
Neural Networks as Interacting Particle Systems 
 

Eric Vanden-Eijnden
Courant Institute

Advances in Computational Statistical Physics,
CIRM 2018

Joint work with Grant Rotskoff
 

Ref: arXiv:1805.00915

The unreasonable effectiveness of machine learning

• (Deep) neural networks have led to extraordinary progress  
in speech and image recognition, language processing  
and translation, object detection, etc.  
 

• Problems assumed to be intractable a decade ago  
are now routine. Are image / speech recognition  
inherently low dimensional?  
 

• Alternatively, can neural networks accurately represent  
high-dimensional data / functions?

• Standard representations, like Galerkin truncations or finite element decompositions, are
linear and cannot be scaled to high dimensional problem — curse of dimensionality.  

• In contrast, neural networks are nonlinear in their adjusting parameters — their effective
dimensionality is much higher than the number of these parameters.

f : {0, 1}N
2

! {0, 1, . . . , 9,NaN}
<latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="0bALq7rrW6PvGogMbagbeoB4YKQ=">AAACDnicbVC7SgNBFL3rM8bXamszGASLEGZtfFSCjVWIYBIhu4bZyawOzj6YuSuGZX/Dxl+xsVDE0s6/cfIo1Hhg4HDOvdw5J8yUNEjplzM3v7C4tFxZqa6urW9sultrHZPmmos2T1Wqr0JmhJKJaKNEJa4yLVgcKtEN785GfvdeaCPT5BKHmQhidpPISHKGVuq7NDohfkHrnl9eF83rg5L4mE6Uuq8GKZr6cd1H8YBFkzVLv+y7NdqgY5BZ4k1JDaZo9d1Pf5DyPBYJcsWM6Xk0w6BgGiVXoqz6uREZ43fsRvQsTVgsTFCMk5VkzyoDEqXavgTJWP25UbDYmGEc2smY4a35643E/7xejtFRUMgky1EkfHIoyhWx4Uc1kYHUgqMaWsK4lvavhN8yzTjaMqu2BO9v5FnSOWh4tOFdUKjADuzCPnhwCKdwDi1oA4dHeIZXeHOenBfnfVLXnDPtbRt+wfn4Brn2nUk=</latexit><latexit sha1_base64="0bALq7rrW6PvGogMbagbeoB4YKQ=">AAACDnicbVC7SgNBFL3rM8bXamszGASLEGZtfFSCjVWIYBIhu4bZyawOzj6YuSuGZX/Dxl+xsVDE0s6/cfIo1Hhg4HDOvdw5J8yUNEjplzM3v7C4tFxZqa6urW9sultrHZPmmos2T1Wqr0JmhJKJaKNEJa4yLVgcKtEN785GfvdeaCPT5BKHmQhidpPISHKGVuq7NDohfkHrnl9eF83rg5L4mE6Uuq8GKZr6cd1H8YBFkzVLv+y7NdqgY5BZ4k1JDaZo9d1Pf5DyPBYJcsWM6Xk0w6BgGiVXoqz6uREZ43fsRvQsTVgsTFCMk5VkzyoDEqXavgTJWP25UbDYmGEc2smY4a35643E/7xejtFRUMgky1EkfHIoyhWx4Uc1kYHUgqMaWsK4lvavhN8yzTjaMqu2BO9v5FnSOWh4tOFdUKjADuzCPnhwCKdwDi1oA4dHeIZXeHOenBfnfVLXnDPtbRt+wfn4Brn2nUk=</latexit><latexit sha1_base64="Ucla0pSFkP4pUTpDb7ZB3tCUy9k=">AAACGXicbVC7SgNBFJ2NrxhfUUubwSBYhDCbxmgVsLEKEcwDskmYncwmQ2YfzNwVw7K/YeOv2FgoYqmVf+PkUWjigYHDOfdy5xw3kkIDId9WZm19Y3Mru53b2d3bP8gfHjV1GCvGGyyUoWq7VHMpAt4AAZK3I8Wp70recsfXU791z5UWYXAHk4h3fToMhCcYBSP188S7wk5CiraT9pJar5xiB8K5UnTkIARdvCw6wB8gqdFa6qT9fIGUyAx4ldgLUkAL1Pv5T2cQstjnATBJte7YJIJuQhUIJnmac2LNI8rGdMg7hgbU57qbzJKl+MwoA+yFyrwA8Ez9vZFQX+uJ75pJn8JIL3tT8T+vE4NX6SYiiGLgAZsf8mKJTfhpTXggFGcgJ4ZQpoT5K2YjqigDU2bOlGAvR14lzXLJJiX7lhSqlUUdWXSCTtE5stEFqqIbVEcNxNAjekav6M16sl6sd+tjPpqxFjvH6A+srx+Flp6/</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit><latexit sha1_base64="ZzThD1x0h9+DzWQMMXOOKzW0BSA=">AAACGXicbVC7SgNBFJ31GeMramkzGASLJewGwWgVsLEKEcwDspswO5lNhsw+mLkrhmV/w8ZfsbFQxFIr/8bJo9DEAwOHc+7lzjleLLgCy/o2VlbX1jc2c1v57Z3dvf3CwWFTRYmkrEEjEcm2RxQTPGQN4CBYO5aMBJ5gLW90PfFb90wqHoV3MI6ZG5BByH1OCWipV7D8K+yklmk7WTetdcsZdiCaKaYj+hEo89J0gD1AWiO1zMl6haJVsqbAy8SekyKao94rfDr9iCYBC4EKolTHtmJwUyKBU8GyvJMoFhM6IgPW0TQkAVNuOk2W4VOt9LEfSf1CwFP190ZKAqXGgacnAwJDtehNxP+8TgJ+xU15GCfAQjo75CcC6/CTmnCfS0ZBjDUhVHL9V0yHRBIKusy8LsFejLxMmuWSbZXs2/NitTKvI4eO0Qk6Qza6QFV0g+qogSh6RM/oFb0ZT8aL8W58zEZXjPnOEfoD4+sHhtaeww==</latexit>

