV formulas.
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The limit as b — 400

o Ly i (=5 +|Y]P— &)+ Vy+2(ad(Y)).
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The limit as b — 400

o Ly i (=5 +|Y]P— &)+ Vy+2(ad(Y)).

2
o As b — +o0, geodesic flow dominates.
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Rigorous proof in the Hamiltonian formalism

The limit as b — 400

o Ly i (=5 +|Y]P— &)+ Vy+2(ad(Y)).
o As b — +o00, geodesic flow dominates.

@ Forces localization of trace on closed geodesics.
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Rigorous proof in the Hamiltonian formalism

The limit as b — 400

o Ly i (=5 +|Y]P— &)+ Vy+2(ad(Y)).
o As b — +o00, geodesic flow dominates.
@ Forces localization of trace on closed geodesics.

@ We get the required formulas for the above trace.
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Reductive groups and symmetric spaces

e ( reductive group, € Cartan involution, B invariant

form on g.

e K maximal compact subgroup, g = p & £ Cartan
splitting.

o (9 = —¢’e; Casimir operator on G, analogue of —AY

for compact groups.

e Symbol of C? = B (§, &) positive on p, negative on €.
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e X = (/K symmetric space.

e p: K — AutFE descends to vector bundle F' on X.
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The Kostant operator on G

o DX still acts on C* (G) @ A (g).
o DKoz — _(C9 ¢

e g =p P ¢ splits as direct sums of Euclidean vector
spaces.

e Introduce algebraic de Rham on g, and use Bargmann
on p, ¢ separately.
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The operator 3y

Dy = DX+ V/=1e ([Y*,YY]) + - (&P + VP + d +iy»)

S =

+

gl

(dk*—i—Z e —df — )

o Ly =1 (-DF2 4 92).
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The operator 2,

(A" +YP +d" +iye)

S =

Dy, = DX + V=1 ([Y*, YY) +

b (@ iy —dE - YY)

gl

o l:b % ( l)}QDQ + Z)2>
° )?—>XtotalspaceofTX@N:GxK(peaE).
16 / 32
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The operator 2,

Dy = DX+ V/=1e ([Y*,YY]) + - (&P + VP + d +iy»)

»—t S| =

+ (dg*—i-l e —df — )

o Ly =1 (-DF2 4 92).
° )?—>XtotalspaceofTX@N:GxK(p@E).
e DX, L£;¥ act on C™ (f,A' (T*X@N*)@F).
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The hypoelliptic Laplacian as a deformation

£ = IV YT gy (CATY ) +

~
Harmonic oscillator of TX®N

NA(T*XON*)

b2

b

geodesic flow

+l< Vyry +¢(ad (YT¥))—c (ad (Y™) +ifad (YN))>.

°b—0, Ly = 5 (C¥ —o¢): X collapses to X.
e b — 400, geodesic flow Vyrx dominant = closed
geodesics.
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The case of locally symmetric spaces

o [' C G cocompact torsion free.

e Z =T\ X compact locally symmetric.
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A fundamental identity

Theorem B11

Fort > 0,b > 0,

o< (&5 [exp (—t (C7 = ¢) /2)] = T, [exp (—tL])] .
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A fundamental identity

Theorem B11
Fort > 0,b > 0,

o< (&5 [exp (—t (C7 = ¢) /2)] = T, [exp (—tL])] .

Proof
Limit as b — 0, Bianchi identity

[DZ, £7] = [@bz (@572 +CZ> /2} —0.
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Splitting the identity

@ This is exactly what we wanted!
© The identity splits as identity of orbital integrals.

Jean-Michel Bismut Hypoelliptic Laplacian, index theory 20 /32



Loop groups and coadjoint orbits

Heat kernels and equivariant localization
Rigorous proof in the Hamiltonian formalism
Selberg’s trace formula

References

Semisimple orbital integrals



Loop groups and coadjoint orbits

Heat kernels and equivariant localization
Rigorous proof in the Hamiltonian formalism
Selberg’s trace formula

References

Semisimple orbital integrals

@ 7 € G semisimple, [y] conjugacy class.

Jean-Michel Bismut Hypoelliptic Laplacian, index theory 21 /32



Selberg’s trace formula

Semisimple orbital integrals

@ 7 € (G semisimple, [v] conjugacy class.

e For ¢t > 0, Trl] [exp (=t (C* —¢) /2)] orbital integral
of heat kernel on orbit of v:
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The minimizing set

e X (7) C X minimizing set for the convex displacement
function d (x,yx).
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The minimizing set

e X (7) C X minimizing set for the convex displacement
function d (x,yx).

o X (7) C X totally geodesic symmetric space for the
centralizer Z (7).
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Geometric description of the orbital integral

o) = [ b )] p(v) ay.
Nx(yy/x

Jacobian
To X(7) V%o
Y Y
d(Y,7Y) > ClY| - C'
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Geometric description of the orbital integral

~——

Jacobian

o) = [ b )] p(v) ay.
Nx(yy/x

To X(7) V%o

Y Y

pi (z,2') < Cexp(—C'd*(z,")).

