Bergman kernels on punctured Riemann surfaces Hugues Auvray — joint work with X. Ma and G. Marinescu —

October 9, 2018

International Workshop on Geometric Quantization and Applications

Content

Bergman kernels on complete manifolds

- Landscape
- General results

2 Punctured Riemann surfaces

- Setting
- Application of Theorem 0
- Results

3 Proofs

- Corollary 2
- Theorem 1
- Corollary 3

I-Bergman kernels on complete manifolds

a) Landscape

▶ Start with an hermitian holomorphic line bundle (L, h) over a complete Kähler manifold (X^n, ω_X)

(h does not necessarily polarize ω_X).

▶ Consider, for $p \ge 1$, the Hilbert space

$$H^0_{(2)}(X,L^p) = \left\{ \sigma \in \boldsymbol{L}^2(X,L^p) \, \big| \, \overline{\partial}^{L^p} \sigma = 0 \right\}$$

(here and below, L^p is a shortcut for $(L^{\otimes p}, h^p)$). It might be of infinite dimension when X is non-compact.

> To these data, associate the Bergman kernels

$$\mathcal{B}_p: (x,y) \longmapsto \sum_{\ell \ge 0} s_{\ell}^{(p)}(x) \otimes s_{\ell}^{(p)}(y)^* \in L_x^p \otimes (L_y^p)^*$$

for some (any) orthonormal basis $(s_{\ell}^{(p)})_{\ell \geq 0}$ of $H^0_{(2)}(X, L^p)$. More particularly, look at the **density functions** $B_p(x) = \mathcal{B}_p(x, x) = \sum_{\ell \geq 0} |s_{\ell}^{(p)}(x)|_{h^p}^2 \geq 0$.

• Alternatively: $B_p(x) = \sup_{\sigma \in H^0_{(2),p}, \sigma \neq 0} \frac{|\sigma(x)|^2_{h^p}}{\|\sigma\|^2_{L^2}}.$

I-Bergman kernels on complete manifolds b) B_p asymptotics: general results

Theorem 0 (Ma-Marinescu, 2007)

With previous notations, assume that:

i) ("uniform ampleness") there exists $\varepsilon > 0$ such that: $iR^{h} = -i\partial\overline{\partial}\log(|\sigma|_{h}^{2}) \ge \varepsilon\omega_{X}$ on X;

ii) ("bounded geometry") $\operatorname{Ric}(\omega_X) \ge -C\omega_X$ on X, for some $C \ge 0$. Then: for all $j \ge 0$, there exists $b_j \in C^{\infty}(X)$ such that:

$$\forall K \Subset X, \forall k, m \ge 0, \exists Q = Q(K, k, m, \varepsilon, C, n), \forall p \ge 1,$$
$$\left\| p^{-n} B_p(x) - \sum_{j=0}^k \mathbf{b}_j p^{-j} \right\|_{C^m(K)} \le Q p^{-k-1}.$$

More precisely, $\mathbf{b}_0 = \frac{\omega_h^k}{\omega_X^n}$ (with $\omega_h = \frac{i}{2\pi} R^h$) and $\mathbf{b}_1 = \frac{\mathbf{b}_0}{8\pi} (\operatorname{scal}(\omega_h) - 2\Delta_{\omega_h} \log \mathbf{b}_0)$.

I-b) B_p asymptotics: general results

A few remarks:

- ▷ Long history; many names associated to this result: Tian (1990, k = 0, m = 2), Bouche (1990), Catlin-Zelditch (1999-98, compact X), ...
- $\,\triangleright\,$ Quantization of Kodaira embedding theorem / scalar curvature in Kähler geometry.
- ▷ The proof requires two steps:
 - 1- localization on \mathcal{B}_p ;
 - 2- computations of the asymptotics with geometric data brought to \mathbb{C}^n (scaling techniques).
- ▷ This statement does not say what happens to the Bergman density functions on neighbourhoods of infinity...

II-Punctured Riemann surfaces a) Setting

"The most elementary class of complete non-compact Kähler manifolds."