Basic roadmap of neural network training

non-convex optimization 
problem

• Approximate a target function f : ⌦ ! R defined on ⌦ ✓ Rd by a neural network representation, e.g.
a single-layer network with sigmoid nonlinearity

fn(x) =
nX

i=1

cih(ai · x+ bi), h(z) = 1/(1 + e�z)

• Measure the approximation error via the loss function

`(f, fn) = 1
2

Z

⌦
|f(x)� fn(x)|2 dµ(x) = 1

2Edata |f � fn|2

• In practice, estimate `(f, fn) via the empirical loss function

`P(f, fn) =
1

P

PX

p=1

|f(xp)� fn(xp)|2, {xp}Pp=1 = iid drawn from µ.

• Train the network via stochastic gradient descent (SGD) to minimize the loss over the parameters

z(t+�t) = z(t)��trzLP(z(t)),

where z denotes the network parameters (e.g. z = (a1, b1, c1, . . . ,an, bn, cn))
and LP(z) = `P(f, fn) the empirical loss viewed as function of z.

non-linear approximation

A test case: Spherical 3-spin model

Number of critical points exponential in d  
(Ben Arous, etc.) 

0 2 4 6
✓

�2

0

2

(d
=

10
)

0 2 4 6
✓

�5

0

5

0 2 4 6
✓

�5

0

5

0 2 4 6
✓

�5

0

5

(d
=

25
)

0 2 4 6
✓

�5
0
5

0 2 4 6
✓

�5

0

5

f(✓) n = 128 n = 256 n = 512 n = 1024

20 GRANT M. ROTSKOFF AND ERIC VANDEN-EIJNDEN

In this statement, the almost sure convergence is with respect to Pin as well as the statistics of
the noise terms in (3.15). A similar statement holds if we use to the solution to (3.1) in fn(t) =
fn(t , x), but in this case discretization errors in ¢t must also be accounted for. In terms of the
loss function, we have

(3.35) `(f , fn(an)) = 1
2k f ° f0(an)k2 °n°Æ h f ° f0(an), fÆ(an)i+ 1

2 n°2Æk fÆ(an)k2 +o(n°Æ)

and as a result we have the equivalent of Proposition 2.5 in the context of SGD

Proposition 3.3. In the same conditions as those in Proposition 3.2, the loss function satisfies

(3.36) lim
t!1

lim
n!1

nÆ`(f , fn(an)) = 0 almost surely

4. ILLUSTRATIVE EXAMPLE: 3-SPIN MODEL ON THE HIGH-DIMENSIONAL SPHERE

To test our results, we will use a function known for its complex features in high-dimensions:
the spherical 3-spin model, f : Sd°1(

p
d) !R, given by

(4.1) f (x) = 1
d

dX

p,q,r=1
ap,q,r xp xq xr , x 2 Sd°1

≥p
d

¥
ΩRd

where the coefficients {ap,q,r }d
p,q,r=1 are independent Gaussian random variables with mean zero

and unit variance. The function (4.1) is known to have a number of critical points that grows
exponentially with the dimensionality d [13, 25, 26]. We note that previous works have sought to
draw a parallel between the glassy 3-spin function and generic loss functions [14], but we are not
exploring such an analogy here. Rather, we simply use the function (4.1) as a difficult target for
approximation by neural networks. That is, throughout this section, we train networks to learn f
with a particular realization of ap,q,r and study the accuracy of that representation as a function
of the number of particles n.

