Properties and error analysis of the effective dynamics for diffusion processes

Wei Zhang

Zuse Institute Berlin

joint work with Carsten Hartmann, Tony Lelièvre, Christof Schütte

Advances in Computational Statistical Physics, Sep. 17-21, 2018, Marseille

Outline

- Effective dynamics
- Properties of effective dynamics on time scales
- Pathwise error estimates

Diffusion process

SDE on \mathbb{R}^n

$$dx(s) = -a \nabla V \, ds + rac{1}{eta} (\nabla \cdot a) \, ds + \sqrt{2 eta^{-1}} \sigma \, dw(s) \,, \quad s \ge 0 \,.$$

Infinitesimal generator

$$\mathcal{L} = -a\nabla V \cdot \nabla + \frac{1}{\beta} (\nabla \cdot a) \cdot \nabla + \frac{1}{\beta} a : \nabla^{2}$$
$$= \frac{e^{\beta V}}{\beta} \sum_{1 \le i, j \le n} \frac{\partial}{\partial x_{i}} \left(e^{-\beta V} a_{ij} \frac{\partial}{\partial x_{j}} \right).$$

Invariant measure

$$d\mu =
ho(x)dx$$
, $ho(x) = \frac{1}{Z}e^{-\beta V}$,

where $Z = \int_{\mathbb{R}^n} e^{-\beta V} dx$.

Assumptions: smooth coefficients, $a = \sigma \sigma^{T}$ is elliptic,

Reaction coordinate: $\xi : \mathbb{R}^n \to \mathbb{R}^m$.

Reaction coordinate: $\xi : \mathbb{R}^n \to \mathbb{R}^m$. Ito's formula $d\xi_l(x(s)) = \mathcal{L}\xi_l(x(s))ds + \sqrt{2\beta^{-1}}\sum_{i=1}^n \sum_{i=1}^d \frac{\partial\xi_l}{\partial x_i} \sigma_{ij}(x(s)) dw_j(s)$.

Reaction coordinate: $\xi : \mathbb{R}^n \to \mathbb{R}^m$. Ito's formula

$$d\xi_l(x(s)) = \mathcal{L}\xi_l(x(s))ds + \sqrt{2\beta^{-1}}\sum_{i=1}^n\sum_{j=1}^d\frac{\partial\xi_l}{\partial x_i}\sigma_{ij}(x(s))dw_j(s).$$

This motivates the effective dynamics¹

$$dz(s) = \widetilde{b}(z(s)) ds + \sqrt{2\beta^{-1}}\widetilde{\sigma}(z(s)) dw(s)$$
.

For $z \in \mathbb{R}^m$, $1 \le l, k \le m$, $\widetilde{b}_l(z) = \mathbf{E}_{\mu_z}(\mathcal{L}\xi_l)$, $(\widetilde{a})_{lk}(z) = (\widetilde{\sigma}\widetilde{\sigma}^T)_{lk}(z) = \mathbf{E}_{\mu_z}\Big(\sum_{i,j=1}^n a_{ij}\frac{\partial\xi_l}{\partial x_i}\frac{\partial\xi_k}{\partial x_j}\Big)$.

Reaction coordinate: $\xi : \mathbb{R}^n \to \mathbb{R}^m$. Ito's formula

$$d\xi_l(x(s)) = \mathcal{L}\xi_l(x(s))ds + \sqrt{2\beta^{-1}}\sum_{i=1}^n\sum_{j=1}^d\frac{\partial\xi_l}{\partial x_i}\sigma_{ij}(x(s))\,dw_j(s)\,.$$

This motivates the effective dynamics¹

$$dz(s) = \widetilde{b}(z(s)) ds + \sqrt{2\beta^{-1}}\widetilde{\sigma}(z(s)) dw(s)$$
.

