

Advances in Computational Statistical Physics Perspectives en physique statistique computationnelle 17 - 21 September 2018 CIRM-Marseille (France) 2018

Titus van Erp

NTNU, Trondheim, Norway University of Ghent, Belgium

Transition path sampling approaches for the study of rare events

Norwegian University of Science and Technology

Titus S. van Erp

Outline

- General introduction on path sampling: TPS -> TIS -> RETIS
- A demonstration (life simulation using PyRETIS!)
- Some more path sampling approaches: PPTIS/Milestoning, TS-PPTIS, FFS
- New MC moves: Stone Skipping and Web Throwing
- Machine Learning for identifying reaction triggers using TIS/RETIS/FFS data
- Conclusions, prospectives, and challenges

Transition Path Sampling (TPS): Sampling of unbiased dynamical trajectories using a Monte Carlo approach (Dellago, Bolhuis, Chandler 1998)

2003: Transition Interface Sampling (TIS): Improves the original TPS approach by:

Different theoretical rate equations based on *overall states*

Path ensembles based on interfaces

Flexible path length ensemble

Faster convergence due to *effective positive flux* expression

2007: Replica Exchange Transition Interface Sampling (RETIS): Improvement of TIS (but more complex to implement) by:

Replica Exchange (RE) moves between path ensembles

Fully based on path ensembles, no initial MD run: increases flexibility of RE moves.

Rate constant theory in Transition Path Sampling vs (RE)TIS

 $k_{AB} = k(t')$ for $t_{mol} < t' \ll t_{rxn}$

Titus S. van Erp

Rate constant theory in Transition Path Sampling vs (RE)TIS

Norwegian University of Science and Technology

Titus S. van Erp

The TIS Algorithm

Transition Interface Sampling, van Erp, Moroni, and Bolhuis, J. Chem. Phys. 118, 7762 (2003)

Transition Interface Sampling, van Erp, Moroni, and Bolhuis, J. Chem. Phys. 118, 7762 (2003)

Norwegian University of Science and Technology

MC sampling of MD trajectories (j rs Products Reactants

Titus van Erp

Titus van Erp

PyRETIS: A well-done, medium-sized python library for rare events

Anders Lervik, Enrico Riccardi, Titus van Erp, J. Comput. Chem. 2017

And now a demonstration!

(Sponsored by the Olav Thon foundation for combined educational/research projects)

10/34

Norwegian University of Science and Technology

Conclusions part I:

- Path sampling (TPS) is a MC sampling of short MD trajectories
- Can be applied for all kind of dynamics: Newtonian, Langevin, Brownian, kinetic MC
- TIS and later RETIS have improved the efficiency of the original TPS approach without the need of approximations.
- Implementation of RETIS is non-trivial but user-friendly open-source programs have now been developed (PyRETIS, OPS)

More about path algorithms

- Approximative local path methods: PPTIS/Milestoning, TS-PPTIS
- Splitting based path method: FFS
- Efficiency and reaction coordinate

Norwegian University of Science and Technology

The conditional crossing probability

The conditional crossing probability

$$P(\substack{k \mid j \\ l \mid i})$$

$$\mathcal{P}_A(\lambda_{i+1}|\lambda_i) = P({}^{i+1}_0|{}^i_0)$$

$$k_{AB} = f_A \mathcal{P}_A(\lambda_B | \lambda_A)$$
$$\mathcal{P}_A(\lambda_B | \lambda_A) = \mathcal{P}_A(\lambda_n | \lambda_0) = \prod_{i=0}^{n-1} \mathcal{P}_A(\lambda_{i+1} | \lambda_i)$$

Partial Path TIS

D. Moroni, P. G. Bolhuis, and T. S. van Erp, JCP 120, 4055 (2004)

13/34

Partial Path TIS

$$p_i^{\pm} \equiv P(_{i-1}^{i+1}|_{i-1}^i), \quad p_i^{\pm} \equiv P(_{i+1}^{i-1}|_{i+1}^i),$$

$$p_i^{=} = P(_{i+1}^{i-1}|_{i-1}^{i}), \quad p_i^{\ddagger} = P(_{i-1}^{i+1}|_{i+1}^{i}),$$

which fulfill the following relations:

$$p_{i}^{\pm} + p_{i}^{=} = p_{i}^{\mp} + p_{i}^{\pm} = 1.$$

$$P_{i}^{+} \equiv P\binom{i}{0} \binom{1}{0}, \quad P_{i}^{-} \equiv P\binom{0}{i} \binom{i-1}{i}.$$