Jean-Michel Bismut Hypoelliptic Laplacian, index theory 23 /32



Loop groups and coadjoint orbits

Heat kernels and equivariant localization
Rigorous proof in the Hamiltonian formalism
Selberg’s trace formula

References

The heat kernel for Lg(




Selberg’s trace formula

The heat kernel for Eg(

Theorem (B11)
e For b €]0, M|, t > 0 fixed,

| @b ((2,Y), (', Y)))
< Cexp <—C” <d2 (z,2)) + |V + |Y’|2)> :
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The heat kernel for Eg(

Theorem (B11)
e For b €]0, M|, t > 0 fixed,

| @b ((2,Y), (', Y)))
< Cexp <—C” <d2 (z,2)) + |V + |Y’|2)> :

e Asb — 0,
@ (2,Y), (@,Y")) = P (x,a') n~me/?

1
exp <§ <|Y|2 + |Y'|2>) P.
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A second fundamental identity

Theorem

For b > 0,t > 0,

Tl [exp (=t (C¥ —¢) /2)] = Tx, ul [exp (—t£))] -
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A second fundamental identity

Theorem

For b > 0,t > 0,
Tl [exp (=t (C¥ —¢) /2)] = Tx, ul [exp (—t£))] -

Remark

|

The proof uses the fact that Trl is a trace on the algebra
of G-invariants smooth kernels on X with Gaussian decay.
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The limit as b — 400

o After rescaling of Y7X YV as b — 400,
4 2

Ly Z[YN YY"+ 1Y) = Vyrx

——

geodesic flow
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o After rescaling of Y7X YV as b — 400,
4 2
Ly Z[YN YY"+ 1Y) = Vyrx
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geodaesic How

e As b — 400, the orbital integral localizes near X ()
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The limit as b — 400

o After rescaling of Y7X YV as b — 400,
4 2
Ly Z[YN YY"+ 1Y) = Vyrx
desic fl
geodaesic How

e As b — 400, the orbital integral localizes near X ()
exactly like in Lefschetz formulas.

e v=cktaep ke KAd(k)a=a.

e Z () centralizer of 7y, 3 (v) = p (y) ® € (v) Lie algebra
of Z (7).
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Semisimple orbital integrals

Theorem (B. 2011)
There is an explicit function J, (Y{) ,Y{ € €(v), such that
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Semisimple orbital integrals

Theorem (B. 2011)
There is an explicit function J, (Y{) ,Y{ € €(v), such that

exp (— |a|® /2t)

Te [exp (—t (CX —¢) /2)] =

(2mt)P/?
3 08T [ (7)o (i ()]
£|2 dYy
exp (=[5 /20) (2nt)?/?
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Semisimple orbital integrals

Theorem (B. 2011)
There is an explicit function J, (Y{) ,Y{ € €(v), such that

exp (— |a|® /2t)

Tel) [exp (=t (C¥ —¢) /2)] =

(2mt)P/?
3 08T [ (7)o (i ()]
£|2 dYy
exp (=[5 /20) (2nt)?/?

The formula extends to any kernel.
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The function J, (Yp), Y{ € €(v)

1 A\ (iad (YOE) |p(v))

:
T ) = ‘det (- Ad() Iy 1/2 ﬁ(z‘a,d (}/Oé)k('y)>

1
[det = AdGFD) [z

det (1 — exp (—iad (¥2)) Ad (k1)) \W] i
det (1 — exp (—7ad (Yg)) Ad (k7)) [t ()
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Analogy with Atiyah-Bott

e Compare with fixed point formulas by Atiyah-Bott

~

L(g) = /X A, (TX) chy (E).
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Analogy with Atiyah-Bott

e Compare with fixed point formulas by Atiyah-Bott

L(g) = /X A, (TX) chy (E).

e Here T'X replaced by TX & N.
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e If DX classical Dirac operator on X, DX? = C% + c.
e Methods do not apply to Trl [DX exp (—tDX’Q)}.

o Dirac operators DX°, DX on @, X closely related.
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Eta invariants and the trace formula

e If DX classical Dirac operator on X, DX? = C% + c.
e Methods do not apply to Trl [DX exp (—tDX’Q)}.

o Dirac operators DX°, DX on @, X closely related.
o Clifford algebras ¢(g) for DX° ¢ (p) for D¥.
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Eta invariants and the trace formula

If DX classical Dirac operator on X, D¥2 = (C9 4 c.
Methods do not apply to Tt [DX exp (—tDX’Q)}.
Dirac operators DX°, DX on G, X closely related.
Clifford algebras ¢ (g) for D¥°, ¢(p) for D¥.
gbp=popat

(]
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Eta invariants and the trace formula

If DX classical Dirac operator on X, D¥? = C% + ¢.

e Methods do not apply to Trl [DX exp (—tDX’Z)}.

o Dirac operators DX°, DX on @, X closely related.

o Clifford algebras ¢(g) for DX° ¢ (p) for D¥.

e gDp=pDpadt

e Use action of SO (2m) on p @ p to extract DX from
D¥e,
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Eta invariants and the trace formula

If DX classical Dirac operator on X, D¥? = C% + ¢.
Methods do not apply to Tt [DX exp (—tDX’Z)}.
Dirac operators DX°, DX on G, X closely related.
Clifford algebras ¢(g) for D¥°, ¢ (p) for D¥.
gOp=pDpodEL

Use action of SO (2m) on p @ p to extract D* from
DX,

Recover results by Moscovici-Stanton on eta invariants
of locally symmetric spaces.

® 6 6 o o
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