For
$$z \in \mathbb{R}^{m}$$
, $1 \leq l, k \leq m$,
 $\widetilde{b}_{l}(z) = \mathbf{E}_{\mu_{z}}(\mathcal{L}\xi_{l})$,
 $(\widetilde{a})_{lk}(z) = (\widetilde{\sigma}\widetilde{\sigma}^{T})_{lk}(z) = \mathbf{E}_{\mu_{z}}\left(\sum_{i,j=1}^{n} a_{ij}\frac{\partial\xi_{l}}{\partial x_{i}}\frac{\partial\xi_{k}}{\partial x_{j}}\right)$.
 $\iff \widetilde{b} = \mathbf{E}_{\mu_{z}}(\mathcal{L}\xi), \quad \widetilde{\sigma} = \left[\mathbf{E}_{\mu_{z}}(\nabla\xi a\nabla\xi^{T})\right]^{\frac{1}{2}}$.

1. Legoll and Lelièvre, Nonlinearity, 2010.

Conditional expectation μ_z

On the level set
$$\Sigma_z = \left\{ x \in \mathbb{R}^n \mid \xi(x) = z \right\}$$
, given by
 $d\mu_z(x) = \frac{1}{Q(z)} \rho(x) \left[\det(\nabla \xi \nabla \xi^T)(x) \right]^{-\frac{1}{2}} d\nu_z(x)$.

Conditional expectation μ_z

On the level set
$$\Sigma_z = \left\{ x \in \mathbb{R}^n \mid \xi(x) = z \right\}$$
, given by
 $d\mu_z(x) = \frac{1}{Q(z)} \rho(x) \left[\det(\nabla \xi \nabla \xi^T)(x) \right]^{-\frac{1}{2}} d\nu_z(x)$.

 $\forall f : \mathbb{R}^n \to \mathbb{R}$, co-area formula gives

$$\int_{\mathbb{R}^n} f(x)\rho(x) \, dx = \int_{\mathbb{R}^m} \left(\int_{\Sigma_z} f(x)d\mu_z \right) Q(z) \, dz$$
$$= \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} f(x)\rho(x)\delta(\xi(x)-z)dx \right) \, dz$$

Conditional expectation μ_z

On the level set
$$\Sigma_z = \left\{ x \in \mathbb{R}^n \mid \xi(x) = z \right\}$$
, given by
 $d\mu_z(x) = \frac{1}{Q(z)} \rho(x) \left[\det(\nabla \xi \nabla \xi^T)(x) \right]^{-\frac{1}{2}} d\nu_z(x)$.

 $\forall f : \mathbb{R}^n \to \mathbb{R}$, co-area formula gives

$$\int_{\mathbb{R}^n} f(x)\rho(x) \, dx = \int_{\mathbb{R}^m} \left(\int_{\Sigma_z} f(x)d\mu_z \right) Q(z) \, dz$$
$$= \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^n} f(x)\rho(x)\delta(\xi(x) - z)dx \right) \, dz$$

$$\implies \mathbf{E}_{\mu_{z}}(f) = \int_{\Sigma_{z}} f(x) d\mu_{z}$$
$$= \frac{1}{Q(z)} \int_{\mathbb{R}^{n}} f(x) \rho(x) \delta(\xi(x) - z) dx$$
$$= \mathbf{E}_{\mu}(f \mid \xi(x) = z) \,.$$

5/23

Outline

- Effective dynamics
- Properties of effective dynamics on time scales
- Pathwise error estimates

Generator of effective dynamics

$$\widetilde{\mathcal{L}} = \sum_{l=1}^{m} \widetilde{b}_{l} \frac{\partial}{\partial z_{l}} + \frac{1}{\beta} \sum_{l,l'=1}^{m} \widetilde{a}_{ll'} \frac{\partial^{2}}{\partial z_{l} \partial z_{l'}}.$$

Generator of effective dynamics

$$\widetilde{\mathcal{L}} = \sum_{l=1}^{m} \widetilde{b}_{l} \frac{\partial}{\partial z_{l}} + \frac{1}{\beta} \sum_{l,l'=1}^{m} \widetilde{a}_{ll'} \frac{\partial^{2}}{\partial z_{l} \partial z_{l'}}.$$