$$P_{j}^{+} = \frac{p_{j-1}^{\pm} P_{j-1}^{+}}{p_{j-1}^{\pm} + p_{j-1}^{\pm} P_{j-1}^{-}}, \qquad P_{1}^{+} = P_{1}^{-} = 1$$

$$P_{j}^{-} = \frac{p_{j-1}^{\mp} P_{j-1}^{-}}{p_{j-1}^{\pm} + p_{j-1}^{\pm} P_{j-1}^{-}}. \qquad \mathcal{P}_{A}(\lambda_{B} | \lambda_{A}) = \mathcal{P}_{A}(\lambda_{n} | \lambda_{0}) = P_{n}^{+}$$
if we choose: $\lambda_{1} = \lambda_{0} + \epsilon$

Partial Path sampling

$$p_4^{\pm} = rac{\#p_{35}}{\#p_{33}+\#p_{35}}$$

 $p_4^{\pm} = 1 - p_4^{\pm}$

$$p_4^{\mp} = \frac{\#p_{53}}{\#p_{55}+\#p_{53}}$$

 $p_4^{\mp} = 1 - p_4^{\pm}$

On the memory loss assumption in PPTIS

Norwegian University of Science and Technology

Transition State PPTIS

Juraszek, Saladino, van Erp, Gervasio, Phys. Rev. Lett., 110, 108106, (2013).

Applied to the Trp-cage miniprotein folding

Basically a Reactive Flux (RF) method using a PPTIS approach to compute small transmission coefficients

Norwegian University of Science and Technology

Forward Flux Sampling

R. J. Allen, P. B. Warren, and P. R. ten Wolde. Phys. Rev. Lett., 94, 018104, (2005).

Based on TIS rate constant expression, but uses splitting instead of shooting

An example of FFS giving a too low reaction rate:

Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water Juraszek and Bolhuis, Biophys. J. **95**, 4246–4257 (2008)

TIS: $k_{\rm NL} = (1.2 \,\mu s)^{-1}$

FSS:
$$k_{\rm NL} = (100 \ \mu s)^-$$

Comparison of RF, TIS, RETIS, and FFS on a 1D ! example

T. S. Van Erp Adv. Chem. Phys. 2012

$$U(r) = r^4 - r^2$$

Langevin Dynamics

$$k_B = m = 1$$

$$\gamma = 0.3, T = 0.7$$

8 interfaces

$$\lambda_0 = -0.9, \lambda_1 = -0.8, \lambda_2 = -0.7, \lambda_3 = -0.6,$$

$$\lambda_4 = -0.5, \lambda_5 = -0.4, \lambda_6 = -0.3, \lambda_7 = 1.0$$

transmission coefficient (RF): 100,000 trajectories flux (TIS, PPTIS, FFS): 10,000,000 MD-steps run path=ensembles (TIS, PPTIS, FFS, RETIS): 20,000 trajectories each

Norwegian University of Science and Technology

reactive flux method	$\frac{1}{\sqrt{2\pi\beta m}}$	$\frac{e^{-\beta F(0)}}{\int_{-\infty}^{0} d\lambda e^{-\beta F(\lambda)}}$	κ	$k = \kappa imes rac{1}{\sqrt{2\pi\beta m}} imes rac{e^{-eta F(0)}}{\int_{-\infty}^{0} \mathrm{d}\lambda e^{-eta F(\lambda)}}$
EPF algorithm	0.106	$2.63 \cdot 10^{-6}$	$0.874 \pm 4\%$	$2.42 \cdot 10^{-7} \bot 4 \%$
path sampling		f_A	$\mathcal{P}_A(\lambda_n \lambda_0)$	$k = f_A \times \mathcal{P}_A(\lambda_n \lambda_0)$
TIS		$0.263\pm1\%$	$1.52 \cdot 10^{-6} \pm 20\%$	$4.02\cdot 10^{-7}\pm 20\%$
PPTIS		$0.263 \pm 1\%$	$1.04 \cdot 10^{-6} \pm 19\%$	$2.73 \cdot 10^{-7} \pm 19\%$
RETIS		$0.265 \pm 1\%^*$	$1.05\cdot 10^{-6}\pm 25\%^{*}$	$2.79\cdot 10^{-7}\pm 25\%^*$
FFS (long MD run)		$0.263 \pm 1\%$	$4.69\cdot 10^{-8} \perp 6\%^{*}$	$1.23\cdot 10^{-8} \pm 6\%^{*}$
FFS (short MD run)		$0.259 \pm 2\%$	$8.45\cdot 10^{-9}\pm 9\%^*$	$2.18\cdot 10^{-9}\pm 9\%^*$

Norwegian University of Science and Technology

Efficiency of TIS/RETIS is relatively insensitive to choice of RC RF: Reactive Flux method=dynamically corrected Transition State Theory

Efficiency of TIS/RETIS is relatively insensitive to choice of RC RF: Reactive Flux method=dynamically corrected Transition State Theory

How to improve further the RETIS Efficiency?

