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I-Bergman kernels on complete manifolds
a) Landscape
I Start with an hermitian holomorphic line bundle (L, h) over a complete

Kähler manifold (X n , ωX )
(h does not necessarily polarize ωX ).

I Consider, for p ≥ 1, the Hilbert space

H 0
(2)(X ,L

p) =
{
σ ∈ L2(X ,Lp)

∣∣ ∂Lp

σ = 0
}

(here and below, Lp is a shortcut for (L⊗p , hp)).
It might be of infinite dimension when X is non-compact.

I To these data, associate the Bergman kernels

Bp : (x , y) 7−→
∑
`≥0

s
(p)
` (x )⊗ s

(p)
` (y)∗ ∈ Lp

x ⊗ (Lp
y)∗

for some (any) orthonormal basis (s
(p)
` )`≥0 of H 0

(2)(X ,L
p). More particularly,

look at the density functions Bp(x ) = Bp(x , x ) =
∑
`≥0 |s

(p)
` (x )|2hp ≥ 0.

I Alternatively: Bp(x ) = sup
σ∈H 0

(2),p
,σ 6=0

|σ(x )|2hp

‖σ‖2
L2

.
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I-Bergman kernels on complete manifolds
b) Bp asymptotics: general results

Theorem 0 (Ma-Marinescu, 2007)

With previous notations, assume that:

i) (”uniform ampleness”) there exists ε > 0 such that:
iRh =

loc
−i∂∂ log(|σ|2h) ≥ εωX on X ;

ii) (”bounded geometry”) Ric(ωX ) ≥ −CωX on X , for some C ≥ 0.

Then: for all j ≥ 0, there exists b j ∈ C∞(X ) such that:

∀K b X ,∀k ,m ≥ 0, ∃Q = Q(K , k ,m, ε,C ,n), ∀p ≥ 1,∥∥∥p−nBp(x )−
k∑

j=0

b jp
−j
∥∥∥
Cm(K )

≤ Qp−k−1.

More precisely, b0 =
ωn

h

ωn
X

(with ωh = i
2πR

h) and

b1 = b0

8π

(
scal(ωh)− 2∆ωh

log b0

)
.
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I-b) Bp asymptotics: general results

A few remarks:

B Long history; many names associated to this result: Tian (1990,
k = 0, m = 2), Bouche (1990), Catlin-Zelditch (1999-98, compact X ), ...

B Quantization of Kodaira embedding theorem / scalar curvature in Kähler
geometry.

B The proof requires two steps:

1- localization on Bp ;
2- computations of the asymptotics with geometric data brought to Cn (scaling

techniques).

B This statement does not say what happens to the Bergman density functions
on neighbourhoods of infinity...
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II-Punctured Riemann surfaces
a) Setting

”The most elementary class of complete non-compact Kähler manifolds.”

I Take:

• Σ = Σ̄ \D , where D = {a1, . . . , aN} is the puncture divisor inside a compact
Riemann surface Σ̄, and ωΣ a smooth Kähler form on Σ;

• an hermitian line bundle (L|Σ, h), with L holomorphic on Σ̄.

I Suppose moreover that there are trivializations

L|Vj

∼−−→ Czj × Dr

(0 < r < 1) around the aj ’s, such that:

(α) |1|2h(zj ) =
∣∣log(|zj |2)

∣∣;
(β) i(Rh)|V∗

j
= ωΣ|V∗

j
.

In particular,
ωΣ = ωD∗(zj ) on V ∗j ,

where ωD∗ = idz∧dz̄
|z |2 log2(|z |2)

(Poincaré metric on D∗).
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II-a) Setting

An arithmetic class of examples. —

These (notably, properties (α) and (β)) are natural hypotheses, as revealed by the
following class of examples.
If Γ ⊂ Psl(2,R) is a Fuchsian group of the first kind, which is geometrically finite
and contains no elliptic element, then

Σ = Γ\H

can be compactified by adjunction of finitely many points.
Conversely, if Σ = Σ̄ \ {a1, . . . , aN } is such that (equivalently):

• Σ̃ = H,

• 2gΣ̄ − 2 + N > 0,

• Σ admits a Kähler-Einstein metric with negative scalar curvature, or

• KΣ̄[D ] (D = {a1, . . . , aN }) is ample,

then: Γ = π1(Σ) is Fuchsian, first kind, geometrically finite, with no elliptic
element.
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II-a) Setting

An arithmetic class of examples. —

Easy case: the principal congruence subgroup of level 2

Γ = Γ̄(2) = ker{Psl(2,Z)→ Sl(2,Z/2Z)};

then as Riemann surfaces, Γ̄(2)\H = P1 \ {0, 1,∞}.