4.1. Learning with Gaussian kernels. We first consider the case when D = Sd°1(
p

d) and we use

(4.2) '(x , y) = e°
1
2Æ|x°y |2

for some fixed Æ > 0. In this case, the parameters live in the domain of the function (here the
d-dimensional sphere). Note that, since |x | = |y | =

p
d , up to an irrelevant constant that can be

absorbed in the weights c, we can also write (4.2) as

(4.3) '(x , y) = e°Æx ·y

Setting

(4.4) fn(x) = 1
n

nX

i=1
ci'(x , y i) = 1

n

nX

i=1
ci e°Æx ·y i ,

the GD flow in (2.1) can then be written explicitly as

(4.5)

8
>>>><

>>>>:

Ẏ i =Cir f (Yi)+ Æ

n

nX

j=1
Ci C j Y j e°ÆY i ·Y j °∏i Yi

Ċi = f (Y i)° 1
n

nX

j=1
C j e°ÆY i ·Y j

where °∏i Yi is a Lagrange multiplier term added to enforce |Yi | =
p

d for all i = 1, . . . ,n, f (x) is
given by (4.1) and r f (x) is given componentwise by

(4.6)
@ f
@xp

= 1
d

dX

q,r=1

°
ap,q,r +ar,p,q +aq,r,p

¢
xq xr ,

As apparent from (4.5) the advantage of using radial basis function networks is that we can use
f (x) and the kernel '(x , y) directly, and do not need to evaluate F (y) and K (y , y 0) (that is, we

NEURAL NETWORKS AS INTERACTING PARTICLE SYSTEMS 23

We trained the model in (4.10) using SGD with an initial batch size of P = bn/5c points uni-
formly sampled on the sphere for 2£106 time steps, resampling a new batch at every time step:
this corresponds to choosing Æ= 1/2 in the notation of Sec. 3. Towards the end of the trajectory,
we initiated a partial quench by increasing the batch size to P = b(n/5)2c (i.e Æ= 1) which we run
for an additional 2£ 105 time steps. Fig. 2 shows the empirical loss in (4.8) calculated over the
batch as a function of training time during the optimization with n = 256 particles and d = 10
(left panel) and d = 25 (right panel). Note that the lack of intermediate plateaus in the loss during
training is consistent with our conclusion that the dynamics effectively descends on a quadratic
energy landscape (i.e. the loss function itself) at the level of the empirical distribution of the
particles. After the quench the empirical loss shows substantially smaller fluctuations as a func-
tion of time which helps to reduce the fluctuating error. The inset shows the final 105 time steps
in which there is negligible downward drift, indicating convergence towards stationarity at this
batch size.

In these higher dimensional examples, we tested the scaling with three different observables.
First, we considered the empirical loss function in (4.8) which we computed over a batch of size
P̂ = 105 larger than P . As shown in the two right panels Fig. 3, `P̂ (f , fn(t)) scales as n°1, consistent
with the estimate in (3.36) with Æ= 1. We also tested the estimate in (3.34) using

(4.11)
1

P̂

P̂X

p=1
£

°
f (x p)

¢°
f (x p)° fn(t , x p)

¢
,

and similarly with £
°
° f (x p)

¢
: here £ denotes the Heaviside function. The result is shown in the

four right panels in Fig. 3: (4.11) scales as n°1, consistent with (3.34) and our choice of Æ= 1.
To provide further confidence in the quality of the representations, we also made a visual com-

parison by plotting f and fn along great circles of the sphere. We do so by picking i 6= j in {1, · · · ,d}
and setting x = x(µ) = (x1(µ), . . . xd (µ)) with

(4.12) xi (µ) =
p

d cos(µ), x j (µ) =
p

d sin(µ), xk (µ) = 0 8k 6= i , j .

In Fig. 4 we plot f (x(µ) and fn(x(µ)) along three great circles for d = 10 and d = 25. As can be seen,
the agreement is quite good and confirms the quality of the final fit. A strong signal is present in
d = 25 with n = 1024, a remarkable fact when considering that if we had only two grid points per
dimension, the total number of points in the grid would be 225 = 33,554,432.

5. CONCLUDING REMARKS

Viewing parameters as particles with the loss function as interaction potential enables us to
leverage a powerful theoretical apparatus developed in the context of large systems of interact-
ing particles. Using these ideas, we can analyze the approximation quality and the trainability
of neural network representations of high-dimensional functions. Several insights emerge from
our analysis based on this viewpoint. First, these tools show that the Universal Approximation
Theorems follows from a Law of Large Numbers for the empirical distribution of the parameters
/ particles. Moreover, our results enrich the more abstract derivations of the Universal Approxi-
mation Theorem with a dynamical perspective. Specifically, we conclude that the empirical dis-
tribution effectively descends on the quadratic loss function landscape when the number n of
parameters in the network is large. This confirms the empirical observation that neural networks
are trainable despite the non-convexity of the loss function viewed from the individual particles
perspective (as opposed to that of their empirical distribution). Secondly, we have derived a Cen-
tral Limit Theorem for the empirical distribution of the particles, specifying the approximation
error of neural network representation and showing that it is universal.

We derived these results first in the context of gradient descent dynamics of the particles /
parameters; however, they also apply to stochastic gradient descent. The analysis indicates how
the parameters in SGD should be chosen, in particular how the batch size should be scaled with
n given the time step used in the scheme, which can be done towards the end of training.