Suppose $f(x) = \tilde{f}(\xi(x)), g(x) = \tilde{g}(\xi(x))$. Using chain rules,

$$\mathcal{L}f = \sum_{l=1}^{m} (\mathcal{L}\xi_l) \frac{\partial \widetilde{f}}{\partial x_l} + \frac{1}{\beta} \sum_{l,l'=1}^{m} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial \xi_l}{\partial x_i} \frac{\partial \xi_{l'}}{\partial x_j} \right) \frac{\partial^2 \widetilde{f}}{\partial z_l \partial z_{l'}}$$
$$\implies \int_{\mathbb{R}^n} (\mathcal{L}f) g\rho dx = \int_{\mathbb{R}^m} \mathbf{E}_{\mu_z} (\mathcal{L}f) \widetilde{g} Q(z) dz = \int_{\mathbb{R}^m} (\widetilde{\mathcal{L}}\widetilde{f}) \widetilde{g} Q(z) dz.$$

Generator of effective dynamics

$$\widetilde{\mathcal{L}} = \sum_{l=1}^{m} \widetilde{b}_{l} \frac{\partial}{\partial z_{l}} + \frac{1}{\beta} \sum_{l,l'=1}^{m} \widetilde{a}_{ll'} \frac{\partial^{2}}{\partial z_{l} \partial z_{l'}}.$$

Suppose $f(x) = \tilde{f}(\xi(x)), g(x) = \tilde{g}(\xi(x))$. Using chain rules,

$$\mathcal{L}f = \sum_{l=1}^{m} (\mathcal{L}\xi_l) \frac{\partial \widetilde{f}}{\partial x_l} + \frac{1}{\beta} \sum_{l,l'=1}^{m} \Big(\sum_{i,j=1}^{n} a_{ij} \frac{\partial \xi_l}{\partial x_i} \frac{\partial \xi_{l'}}{\partial x_j} \Big) \frac{\partial^2 \widetilde{f}}{\partial z_l \partial z_{l'}}$$
$$\implies \int_{\mathbb{R}^n} (\mathcal{L}f) g\rho dx = \int_{\mathbb{R}^m} \mathbf{E}_{\mu_z} (\mathcal{L}f) \widetilde{g} Q(z) dz = \int_{\mathbb{R}^m} (\widetilde{\mathcal{L}}\widetilde{f}) \widetilde{g} Q(z) dz.$$

Proposition 1

The effective dynamics is both reversible and ergodic. And the invariant measure $\tilde{\mu}$ is given by $d\tilde{\mu} = Q(z) dz$.

Let φ_i be the orthonormal eigenfunctions of operator $-\mathcal{L}$, i.e., $-\mathcal{L}\varphi_i = \lambda_i \varphi_i$, with eigenvalues

$$\mathbf{0}=\lambda_{\mathbf{0}}<\lambda_{\mathbf{1}}\leq\lambda_{\mathbf{2}}\leq\cdots.$$

Similarly, let $\tilde{\varphi}_i$ be the orthonormal eigenfunctions of operator $-\tilde{\mathcal{L}}$ corresponding to eigenvalues $\tilde{\lambda}_i$, where

$$\mathbf{0}=\widetilde{\lambda}_{\mathbf{0}}<\widetilde{\lambda}_{\mathbf{1}}\leq\widetilde{\lambda}_{\mathbf{2}}\leq\cdots.$$

Let φ_i be the orthonormal eigenfunctions of operator $-\mathcal{L}$, i.e., $-\mathcal{L}\varphi_i = \lambda_i \varphi_i$, with eigenvalues

$$0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \cdots.$$

Similarly, let $\tilde{\varphi}_i$ be the orthonormal eigenfunctions of operator $-\tilde{\mathcal{L}}$ corresponding to eigenvalues $\tilde{\lambda}_i$, where

$$\mathbf{0}=\widetilde{\lambda}_0<\widetilde{\lambda}_1\leq\widetilde{\lambda}_2\leq\cdots.$$

Theorem 1 (Min-Max)

$$\lambda_i = \min_{H_{i+1}} \max_{f \in H_{i+1}, |f|_{\mu} = 1} \langle -\mathcal{L}f, f \rangle_{\mu},$$

for $i \ge 0$, where H_{i+1} is (i + 1)-dimensional subspaces.