► Take:

- $\Sigma = \overline{\Sigma} \setminus D$, where $D = \{a_1, \ldots, a_N\}$ is the puncture divisor inside a compact Riemann surface $\overline{\Sigma}$, and ω_{Σ} a smooth Kähler form on Σ ;
- an hermitian line bundle $(L_{|\Sigma}, h)$, with L holomorphic on $\overline{\Sigma}$.
- Suppose moreover that there are trivializations

$$L_{|V_j} \xrightarrow{\sim} \mathbb{C}_{z_j} \times \mathbb{D}_r$$

$$(0 < r < 1)$$
 around the a_j 's, such that:
 $(\alpha) |1|_h^2(z_j) = |\log(|z_j|^2)|;$
 $(\beta) i(R^h)_{|V_j^*} = \omega_{\Sigma|V_j^*}.$
In particular,

$$\omega_{\Sigma} = \omega_{\mathbb{D}^*}(z_j) \text{ on } V_j^*,$$

where $\omega_{\mathbb{D}^*} = \frac{idz \wedge d\bar{z}}{|z|^2 \log^2(|z|^2)}$ (Poincaré metric on \mathbb{D}^*).

II-a) Setting

An arithmetic class of examples. —

These (notably, properties (α) and (β)) are natural hypotheses, as revealed by the following class of examples.

If $\Gamma \subset Psl(2,\mathbb{R})$ is a Fuchsian group of the first kind, which is geometrically finite and contains no elliptic element, then

$\Sigma=\Gamma\backslash\mathbb{H}$

can be compactified by adjunction of finitely many points. Conversely, if $\Sigma = \overline{\Sigma} \setminus \{a_1, \dots, a_N\}$ is such that (equivalently):

- $\tilde{\Sigma} = \mathbb{H}$,
- $2g_{\bar{\Sigma}} 2 + N > 0$,
- Σ admits a Kähler-Einstein metric with negative scalar curvature, or
- $K_{\bar{\Sigma}}[D]$ $(D = \{a_1, \ldots, a_N\})$ is ample,

then: $\Gamma=\pi_1(\Sigma)$ is Fuchsian, first kind, geometrically finite, with no elliptic element.

II-a) Setting

An arithmetic class of examples. —

Easy case: the principal congruence subgroup of level 2

$$\Gamma = \overline{\Gamma}(2) = \ker\{\operatorname{Psl}(2,\mathbb{Z}) \to \operatorname{Sl}(2,\mathbb{Z}/2\mathbb{Z})\};\$$

then as Riemann surfaces, $\overline{\Gamma}(2) \setminus \mathbb{H} = \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

In this context, $K_{\bar{\Sigma}}[D]$ is ample, and (the formal square root) of $(K_{\bar{\Sigma}}[D]_{|\Sigma}, \pi_*\omega_{\mathbb{H}} \otimes h_D)$ verifies (α) and (β) here, $\omega_{\mathbb{H}}$ descends to Σ , and h_D is defined on Σ by: $|\sigma_D|^2_{h_D} \equiv 1$ for some $\sigma_D \in \mathscr{O}([D])$ such that $D = \{\sigma_D = 0\}$.

II-Punctured Riemann surfaces b) Application of Theorem 0 Assume $(\Sigma, \omega_{\Sigma}, L, h)$ verify (α) and (β) ; then, for $p \ge 2$, $H^0_{(2)}(\Sigma, L^p_{(\Sigma)}) \hookrightarrow H^0(\bar{\Sigma}, L^p),$

and more precisely, by Skoda's theorem:

$$H^0_{(2)}(\Sigma, L^p_{|\Sigma}) \simeq \left\{ \sigma \in H^0(\bar{\Sigma}, L^p) \, \big| \, \sigma(a_j) = 0, \, j = 0, \dots, N \right\};$$

in particular, $H^0_{(2)}(\Sigma, L^p_{|\Sigma})$ is of finite dimension, denoted by $d_p.$ Thus:

1- as
$$B_p^{\Sigma}(x) = \sum_{j=1}^{d_p} |\sigma_j^{(p)}(x)|_{h^p}^2$$
, for any fixed p ,
 $B_p^{\Sigma}(x) \to 0$ as $x \to D$;

2- whereas for all $m \ge 1$ and all compact subsets K of Σ ,

$$\left\|\frac{2\pi}{p}B_p^{\Sigma}(x) - 1\right\|_{C^m(K)} \to 0 \qquad \text{as} \quad p \to \infty$$

by Theorem 0.