E. Riccardi, O. Dahlen, and T. S. Van Erp, J. Phys. Chem. Lett. 2017

Acceptance rule based on Super-detailed balance

$$P_{\text{acc}} = \min\left[1, \frac{P(p^{(n)})P_{\text{gen}}(p^{(n)} \to p^{(o)}\text{via }\overline{\chi})}{P(p^{(o)})P_{\text{gen}}(p^{(o)} \to p^{(n)}\text{via }\chi)}\right]$$

which leads to

$$\text{SS}: P_{\text{acc}} = \min\left[1, \frac{n_c^{(o)}}{n_c^{(n)}}\right], \text{WT}: P_{\text{acc}} = \min\left[1, \frac{n_s^{(o)}}{n_s^{(n)}}\right]$$

but with alternative weights

$$\tilde{P}(p) = w_i(p)P(p) \equiv n_{c,i}(p)q(p)P(p)$$
 for $p \in [i^+]$

q(p) equals 2 for $A \to B$ and 1 for $A \to A$ paths.

all paths can be accepted except if completion of last sub-path ends in B in both time directions (B->A paths are time-inverted and then accepted)

In the end, correct statistics is obtained by reweighting each path with $\,w_i(p)^{-1}$ 26/34

Rate of DNA denaturation using the mesoscopic PBD model. Horizontal line is result based on partition function integration (nearly exact result).

Stone skipping was found 12 times faster

Conclusions part II:

- Partial Path TIS (PPTIS/Partial Path Sampling) uses a Markovian approximation (though softer than the one used in Milestoning) to reduce average path length.
- RETIS with Stone-Skipping and Web-Throwing reduces the correlation between paths using short sub-trajectories -> can become nearly as efficient as PPTIS or Milestoning but exact!
- FFS allows the study non-equilibrium dynamics but has a serious (underestimated) sampling problem. Solutions?
- Further improvement of RETIS: how to parallelize efficiently path-ensembles which have different path lengths?

Auto-ionization of water: a RETIS/CP2K study

Norwegian University of Science and Technology

On the recombination of hydronium and hydroxide ions in water

Ali Hassanali¹, Meher K. Prakash, Hagai Eshet, and Michele Parrinello

The neutralization event involves a collective compression of the water-wire bridging the ions, which occurs in approximately 0.5 ps, triggering a concerted triple jump of the protons. This process leaves the neutralized hydroxide in a hypercoordinated state, with the implications that enhanced **collective compressions of several water molecules around similarly hypercoordinated states** are likely to serve as nucleation events for the autoionization of liquid water.

Analyzing complex reaction mechanisms using path sampling

Titus S. van Erp, Mahmoud Moqadam, Enrico Riccardi, and Anders Lervik J. Chem. Theory Comput. 2016

.86/.14 .75/.25 .21/.79 .04/.96

94/.06

А

Parrinello's w4 parameter pops-up as the most important variable of 138 collective variables that were considered in classification and regression decision trees 33/34

.08/.92

.06/.94

0.9

1.0

1.1

 $\lambda_2(\text{Å})$

1.2

3

6

0

.67/.33 .05/.95 .20/.80 .64/.36 .16/.84 .19/.81 .14/.86

6%

4%

Conclusions part III:

- Using RETIS we can reach the minute timescale using ab-initio MD and still get exact rates and unbiased dynamics.
- We designed a new approach to analyze the data of path sampling simulation methods like **TIS**, **RETIS**, or **FFS** which can be used to test hypotheses on the reaction mechanism.
- In water auto-ionization, the compressions of several water molecules around a hypercoordinated state seems to be a **necessary** (the most predictive parameter) but by far **not a sufficient** condition for the initiation of water splitting.
- Also other parameters (distortion from tetrahedral ordering, the length of the stretched hydrogen bond of a nearby water molecule) need to be in the right range to let a dissociation event happen.

Thanks! Questions?