Proposition 2

$$\lambda_i \leq \widetilde{\lambda}_i \leq \lambda_i + \frac{1}{\beta} \langle a \nabla (\varphi_i - \widetilde{\varphi}_i \circ \xi), \nabla (\varphi_i - \widetilde{\varphi}_i \circ \xi) \rangle_{\mu}.$$

Proposition 2

$$\lambda_i \leq \widetilde{\lambda}_i \leq \lambda_i + \frac{1}{\beta} \langle \boldsymbol{a} \nabla (\varphi_i - \widetilde{\varphi}_i \circ \xi), \nabla (\varphi_i - \widetilde{\varphi}_i \circ \xi) \rangle_{\mu}.$$

Particularly, if

$$\begin{split} \varphi(x) &= \left(\varphi_1(x), \varphi_2(x), \cdots, \varphi_m(x)\right) \in \mathbb{R}^m, \\ \xi(x) &= F \circ \varphi(x) \in \mathbb{R}^m, \end{split}$$

we have

$$\widetilde{\lambda}_i = \lambda_i, \quad \mathbf{0} \leq i \leq m.$$

1. Zhang, Hartmann and Schütte, Faraday Discuss., 2016.

2. Nüske, 2018.

Reaction rate

Disjoint sets $A, B \subset \mathbb{R}^n$.

 k_{AB} : transition rate between A and B in TPT theory ^{1,2}:

$$k_{AB} = \frac{1}{\beta} \int_{(A \cup B)^c} \sum_{i,j=1}^n a_{ij}(x) \frac{\partial q(x)}{\partial x_i} \frac{\partial q(x)}{\partial x_j} \rho(x) \, dx \, ,$$

where q is the committor satisfying

$$\mathcal{L}q = 0, \quad x \in (A \cup B)^c$$

 $q|_A = 0, \quad q|_B = 1,$

1. Vanden-Eijnden, 2006.

2. E and Vanden-Eijnden, Annu. Rev. Phys. Chem. , 2010.

Reaction rate

Suppose
$$A = \xi^{-1}(\widetilde{A}), B = \xi^{-1}(\widetilde{B}).$$

 $\widetilde{k}_{\widetilde{A}\widetilde{B}}$: reaction rate of effective dynamics.

Reaction rate

Suppose
$$A = \xi^{-1}(\widetilde{A}), B = \xi^{-1}(\widetilde{B}).$$

 $\widetilde{k}_{\widetilde{A}\widetilde{B}}$: reaction rate of effective dynamics.

Proposition 3

$$k_{AB} \leq \widetilde{k}_{\widetilde{A}\widetilde{B}} = k_{AB} + \frac{1}{\beta} \int_{(A \cup B)^c} \sum_{i,j=1}^n a_{ij} \frac{\partial (q - \widetilde{q} \circ \xi)}{\partial x_i} \frac{\partial (q - \widetilde{q} \circ \xi)}{\partial x_j} \rho \, dx \,,$$

where \tilde{q} is committor of effective dynamics.

Again, if
$$\xi(x) = q(x)$$
, then $\widetilde{k}_{\widetilde{A}\widetilde{B}} = k_{AB}$.

1. Lu and Vanden-Eijnden, J. Chem. Phys., 2014.

2. Zhang, Hartmann and Schütte, Faraday Discuss., 2016.

Simple 2D Example

$$V_{\epsilon}(x_1, x_2) = (x_1^2 - 1)^2 + \frac{1}{\epsilon} (x_1^2 + x_2 - 1)^2,$$

$$\xi_1(x_1, x_2) = x_1 \exp(-2x_2) \text{ and } \xi_2(x_1, x_2) = x_1$$

$$\beta = 2.0, \ \epsilon = 0.1.$$

Table: Reaction rate k_{AB}

Outline

- Effective dynamics
- Properties of effective dynamics on time scales
- Pathwise error estimates

Pathwise error estimates

Aim: compare $\xi(x(s))$ and z(s), when ξ is nonlinear, multi-dimensional (m > 1).

Pathwise error estimates

Aim: compare $\xi(x(s))$ and z(s), when ξ is nonlinear, multi-dimensional (m > 1).

$$d\xi(x(s)) = (\mathcal{L}\xi)(x(s)) \, ds + \sqrt{2\beta^{-1}} (
abla \xi \sigma) ig(x(s)) \, dw(s) \, ,$$

$$dz(s) = \widetilde{b}(z(s)) \, ds + \sqrt{2\beta^{-1}} \widetilde{\sigma}(z(s)) \, d\widetilde{w}(s)$$

= $\mathbf{E}_{\mu_z}(\mathcal{L}\xi)(z(s)) \, ds + \sqrt{2\beta^{-1}} [\mathbf{E}_{\mu_z}(\nabla \xi a \nabla \xi^T)]^{\frac{1}{2}}(z(s)) \, d\widetilde{w}(s)$.