In this context, KΣ̄[D ] is ample, and (the formal square root) of
(KΣ̄[D ]|Σ, π∗ωH ⊗ hD) verifies (α) and (β) —
here, ωH descends to Σ, and hD is defined on Σ by: |σD |2hD

≡ 1 for some
σD ∈ O([D ]) such that D = {σD = 0}.
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II-Punctured Riemann surfaces
b) Application of Theorem 0
Assume (Σ, ωΣ,L, h) verify (α) and (β); then, for p ≥ 2,

H 0
(2)

(
Σ,Lp

|Σ
)
↪→ H 0

(
Σ̄,Lp

)
,

and more precisely, by Skoda’s theorem:

H 0
(2)

(
Σ,Lp

|Σ
)
'
{
σ ∈ H 0

(
Σ̄,Lp

) ∣∣σ(aj ) = 0, j = 0, . . . ,N
}

;

in particular, H 0
(2)(Σ,L

p
|Σ) is of finite dimension, denoted by dp .

Thus:

1- as BΣ
p (x ) =

∑dp

j=1 |σ
(p)
j (x )|2hp , for any fixed p,

BΣ
p (x )→ 0 as x → D ;

2- whereas for all m ≥ 1 and all compact subsets K of Σ,∥∥∥2π

p
BΣ

p (x )− 1
∥∥∥
Cm(K )

→ 0 as p →∞

by Theorem 0.

What happens in the transition region? How to describe it?
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II-Punctured Riemann surfaces
c) Results

First, a localization result (comparison with the model D∗):

Theorem 1

For any m ≥ 0, ` ≥ 0 and δ > 0, there exists Q = Q(m, δ) such that for all
p � 1,

∀z ∈ V ∗1 ∪ . . . ∪V ∗N ,
∣∣log(|z |2)

∣∣δ∣∣BΣ
p (z )− BD∗

p (z )
∣∣
Cm(ωΣ)

≤ Qp−`,

where BD∗

p is computed from the data
(
D∗, ωD∗ ,C,

∣∣log(|z |2)
∣∣| · |).
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II-c) Results
Then, from Theorems 0, 1, and an explicit computation on the model D∗, one
can, among others, estimate precisely the distorsion factor :

Corollary 2

For p � 1,

sup
x∈Σ, σ∈H 0

(2),p
\{0}

|σ(x )|2hp

‖σ‖2
L2

= sup
x∈Σ

Bp(x ) =
( p

2π

)3/2

+O(p).

In the arithmetic situation evoked above, for non-cocompact Γ, this translates as:

sup
z∈H, f∈SΓ

2p\{0}

(2Imz )2p |f (z )|2

‖f ‖2Pet

=
(p
π

)3/2

+O(p),

where SΓ
2p is the space of cusp modular forms (Spitzenformen) of weight 2p.

Remarks: B If Γ were cocompact, the sup above would be p
π +O(1).

B In the line of results by Abbes-Ullmo, Michel-Ullmo,
Friedman-Jorgenson-Kramer.

B Version with Γ admitting elliptic elements.
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II-c) Results

With a 2-variable version of Theorem 1, one can moreover get the following sharp
asymptotics for BΣ

p :

Corollary 3

With the same notations as above, for and ` ≥ 0, there exists C = C (`) such that
for all p � 1,

sup
z∈V ∗

1 ∪...∪V ∗
N

∣∣∣ BΣ
p

BD∗
p

− 1
∣∣∣ ≤ Cp−`.