Two grid points per dimension  
= grid points

NEURAL NETWORKS AS INTERACTING PARTICLE SYSTEMS 23

We trained the model in (4.10) using SGD with an initial batch size of P = bn/5c points uni-
formly sampled on the sphere for 2£106 time steps, resampling a new batch at every time step:
this corresponds to choosing Æ= 1/2 in the notation of Sec. 3. Towards the end of the trajectory,
we initiated a partial quench by increasing the batch size to P = b(n/5)2c (i.e Æ= 1) which we run
for an additional 2£ 105 time steps. Fig. 2 shows the empirical loss in (4.8) calculated over the
batch as a function of training time during the optimization with n = 256 particles and d = 10
(left panel) and d = 25 (right panel). Note that the lack of intermediate plateaus in the loss during
training is consistent with our conclusion that the dynamics effectively descends on a quadratic
energy landscape (i.e. the loss function itself) at the level of the empirical distribution of the
particles. After the quench the empirical loss shows substantially smaller fluctuations as a func-
tion of time which helps to reduce the fluctuating error. The inset shows the final 105 time steps
in which there is negligible downward drift, indicating convergence towards stationarity at this
batch size.

In these higher dimensional examples, we tested the scaling with three different observables.
First, we considered the empirical loss function in (4.8) which we computed over a batch of size
P̂ = 105 larger than P . As shown in the two right panels Fig. 3, `P̂ (f , fn(t)) scales as n°1, consistent
with the estimate in (3.36) with Æ= 1. We also tested the estimate in (3.34) using

(4.11)
1

P̂

P̂X

p=1
£

°
f (x p)

¢°
f (x p)° fn(t , x p)

¢
,

and similarly with £
°
° f (x p)

¢
: here £ denotes the Heaviside function. The result is shown in the

four right panels in Fig. 3: (4.11) scales as n°1, consistent with (3.34) and our choice of Æ= 1.
To provide further confidence in the quality of the representations, we also made a visual com-

parison by plotting f and fn along great circles of the sphere. We do so by picking i 6= j in {1, · · · ,d}
and setting x = x(µ) = (x1(µ), . . . xd (µ)) with

(4.12) xi (µ) =
p

d cos(µ), x j (µ) =
p

d sin(µ), xk (µ) = 0 8k 6= i , j .

In Fig. 4 we plot f (x(µ) and fn(x(µ)) along three great circles for d = 10 and d = 25. As can be seen,
the agreement is quite good and confirms the quality of the final fit. A strong signal is present in
d = 25 with n = 1024, a remarkable fact when considering that if we had only two grid points per
dimension, the total number of points in the grid would be 225 = 33,554,432.

5. CONCLUDING REMARKS

Viewing parameters as particles with the loss function as interaction potential enables us to
leverage a powerful theoretical apparatus developed in the context of large systems of interact-
ing particles. Using these ideas, we can analyze the approximation quality and the trainability
of neural network representations of high-dimensional functions. Several insights emerge from
our analysis based on this viewpoint. First, these tools show that the Universal Approximation
Theorems follows from a Law of Large Numbers for the empirical distribution of the parameters
/ particles. Moreover, our results enrich the more abstract derivations of the Universal Approxi-
mation Theorem with a dynamical perspective. Specifically, we conclude that the empirical dis-
tribution effectively descends on the quadratic loss function landscape when the number n of
parameters in the network is large. This confirms the empirical observation that neural networks
are trainable despite the non-convexity of the loss function viewed from the individual particles
perspective (as opposed to that of their empirical distribution). Secondly, we have derived a Cen-
tral Limit Theorem for the empirical distribution of the particles, specifying the approximation
error of neural network representation and showing that it is universal.

We derived these results first in the context of gradient descent dynamics of the particles /
parameters; however, they also apply to stochastic gradient descent. The analysis indicates how
the parameters in SGD should be chosen, in particular how the batch size should be scaled with
n given the time step used in the scheme, which can be done towards the end of training.