Linear reaction coordinate:

$$\xi(\mathbf{x}) = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m)^T = \mathbf{z}, \qquad \mathbf{x} = (\mathbf{z}, \mathbf{y}) \in \mathbb{R}^m \times \mathbb{R}^{n-m}.$$

Choose

$$V(z, y) = V_0(z, y) + \frac{1}{\epsilon}V_1(y), \quad 0 < \epsilon \ll 1$$
$$a = \sigma = I_{n \times n}$$

Linear reaction coordinate:

$$\xi(\mathbf{x}) = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m)^T = \mathbf{z}, \qquad \mathbf{x} = (\mathbf{z}, \mathbf{y}) \in \mathbb{R}^m \times \mathbb{R}^{n-m}.$$

Choose

$$V(z, y) = V_0(z, y) + \frac{1}{\epsilon}V_1(y), \quad 0 < \epsilon \ll 1$$
$$a = \sigma = I_{n \times n}$$

 \Longrightarrow SDE becomes

$$dz_i(s) = -\frac{\partial V_0}{\partial z_i}(z(s), y(s)) ds + \sqrt{2\beta^{-1}} dw_i(s),$$

$$dy_j(s) = -\frac{\partial V_0}{\partial y_j}(z(s), y(s)) ds - \frac{1}{\epsilon} \frac{\partial V_1}{\partial y_j}(y(s)) ds + \sqrt{2\beta^{-1}} dw_j(s).$$

15/23

Linear reaction coordinate:

$$\xi(\mathbf{x}) = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m)^T = \mathbf{z}, \qquad \mathbf{x} = (\mathbf{z}, \mathbf{y}) \in \mathbb{R}^m \times \mathbb{R}^{n-m}.$$

Choose

$$\sigma \equiv \begin{pmatrix} I_{m \times m} & 0 \\ 0 & \frac{1}{\sqrt{\delta}} I_{(n-m) \times (n-m)} \end{pmatrix}, \quad 0 < \delta \ll 1$$

Linear reaction coordinate:

$$\xi(\mathbf{x}) = (\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_m)^T = \mathbf{z}, \qquad \mathbf{x} = (\mathbf{z}, \mathbf{y}) \in \mathbb{R}^m \times \mathbb{R}^{n-m}.$$

Choose

$$\sigma \equiv \begin{pmatrix} I_{m \times m} & \mathbf{0} \\ \mathbf{0} & \frac{1}{\sqrt{\delta}} I_{(n-m) \times (n-m)} \end{pmatrix}, \quad \mathbf{0} < \delta \ll \mathbf{1}$$

 \Longrightarrow SDE becomes

$$dz_i(s) = -\frac{\partial V}{\partial z_i}(z(s), y(s)) ds + \sqrt{2\beta^{-1}} dw_i(s),$$

$$dy_j(s) = -\frac{1}{\delta} \frac{\partial V}{\partial y_j}(z(s), y(s)) ds + \sqrt{\frac{2\beta^{-1}}{\delta}} dw_j(s).$$

16/23

$$dz_{i}(s) = -\frac{\partial V}{\partial z_{i}}(z(s), y(s)) ds + \sqrt{2\beta^{-1}} dw_{i}(s),$$

$$dy_{j}(s) = -\frac{1}{\delta} \frac{\partial V}{\partial y_{j}}(z(s), y(s)) ds + \sqrt{\frac{2\beta^{-1}}{\delta}} dw_{j}(s).$$
(1)

(1) is the "averaging system" in the study of multiscale dynamics.

$$dz_{i}(s) = -\frac{\partial V}{\partial z_{i}}(z(s), y(s)) ds + \sqrt{2\beta^{-1}} dw_{i}(s),$$

$$dy_{j}(s) = -\frac{1}{\delta} \frac{\partial V}{\partial y_{j}}(z(s), y(s)) ds + \sqrt{\frac{2\beta^{-1}}{\delta}} dw_{j}(s).$$
(1)

(1) is the "averaging system" in the study of multiscale dynamics.