What happens in the transition region? How to describe it?

II-Punctured Riemann surfaces c) Results

First, a *localization* result (comparison with the model \mathbb{D}^*):

Theorem 1

For any $m \ge 0$, $\ell \ge 0$ and $\delta > 0$, there exists $Q = Q(m, \delta)$ such that for all $p \gg 1$,

$$\forall z \in V_1^* \cup \ldots \cup V_N^*, \quad \left| \log(|z|^2) \right|^{\delta} \left| B_p^{\Sigma}(z) - B_p^{\mathbb{D}^*}(z) \right|_{C^m(\omega_{\Sigma})} \le Qp^{-\ell},$$

where $B_p^{\mathbb{D}^*}$ is computed from the data $(\mathbb{D}^*, \omega_{\mathbb{D}^*}, \mathbb{C}, |\log(|z|^2)|| \cdot |).$

II-c) Results

Then, from Theorems 0, 1, and an explicit computation on the model \mathbb{D}^* , one can, among others, estimate precisely the *distorsion factor*:

Corollary 2

For $p \gg 1$,

$$\sup_{x \in \Sigma, \ \sigma \in H^0_{(2), p} \setminus \{0\}} \frac{|\sigma(x)|_{h^p}^2}{\|\sigma\|_{L^2}^2} = \sup_{x \in \Sigma} B_p(x) = \left(\frac{p}{2\pi}\right)^{3/2} + \mathcal{O}(p).$$

In the arithmetic situation evoked above, for non-cocompact Γ , this translates as:

$$\sup_{z \in \mathbb{H}, f \in \mathcal{S}_{2p}^{\Gamma} \setminus \{0\}} \frac{(2\mathrm{Im}z)^{2p} |f(z)|^2}{\|f\|_{\mathrm{Pet}}^2} = \left(\frac{p}{\pi}\right)^{3/2} + \mathcal{O}(p),$$

where S_{2p}^{Γ} is the space of cusp modular forms (Spitzenformen) of weight 2p.

Remarks: \triangleright If Γ were cocompact, the sup above would be $\frac{p}{\pi} + \mathcal{O}(1)$.

- In the line of results by Abbes-Ullmo, Michel-Ullmo, Friedman-Jorgenson-Kramer.
- \triangleright Version with Γ admitting elliptic elements.

Hugues Auvray

II-c) Results

With a 2-variable version of Theorem 1, one can moreover get the following sharp asymptotics for B_p^{Σ} :

Corollary 3

With the same notations as above, for and $\ell \ge 0$, there exists $C = C(\ell)$ such that for all $p \gg 1$,

$$\sup_{z \in V_1^* \cup \ldots \cup V_N^*} \left| \frac{B_p^{\Sigma}}{B_p^{\mathbb{D}^*}} - 1 \right| \le Cp^{-\ell}.$$

(sharp indeed: we'll soon see that $B_p^{\mathbb{D}^*}$ can take extremely small values).

III-Proofs

a) Corollary 2 By Theorems 0 and 1, enough to establish the same result for $B_p^{\mathbb{D}^*}$ (close to $0 \in \mathbb{D}$). Observe that $\{z^\ell\}_{\ell \ge 1}$ is a complete orthogonal family of $H^0_{(2)}(\mathbb{D}^*, \omega_{\mathbb{D}^*}, \mathbb{C}, |\log(|z|^2)|^{\mathcal{P}}| \cdot |)$; direct computations then lead to:

$$B_p^{\mathbb{D}^*}(z) = \frac{\left|\log(|z|^2)\right|^p}{2\pi(p-1)!} \sum_{\ell=1}^{\infty} \ell^{p-1} |z|^{2\ell}.$$