ap,q,r ⇠ N(0, 1)
<latexit sha1_base64="Y4tgzUbkU+jNvXn5NQ/ZYBHDOtQ=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSxChVISEeyx4MWTVLAf0Iaw2W7apZtN3N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6QcKa043xbK6tr6xubha3i9s7u3r59cNhScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtRyoVi8W9HifUi/BAsJARrI3k28fYz5LKQ0VOUE+xCN2WnYp77tslp+rMgJaJm5MS5Gj49levH5M0okITjpXquk6ivQxLzQink2IvVTTBZIQHtGuowBFVXjY7f4LOjNJHYSxNCY1m6u+JDEdKjaPAdEZYD9WiNxX/87qpDmtexkSSairIfFGYcqRjNM0C9ZmkRPOxIZhIZm5FZIglJtokVjQhuIsvL5PWRdV1qu7dZaley+MowAmcQhlcuII63EADmkAgg2d4hTfryXqx3q2PeeuKlc8cwR9Ynz+bDpPn</latexit><latexit sha1_base64="Y4tgzUbkU+jNvXn5NQ/ZYBHDOtQ=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSxChVISEeyx4MWTVLAf0Iaw2W7apZtN3N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6QcKa043xbK6tr6xubha3i9s7u3r59cNhScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtRyoVi8W9HifUi/BAsJARrI3k28fYz5LKQ0VOUE+xCN2WnYp77tslp+rMgJaJm5MS5Gj49levH5M0okITjpXquk6ivQxLzQink2IvVTTBZIQHtGuowBFVXjY7f4LOjNJHYSxNCY1m6u+JDEdKjaPAdEZYD9WiNxX/87qpDmtexkSSairIfFGYcqRjNM0C9ZmkRPOxIZhIZm5FZIglJtokVjQhuIsvL5PWRdV1qu7dZaley+MowAmcQhlcuII63EADmkAgg2d4hTfryXqx3q2PeeuKlc8cwR9Ynz+bDpPn</latexit><latexit sha1_base64="Y4tgzUbkU+jNvXn5NQ/ZYBHDOtQ=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSxChVISEeyx4MWTVLAf0Iaw2W7apZtN3N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6QcKa043xbK6tr6xubha3i9s7u3r59cNhScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtRyoVi8W9HifUi/BAsJARrI3k28fYz5LKQ0VOUE+xCN2WnYp77tslp+rMgJaJm5MS5Gj49levH5M0okITjpXquk6ivQxLzQink2IvVTTBZIQHtGuowBFVXjY7f4LOjNJHYSxNCY1m6u+JDEdKjaPAdEZYD9WiNxX/87qpDmtexkSSairIfFGYcqRjNM0C9ZmkRPOxIZhIZm5FZIglJtokVjQhuIsvL5PWRdV1qu7dZaley+MowAmcQhlcuII63EADmkAgg2d4hTfryXqx3q2PeeuKlc8cwR9Ynz+bDpPn</latexit><latexit sha1_base64="Y4tgzUbkU+jNvXn5NQ/ZYBHDOtQ=">AAAB/nicbVBNS8NAEJ34WetXVDx5WSxChVISEeyx4MWTVLAf0Iaw2W7apZtN3N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6QcKa043xbK6tr6xubha3i9s7u3r59cNhScSoJbZKYx7ITYEU5E7Spmea0k0iKo4DTdjC6nvrtRyoVi8W9HifUi/BAsJARrI3k28fYz5LKQ0VOUE+xCN2WnYp77tslp+rMgJaJm5MS5Gj49levH5M0okITjpXquk6ivQxLzQink2IvVTTBZIQHtGuowBFVXjY7f4LOjNJHYSxNCY1m6u+JDEdKjaPAdEZYD9WiNxX/87qpDmtexkSSairIfFGYcqRjNM0C9ZmkRPOxIZhIZm5FZIglJtokVjQhuIsvL5PWRdV1qu7dZaley+MowAmcQhlcuII63EADmkAgg2d4hTfryXqx3q2PeeuKlc8cwR9Ynz+bDpPn</latexit>

22 June 2018 Paris Diderot arXiv:1805.00915

A simple, but exactng test case

Spherical 3-spin model Exponental number of minima with dimension,
 cf. Ben Arous, others

26 GRANT M. ROTSKOFF AND ERIC VANDEN-EIJNDEN

FIGURE 3. Error scaling for single layer neural network with sigmoid nonlin-
earities. Upper row: d = 10; lower row: d = 25. The first column shows the
empirical loss in (4.8), the second column shows (4.11), and the third column
shows (4.11) with£(f) replaced by£(° f). The stars show the results for 10 dif-
ferent realizations of the coefficients ap,q,r in (4.1): the dashed lines decay as
n°1, consistent with the predictions in (3.34) and (3.36).

for an additional 2£ 105 time steps. Fig. 2 shows the empirical loss in (4.8) calculated over the
batch as a function of training time during the optimization with n = 256 particles and d = 10
(left panel) and d = 25 (right panel). Note that the lack of intermediate plateaus in the loss during
training is consistent with our conclusion that the dynamics effectively descends on a quadratic
energy landscape (i.e. the loss function itself) at the level of the empirical distribution of the
particles. After the quench the empirical loss shows substantially smaller fluctuations as a func-
tion of time which helps to reduce the fluctuating error. The inset shows the final 105 time steps
in which there is negligible downward drift, indicating convergence towards stationarity at this
batch size.

In these higher dimensional examples, we tested the scaling with three different observables.
First, we considered the empirical loss function in (4.8) which we computed over a batch of size
P̂ = 105 larger than P . As shown in the two right panels Fig. 3, `P̂ (f , fn(t)) scales as n°1, consistent
with the estimate in (3.36) with Æ= 1. We also tested the estimate in (3.34) using

(4.11)
1

P̂

P̂X

p=1
£

°
f (x p)

¢°
f (x p)° fn(t , x p)

¢
,

and similarly with £
°
° f (x p)

¢
: here £ denotes the Heaviside function. The result is shown in the

four right panels in Fig. 3: (4.11) scales as n°1, consistent with (3.34) and our choice of Æ= 1.
To provide further confidence in the quality of the representations, we also made a visual com-

parison by plotting f and fn along great circles of the sphere. We do so by picking i 6= j in {1, · · · ,d}
and setting x = x(µ) = (x1(µ), . . . xd (µ)) with

(4.12) xi (µ) =
p

d cos(µ), x j (µ) =
p

d sin(µ), xk (µ) = 0 8k 6= i , j .