Facts:

- 1. $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$.
- 2. $\rho_z(y) \propto e^{-\beta V(z,y)}$ is the density used to perform "averaging", for fixed *z*.
- 3. $\mathcal{L} = \frac{1}{\delta}\mathcal{L}_0 + \mathcal{L}_1$, s.t. $\int_{\mathbb{R}^{n-m}} (\mathcal{L}_0 f) \rho_z dy = 0$, $\forall f$ on \mathbb{R}^{n-m} .
- 4. δ : time scale separation.

1. Pavliotis and Stuart, 2008.

General case

For a general mapping $\xi : \mathbb{R}^n \to \mathbb{R}^m$, we have

1.
$$\Sigma_z = \{ x \in \mathbb{R}^n \mid \xi(x) = z \}.$$

2. $d\mu_z(x) = \frac{1}{Q(z)}\rho(x) \Big[\det(\nabla \xi \nabla \xi^T)(x) \Big]^{-\frac{1}{2}} d\nu_z(x).$

General case

For a general mapping $\xi : \mathbb{R}^n \to \mathbb{R}^m$, we have

1.
$$\Sigma_z = \{ x \in \mathbb{R}^n \mid \xi(x) = z \}.$$

2. $d\mu_z(x) = \frac{1}{Q(z)}\rho(x) \Big[\det(\nabla \xi \nabla \xi^T)(x) \Big]^{-\frac{1}{2}} d\nu_z(x).$

3. $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1,$ where

$$\mathcal{L}_{0} = \frac{\boldsymbol{e}^{\beta V}}{\beta} \sum_{1 \leq i,j \leq n} \frac{\partial}{\partial x_{i}} \left(\boldsymbol{e}^{-\beta V} (\boldsymbol{a} \boldsymbol{\Pi})_{ij} \frac{\partial}{\partial x_{j}} \right),$$

$$\boldsymbol{\Pi} = \boldsymbol{I} - \sum_{1 \leq i,j \leq m} (\Phi^{-1})_{ij} \nabla \xi_{i} \otimes (\boldsymbol{a} \nabla \xi_{j}), \quad \Phi = \nabla \xi \boldsymbol{a} \nabla \xi^{T}.$$

$$\implies \quad \int_{\Sigma_z} (\mathcal{L}_0 f) d\mu_z = 0, \quad \forall \ f : \Sigma_z \to \mathbb{R}.$$

General case

For a general mapping $\xi : \mathbb{R}^n \to \mathbb{R}^m$, we have

1.
$$\Sigma_z = \{ x \in \mathbb{R}^n \mid \xi(x) = z \}.$$

2. $d\mu_z(x) = \frac{1}{Q(z)}\rho(x) \Big[\det(\nabla \xi \nabla \xi^T)(x) \Big]^{-\frac{1}{2}} d\nu_z(x).$

3. $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1,$ where

$$\mathcal{L}_{0} = \frac{e^{\beta V}}{\beta} \sum_{1 \leq i,j \leq n} \frac{\partial}{\partial x_{i}} \left(e^{-\beta V} (a \Pi)_{ij} \frac{\partial}{\partial x_{j}} \right),$$

$$\Pi = I - \sum_{1 \leq i,j \leq m} (\Phi^{-1})_{ij} \nabla \xi_{i} \otimes (a \nabla \xi_{j}), \quad \Phi = \nabla \xi a \nabla \xi^{T}.$$
$$\implies \int_{\Sigma_{z}} (\mathcal{L}_{0} f) d\mu_{z} = 0, \quad \forall f : \Sigma_{z} \to \mathbb{R}.$$

4.
$$\mathcal{E}_{z}(f,h) = -\int_{\Sigma_{z}} (\mathcal{L}_{0}f) h d\mu_{z} = \frac{1}{\beta} \int_{\Sigma_{z}} (a \Pi \nabla f) \cdot (\Pi \nabla h) d\mu_{z}.$$