This is explicit enough to:

i) confirm the convergence given by Theorem 0, even near $\partial \mathbb{D}$, and with exponential rate; e.g. on annuli $\{a \leq |z| < 1\}$ $(a \in (0, 1))$,

$$\left\| B_p^{\Sigma}(x) - \frac{p-1}{2\pi} \right\|_{C^m(\{a \le |z| < 1\})} = \mathcal{O}(e^{-cp}) \qquad \text{for some } c = c(a) > 0;$$

ii) analyze $B_p^{\mathbb{D}^*}$ up to 0: setting $x = |z|^{2/p}$ and $f_p(x) = B_{p+1}^{\mathbb{D}^*}(z)$, one gets:

$$\left(\frac{2\pi}{p}\right)^{3/2} f_p = \sum_{\ell=1}^{\infty} [\text{Gaussian functions centered at } e^{-1/\ell}, \text{ of height } \frac{1}{\ell}].$$

Hugues Auvray

III-a) Corollary 2

For the translation to modular forms, recall:

▶ the definition of the space of modular forms of weight 2p:

 $\mathcal{M}_{2p}^{\Gamma} = \left\{ f \in \mathscr{O}(\mathbb{H}) \middle| \forall \gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right), f(\gamma \cdot z) = (cz+d)^{2p} f(z) \right\};$

Mumford's isomorphism:

$$\Phi: \ \mathcal{M}_{2p}^{\Gamma} \xrightarrow{\sim} H^0(\bar{\Sigma}, L^{2p})$$
$$f \longmapsto f(dz)^{\otimes p}$$

which restricts to an isometry

$$\mathcal{S}_{2p}^{\Gamma} \xrightarrow{\sim} H^0_{(2)}(\Sigma, L^{2p})$$

where $S_{2p}^{\Gamma} = \{f \in \mathcal{M}_{2p}^{\Gamma} | (\Phi f)(a_j) = 0, j = 1, ..., N\}$ is endowed with *Petersson's inner product:*

$$\langle f,g\rangle_{\mathrm{Pet}} = \int_{\mathrm{fdmtl\ dmn}} f(z)\overline{g(z)}(2y)^{2p}\ d\mathrm{vol}_{\mathbb{H}}(z).$$

III-Proofs b) Theorem 1

- Relies on Ma-Marinescu's technology, inspired by Bismut-Lebeau, and centered at the singularity!
- Based on:
 - i) finite propagation speed for the wave equations for Kodaira Laplacians;
 - ii) spectral gap for the Kodaira Laplacians.
- ► First get the estimate

$$\forall z \in V_1^* \cup \ldots \cup V_N^*, \quad \left| \log(|z|^2) \right|^{\delta} \left| B_p^{\Sigma}(z) - B_p^{\mathbb{D}^*}(z) \right|_{C^m(\omega_{\Sigma})} \le Qp^{-\ell},$$

but with $\delta < -\frac{1}{2}!$

▶ Then improve to $\delta > 0$ with help of the holomorphicity of the sections.

III-Proofs

c) Corollary 3

Assume N = 1 for simplicity, and then:

- ► truncate the orthonormal family $\{c_{\ell}^{(p)}z^{\ell}\}_{1 \leq \ell \leq \delta_p}$ $(\delta_p \leq d_p)$ far from 0, and use the trivialization near a_1 to see it as an *orthogonal* family on Σ ;
- correct it into an orthonormal family, and complete it into an orthonormal basis (σ_ℓ^(p))_{1≤ℓ≤d_p} of H⁰₍₂₎(Σ, L^p);

carefully compare

$$B_p^{\Sigma}(z) = \left|\log(|z^2|)\right|^p \sum_{\ell=1}^{d_p} |\sigma_{\ell}^{(p)}|_{h_0^p}^2 \quad \text{and} \quad B_p^{\mathbb{D}^*}(z) = \left|\log(|z^2|)\right|^p \sum_{\ell=1}^{\infty} (c_{\ell}^{(p)})^2 |z|^{2\ell}$$

on a punctured disc of shape $\{0 < |z| \le cp^{-A}\}$ (the estimate on the annulus $\{cp^{-A} < |z| < r\}$ follows at once from Theorem 1 and refined analysis on $B_p^{\mathbb{D}^*}$);

► for the comparison, adjust δ_p (linear in p) and A, and use a localization result on \mathcal{B}_p^{Σ} (analogous to Theorem 1 for B_p^{Σ}) to estimate the error terms $\sigma_{\ell}^{(p)} - c_{\ell}^{(p)} z^{\ell}$, $\ell \in \{1, \ldots, \delta_p\}$.