Representation power of neural networks

• Say that neural network representations are dense in the space of  
square-integrable target functions. There is a neural network approximation  
arbitrarily close to any such function. 
 

• The theorems do not answer: How do we construct the representation?  
 

1. Can the network be trained (i.e. how should we get the parameters)?  

2. Do the typical machine learning algorithms converge? 

3. How does the error scale with the network size?

Universal Approximation Theorems (Barron, Cybenko, Park, others)

Neural networks as particle systems

• Using fn(x) = 1
n

nX

i=1

ci'(x,yi), the loss function `(f, fn) = 1
2

R
⌦ |f(x)� fn(x)|2 dµ(x) can be

expanded as

`(f, fn) = Cf �
1

n

nX

i=1

ciF (yi) +
1

2n2

nX

i,j=1

cicjK(yi,yj), Cf =
1

2

Z

⌦
|f(x)|2 dµ(x)

where

F (y) =
Z

⌦
f(x)'(x,y)dµ(x), K(y, z) =

Z

⌦
'(x,y)'(x, z)dµ(x) ⌘ K(z,y).

• Minimization of the loss over {ci,yi}ni=1 is a complex, presumably non-convex optimization problem.

• Parameters = particles; loss function = interaction potential

Neural networks as particle systems

one-body interaction two-body interaction

interaction potential

• Using fn(x) = 1
n

nX

i=1

ci'(x,yi), the loss function `(f, fn) = 1
2

R
⌦ |f(x)� fn(x)|2 dµ(x) can be

expanded as

`(f, fn) = Cf �
1

n

nX

i=1

ciF (yi) +
1

2n2

nX

i,j=1

cicjK(yi,yj), Cf =
1

2

Z

⌦
|f(x)|2 dµ(x)

where

F (y) =
Z

⌦
f(x)'(x,y)dµ(x), K(y, z) =

Z

⌦
'(x,y)'(x, z)dµ(x) ⌘ K(z,y).

• Minimization of the loss over {ci,yi}ni=1 is a complex, presumably non-convex optimization problem.

• Parameters = particles; loss function = interaction potential

Non-equilibrium dynamics of training / optimization

(to be generalized to SGD)

• Gradient descent (GD) dynamics over loss function: fn(t,x) =
1

n

nX

i=1

Ci(t)'(x,Yi(t)) with

dY i

dt
= CirF (Yi)�

1

n

nX

j=1

CiCjrK(Y i,Yj),

dCi

dt
= F (Yi)�

1

n

nX

j=1

CjK(Yi,Yj)

• Empirical distribution:

⇢n(t,y, c) =
1

n

nX

i=1

�(c� Ci(t))�(y � Yi(t)), fn(t,x) =
Z

D⇥R
c'(x,y)⇢n(t,y, c)dydc

• Dynamics = McKean-Vlasov equation

@t⇢n = r ·
✓
�crF⇢n +

Z

D⇥R
cc0rK(y,y0)⇢0n⇢ndy

0dc0
◆

+ @c

✓
�F⇢n +

Z

D⇥R
c0K(y,y0)⇢0n⇢ndy

0dc0
◆

Asymptotic convexity in the mean field limit

Similar results appeared recently in: 
 
Mei, Montanari, & Nguyen arXiv:1804.06561;
Sirigano & Spiliopoulos arXiv:1805.01053 

Propagation of chaos

Asymptotic convexity  

Not the full story: particular shape of interaction potential 
 from network architecture matters to avoid stationary points

• McKean-Vlasov equation = gradient descent flow in Wasserstein metric (Otto, Villani, Serfaty, etc.)

• Mean-field limit: ⇢n(t) * ⇢0(t) as n ! 1, where ⇢0(t) descents on quadratic energy:

@t⇢0 = r ·
✓
⇢0r

�E
�⇢0

◆
+ @c

✓
⇢0@c

�E
�⇢0

◆

E[⇢0] = Cf �
Z

D⇥R
cF⇢0dydc+ 1

2

Z

(D⇥R)2
cc0K(y,y0)⇢0⇢00dy

= 1
2

Z

⌦

✓
f(x)� 1

2

Z

D⇥R
c'(x,y)⇢0dydc

◆2

dµ(x)

• Ruggedness of the microscopic landscape viewed by particles / parameters disappears at the level of
their empirical distribution.

Law of Large Numbers (LLN)
• ⇢n(t) * ⇢0(t) as n ! 1, where f0(t,x) =

R
D⇥R c'(x,y)⇢0(t,y, c)dydc satisfies gradient flow

over loss function:

@tf0(t,x) = �
Z

⌦
M([⇢0(t)],x,x0)

�
f0(t,x0)� f(x0)

�
dµ(x0)

= �
Z

⌦
M([⇢0(t)],x,x0)Df0(t,x0)`(f, f0(t))dµ(x

0)
(1)

where Df(x) denotes the gradient with respect to f(x) in the L2(⌦, µ)-norm and

M([⇢],x,x0) =
Z

D⇥R

�
c2ry'(x,y)ry'(x0,y) + '(x,y)'(x0,y)

�
⇢(y, c)dydc.