1. Lelièvre and Zhang, 2018.

Pathwise error estimates: Assumptions

1.
$$|\widetilde{b}(z) - \widetilde{b}(z')| \leq L_b |z - z'|$$
, $\|\widetilde{\sigma}(z) - \widetilde{\sigma}(z')\|_F \leq L_\sigma |z - z'|$.
2. Define $A = (\nabla \xi a \nabla \xi^T)^{\frac{1}{2}}$, and
 $\kappa_1^2 := \sum_{i=1}^m \int_{\mathbb{R}^n} (\Pi \nabla \mathcal{L}\xi_i) \cdot (a \Pi \nabla \mathcal{L}\xi_i) d\mu < +\infty$,
 $\kappa_2^2 := \sum_{1 \leq i,j \leq m} \int_{\mathbb{R}^n} (\Pi \nabla A_{ij}) \cdot (a \Pi \nabla A_{ij}) d\mu < +\infty$.

3. μ_z and \mathcal{E}_z satisfy the Poincaré inequality with a uniform constant $\rho > 0$, i.e.,

$$\int_{\Sigma_Z} f^2 d\mu_Z - \left(\int_{\Sigma_Z} f d\mu_Z\right)^2 \leq \frac{1}{\rho} \mathcal{E}_Z(f, f), \quad \forall f: \Sigma_Z \to \mathbb{R}.$$

19/23

Pathwise error estimates

Theorem 2 x(s) satisfies $dx(s) = -a \nabla V \, ds + rac{1}{eta} (abla \cdot a) \, ds + \sqrt{2eta^{-1}} \sigma \, dw(s) \,, \quad s \ge 0 \,,$ starting from $x(0) \sim \mu$, and z(s) is the effective dynamics $dz(s) = \widetilde{b}(z(s)) \, ds + \sqrt{2\beta^{-1}} \widetilde{\sigma}(z(s)) \, d\widetilde{w}(s) \, .$ with $z(0) = \xi(x(0))$. For all t > 0, $\mathsf{E}\Big(\sup_{0\leq s\leq t}\left|\xi(x(s))-z(s)\right|^2\Big)\leq \frac{3t}{\beta \rho}\Big(\frac{27\kappa_1^2}{2\rho}+\frac{32\kappa_2^2}{\beta}\Big)e^{Lt}\,,$ where $L = 3L_b^2 + \frac{48L_{\sigma}^2}{\beta} + 1$.

1. Lelièvre and Zhang, 2018.

1. Coupling of noise: $d\widetilde{w}(s) = (A^{-1}\nabla\xi\sigma)(x(s)) dw(s)$, $A = (\nabla\xi a \nabla\xi^T)^{\frac{1}{2}}$.

1. Legoll, Lelièvre and Olla, Stoch. Process. Appl., 2017.

2. Lyons and Zhang, Ann. Probab., 1994.

21/23

1. Coupling of noise:
$$d\widetilde{w}(s) = (A^{-1}\nabla\xi\sigma)(x(s)) dw(s)$$
,
 $A = (\nabla\xi a\nabla\xi^T)^{\frac{1}{2}}$.
2. $\varphi(x) = (\mathcal{L}\xi)(x) - \widetilde{b}(\xi(x))$, $\forall x \in \mathbb{R}^n$.
 $d(\xi(x(s)) - z(s))$
 $= \varphi(x(s)) ds + [\widetilde{b}(\xi(x(s))) - \widetilde{b}(z(s))] ds + \sqrt{2\beta^{-1}} [A(x(s)) - \widetilde{\sigma}(z(s))] d\widetilde{w}(s)$.

1. Legoll, Lelièvre and Olla, Stoch. Process. Appl., 2017.

2. Lyons and Zhang, Ann. Probab., 1994.

1. Coupling of noise: $d\widetilde{w}(s) = (A^{-1}\nabla\xi\sigma)(x(s)) dw(s)$, $A = (\nabla\xi a \nabla\xi^T)^{\frac{1}{2}}$.