(sharp indeed: we’ll soon see that BD∗

p can take extremely small values).
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III-Proofs
a) Corollary 2
By Theorems 0 and 1, enough to establish the same result for BD∗

p (close to

0 ∈ D). Observe that {z `}`≥1 is a complete orthogonal family of
H 0

(2)

(
D∗, ωD∗ ,C,

∣∣log(|z |2)
∣∣p | · |); direct computations then lead to:

BD∗

p (z ) =

∣∣log(|z |2)
∣∣p

2π(p − 1)!

∞∑
`=1

`p−1|z |2`.

This is explicit enough to:

i) confirm the convergence given by Theorem 0, even near ∂D, and with
exponential rate; e.g. on annuli {a ≤ |z | < 1} (a ∈ (0, 1)),∥∥∥BΣ

p (x )− p − 1

2π

∥∥∥
Cm({a≤|z |<1})

= O(e−cp) for some c = c(a) > 0;

ii) analyze BD∗

p up to 0: setting x = |z |2/p and fp(x ) = BD∗

p+1(z ), one gets:(2π

p

)3/2

fp =

∞∑
`=1

[Gaussian functions centered at e−1/`, of height
1

`
].
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III-a) Corollary 2
ii)

The scaled functions
(

2π
p

)3/2
fp on (0, 1)

From this, we infer sup[0,1] fp =
(

p
2π

)3/2
+O(p), and this sup is reached near

x = e−1 (which corresponds to |z | = e−p/2).
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III-a) Corollary 2
For the translation to modular forms, recall:

I the definition of the space of modular forms of weight 2p:

MΓ
2p =

{
f ∈ O(H)

∣∣∀γ =
(
a b
c d

)
, f (γ · z ) = (cz + d)2pf (z )

}
;

I Mumford’s isomorphism:

Φ : MΓ
2p
∼−→ H 0

(
Σ̄,L2p

)
f 7−→ f (dz )⊗p ,

which restricts to an isometry

SΓ
2p
∼−→ H 0

(2)

(
Σ,L2p

)
where SΓ

2p = {f ∈MΓ
2p | (Φf )(aj ) = 0, j = 1, . . . ,N } is endowed with

Petersson’s inner product:

〈f , g〉Pet =

∫
fdmtl dmn

f (z )g(z )(2y)2p dvolH(z ).

�
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III-Proofs
b) Theorem 1

I Relies on Ma-Marinescu’s technology, inspired by Bismut-Lebeau, and
centered at the singularity!

I Based on:

i) finite propagation speed for the wave equations for Kodaira Laplacians;
ii) spectral gap for the Kodaira Laplacians.

I First get the estimate

∀z ∈ V ∗1 ∪ . . . ∪V ∗N ,
∣∣log(|z |2)

∣∣δ∣∣BΣ
p (z )− BD∗

p (z )
∣∣
Cm(ωΣ)

≤ Qp−`,

but with δ < − 1
2 !

I Then improve to δ > 0 with help of the holomorphicity of the sections. �
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III-Proofs
c) Corollary 3
Assume N = 1 for simplicity, and then:

I truncate the orthonormal family {c(p)
` z `}1≤`≤δp (δp ≤ dp) far from 0, and

use the trivialization near a1 to see it as an orthogonal family on Σ;

I correct it into an orthonormal family, and complete it into an orthonormal

basis (σ
(p)
` )1≤`≤dp of H 0

(2)(Σ,L
p);

I carefully compare

BΣ
p (z ) =

∣∣log(|z 2|)
∣∣p dp∑

`=1

|σ(p)
` |

2
hp

0
and BD∗

p (z ) =
∣∣log(|z 2|)

∣∣p ∞∑
`=1

(c
(p)
` )2|z |2`

on a punctured disc of shape {0 < |z | ≤ cp−A} (the estimate on the annulus
{cp−A < |z | < r} follows at once from Theorem 1 and refined analysis on
BD∗

p );

I for the comparison, adjust δp (linear in p) and A, and use a localization
result on BΣ

p (analogous to Theorem 1 for BΣ
p ) to estimate the error terms

σ
(p)
` − c

(p)
` z `, ` ∈ {1, . . . , δp}. �
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