Prop 1 (LLN) Let fn(t) =
1

n

nX

i=1

Ci(t)'(·,Yi(t)). Then

lim
n!1

fn(t) = f0(t) almost surely

where f0(t) solves (1) and satisfies

lim
t!1

f0(t) = f a.e. in ⌦ if lim
t!1

Z

R
⇢0(·, c)dc > 0 a.e. in D

• Dynamical variant of Universal Representation Theorem which also indicates how to realize it in practice.

• Condition
R
R ⇢0(·, c)dc > 0 a.e.D generic under small perturbations.

Error scaling

Prop 2 (CLT) Let fn(t) =
1

n

nX

i=1

Ci(t)'(·,Yi(t)) with well-prepared initial conditions.

Then for any ⇠̄ < 1 and any an > 0 such that an/ logn ! 1 as n ! 1, we have

lim
n!1

n⇠̄ (fn(an)� f) = 0 almost surely if lim
t!1

Z

R
⇢0(·, c)dc > 0 a.e. in D

dY i = CirF (Yi)dt�
1

n

nX

j=1

CiCjrK(Y i,Yj)dt+ (�n)�1r logm(Yi, Ci)dt+
q

2(�n)�1dW i,

dCi = F (Yi)dt�
1

n

nX

j=1

CjK(Yi,Yj)dt+ (�n)�1@c logm(Yi, Ci)dt+
q

2(�n)�1dW 0
i

Prop 3 (CLT at finite temperature) Let fn(t) =
1

n

nX

i=1

Ci(t)'(·,Yi(t)). Then

lim
n!1

n (fn(t)� f0(t)) = f1(t) in law

where f0(t) ! f as t ! 1 and f1(t) is a Gaussian process such that: for any � 2 L2(⌦, µ),

lim
t!1

E
Z

⌦
�(x)f1(t,x)dµ(x) = ��1

Z

⌦
�(x)✏⇤(x)dµ(x)

lim
t!1

E
✓Z

⌦
�(x)

�
f1(t,x)� ��1✏⇤(x)

�
dµ(x)

◆2

= ��1
Z

⌦
|�(x)|2dµ(x)

Healing of errors by training:  

• ξ = ½ initially — CLT scaling of iid initial conditions; 
• ξ = 1 after optimization.

parameters drawn independently at t=0

Error scaling — Central Limit Theorem (CLT)
dY i = CirF (Yi)dt�

1

n

nX

j=1

CiCjrK(Y i,Yj)dt+ (�n)�1r logm(Yi, Ci)dt+
q

2(�n)�1dW i,

dCi = F (Yi)dt�
1

n

nX

j=1

CjK(Yi,Yj)dt+ (�n)�1@c logm(Yi, Ci)dt+
q

2(�n)�1dW 0
i

En[⇢] = 1
2

Z

⌦

✓
f(x)� 1

2

Z

D⇥R
c'(x,y)⇢0dydc

◆2

dµ(x) + (�n)�1
Z

D⇥R
⇢ log(⇢/m)dydc

Prop 3 (CLT at finite temperature) Let fn(t) =
1

n

nX

i=1

Ci(t)'(·,Yi(t)) with well-prepared initial con-

dition at t = T . Then
lim
n!1

lim
T!�1

n (fn(t)� f) = f1(t) in law

where f1(t) is a Gaussian process such that: for any � 2 L2(⌦, µ),

E
Z

⌦
�(x)f1(t,x)dµ(x) = ��1

Z

⌦
�(x)✏⇤(x)dµ(x)

E
✓Z

⌦
�(x)

�
f1(t,x)� ��1✏⇤(x)

�
dµ(x)

◆2

= ��1
Z

⌦
|�(x)|2dµ(x)

low-temperature regime

entropic correction

Discrete training set and stochastic gradient descent

• Loss function approximated by empirical loss

`P(f, fn) =
1

P

PX

p=1

|f(xp)� fn(xp)|2, {xp}Pp=1 = iid drawn from µ.

• Stochastic gradient descent (SGD):

Z(t+�t) = Z(t)�rzLP(Z(t))�t

where �t > 0 is some time-step and LP(z) = n`P(f, fn) is the empirical loss viewed as a function
of the parameters z = (c1,y1, . . . , cn,yn),

• If training set {xp}Pp=1 is redrawn from µ independently at every time step t, leads to an effective SDE :

dZ = �rzL(Z)dt+
p
✓dB

where L(z) = n`(f, fn(z)), and the quadaric variation of the noise is the covariance of the empirical
loss

hdB, dBi = E (rz(LP=1(z)� n`(f, fn(z))))
⌦2 dt

and
✓ = �t/P = time step / batch size

LLN and CLT for SGD

• if α < 1, training set error dominates
• if α = 1, training set error and discretization error are in the same scale;
• if α > 1, no gain (and convergence in time may be impeded)