2.
$$\varphi(x) = (\mathcal{L}\xi)(x) - \widetilde{b}(\xi(x)), \quad \forall x \in \mathbb{R}^{n}.$$
$$d(\xi(x(s)) - z(s))$$
$$= \varphi(x(s)) \, ds + \left[\widetilde{b}(\xi(x(s))) - \widetilde{b}(z(s))\right] \, ds + \sqrt{2\beta^{-1}} \left[A(x(s)) - \widetilde{\sigma}(z(s))\right] \, d\widetilde{w}(s) \, .$$

3. Forward-backward Martingale approach^{1,2}

$$\implies \qquad \mathbf{\mathsf{E}}\left[\sup_{0\leq t'\leq t}\Big|\int_0^{t'}\varphi(x(s))\,ds\Big|^2\right]\leq \frac{27\kappa_1^2t}{2\beta\rho^2}\,.$$

1. Legoll, Lelièvre and Olla, Stoch. Process. Appl., 2017.

2. Lyons and Zhang, Ann. Probab., 1994.

1. Coupling of noise: $d\widetilde{w}(s) = (A^{-1}\nabla\xi\sigma)(x(s)) dw(s)$, $A = (\nabla\xi a \nabla\xi^T)^{\frac{1}{2}}$.

2.
$$\varphi(x) = (\mathcal{L}\xi)(x) - \widetilde{b}(\xi(x)), \quad \forall x \in \mathbb{R}^{n}.$$
$$d(\xi(x(s)) - z(s))$$
$$= \varphi(x(s)) ds + \left[\widetilde{b}(\xi(x(s))) - \widetilde{b}(z(s))\right] ds + \sqrt{2\beta^{-1}} \left[A(x(s)) - \widetilde{\sigma}(z(s))\right] d\widetilde{w}(s).$$

3. Forward-backward Martingale approach^{1,2}

$$\implies \mathbf{E}\left[\sup_{0 \le t' \le t} \left| \int_{0}^{t'} \varphi(\mathbf{x}(s)) \, ds \right|^{2} \right] \le \frac{27\kappa_{1}^{2}t}{2\beta\rho^{2}} \, .$$
4. $\widetilde{\sigma} = \left[\mathbf{E}_{\mu_{z}}(\mathbf{A}^{2})\right]^{\frac{1}{2}}$. Lieb's concavity theorem
$$\implies \mathbf{E}_{\mu_{z}} \left\| \mathbf{A} - \widetilde{\sigma} \circ \xi \right\|_{F}^{2} \le 2 \mathbf{E}_{\mu_{z}} \left\| \mathbf{A} - (\mathbf{E}_{\mu_{z}}\mathbf{A}) \circ \xi \right\|_{F}^{2} \, .$$

- 1. Legoll, Lelièvre and Olla, Stoch. Process. Appl., 2017.
- 2. Lyons and Zhang, Ann. Probab., 1994.

21/23

Pathwise error estimates: linear cases

Corollary 3 Let x = (z, y) and $\xi(x) = z$. $L = 3L_b^2 + \frac{48L_{\sigma}^2}{\beta} + 1$.

1. (Case 1) Potential $V = V_0 + \frac{1}{\epsilon}V_1$. $\exists \epsilon_0 \ge 0$, s.t. when $\epsilon \le \epsilon_0$,

$$\mathsf{E}\Big(\sup_{0\leq s\leq t}\big|\xi(x(s))-z(s)\big|^2\Big)\leq \frac{C_2\epsilon^2 t}{K^2}e^{Lt},$$

for some $C_2 > 0$ independent of ϵ and K.

2. (Case 2) We have

$$\mathsf{E}\Big(\sup_{0\leq s\leq t} |\xi(x(s))-z(s)|^2\Big) \leq \frac{C_2\delta t}{\rho_0^2} e^{Lt},$$

for some $C_2 > 0$ independent of δ and ρ_0 .

Conclusion

Summary

- 1. effective dynamics
- 2. properties on eigenvalues and reaction rates
- 3. pathwise estimates (nonlinear, vector-valued ξ)

Related topics

- 1. numerical methods
- 2. non-reversible case (U. Sharma)

Conclusion

Summary

- 1. effective dynamics
- 2. properties on eigenvalues and reaction rates
- 3. pathwise estimates (nonlinear, vector-valued ξ)

Related topics

- 1. numerical methods
- 2. non-reversible case (U. Sharma)

Thank you !