• Setting ✓ = �t/P = an�2↵ with a > 0, ↵ > 0 (e.g. P = O(n2↵)), the empirical distribution
satisfies

@t⇢n = r ·
✓
�crF⇢n +

Z

D⇥R
cc0rK(y,y0)⇢0n⇢ndy

0dc0
◆

+ @c

✓
�F⇢n +

Z

D⇥R
c0K(y,y0)⇢0n⇢ndy

0dc0
◆

+ 1
2an

�2↵rr :
�
⇢nc

2A2([fn(t)� f],y,y)
�
+ 1

2an
�2↵@2

c (⇢nA0([fn(t)� f],y,y))

+ an�2↵@cr · (⇢ncA1([fn(t)� f],y,y))

+
p
an�↵ ⌘̇n(t,y, c)

Prop 7 (LLN & CLT for SGD) Let fn(t) =
1

n

nX

i=1

Ci(t)'(·,Yi(t)) with {Yi(t), Ci(t)}ni=1 solution to

limiting SDE with ✓ = an�2↵, a > 0 ↵ 2 (0,1). Then for any an > 0 such that an/ logn ! 1 as
n ! 1, we have

lim
n!1

n↵ (fn(an)� f0(an)) = 0 almost surely

where f0(t) ! f as t ! 1

additional terms higher order; 
noise term dominates those.

3-spin model on the high-dimensional sphere

• Spherical 3-spin model: f : Sd�1(
p
d) ! R given by

f(x) =
1

d

dX

p,q,r=1

ap,q,rxpxqxr, x 2 Sd�1
�p

d
�
⇢ Rd

where the coefficients {ap,q,r}dp,q,r=1 are independent Gaussian random variables with mean zero and

variance one.

• Complex function with a number of critical points that grows exponentially with the dimensionality d.

• Previous works drew a parallel between the glassy 3-spin function and generic loss functions.

• In contrast, we use the 3-spin function as a difficult target for approximation by neural networks, that is:

. we train networks to learn f with a particular realization of ap,q,r, and;

. we study the accuracy of that representation as a function of the number of particles n.

0 2 4 6
✓

�2

0

2

(d
=

10
)

0 2 4 6
✓

�5

0

5

0 2 4 6
✓

�5

0

5

0 2 4 6
✓

�5

0

5

(d
=

25
)

0 2 4 6
✓

�5
0
5

0 2 4 6
✓

�5

0

5

f(✓) n = 128 n = 256 n = 512 n = 1024

Confirming the scaling

102 103

10�2

10�1

⌦ |f
�

f n
|2↵

(d
=

10
) (a)

102 103

10�3

10�2

h(
f

�
f n

n
)
⇥

(f
)i

(b)

102 103

10�3

10�2

h(
f n

n
�

f
)
⇥

(�
f
)i

(c)

102 103

100

101

⌦ |f
�

f n
|2↵

(d
=

25
) (d)

102 103

10�2

10�1

100

h(
f

�
f n

n
)
⇥

(f
)i

(e)

102 103

10�2

10�1

100

h(
f n

n
�

f
)
⇥

(�
f
)i

(f)

Empirical loss vs SGD training time.  
At time 2E6, the batch size is increased to
initiate an additional quench.

Error scaling for single layer neural network with
sigmoid nonlinearities. Dashed line are ∝n-1

fn(x) =
1

n

nX

i=1

cih(ai · x+ bi), h(z) = 1/(1 + e�z).

• Neural networks are a potentially powerful tool for computational physics and applied
mathematics. They can massively reduce the cost of representing functions in high
dimensional spaces. 

• Viewing the parameters as interacting particles, we can demonstrate that the loss
landscape is asymptotically convex and stochastic gradient descent converges to an
energy minimizer — dynamical generalization of Universal Representation Theorems.

• The approximation error can be identified up to a constant,  
which shows that its scaling is universal.  
 

• This offers exciting possibilities in scientific computing  
(free energy methods, quantum variational energy calculations,  
PDE solving, etc.) that are only beginning to be explored.

 

Conclusions

Functional formulation in the limit of large n

• Assume that the set {(ci,yi)}ni=1 is such that for some signed density G on D we have

fn =
1

n

nX

i=1

ci'(·,yi) ! f̃ =
Z

D
'(·,y)G(y)dy as n ! 1

• Make the loss function quadratic in G: `(f, f̃) = Cf�
Z

D
F (y)G(y)dy+1

2

Z

D⇥D
K(y, z)G(y)G(z)dydz

Universal Representation Theorem (Barron, Cybenko, Park,...) If the kernel ' is discriminating, then
given any f 2 L2(⌦, µ) and ✏ > 0:

9f⇤ such that kf � f⇤kL2(⌦,µ)  ✏

and f⇤ can be represented as
Z

D
'(·,y)G⇤(y)dy = f⇤ a.e. in ⌦

where G⇤ solves

F ⇤(y) =
Z

D
K(y, z)G⇤(z)dz with F ⇤(y) =

Z

⌦
f⇤(x)'(x,y)dµ(x)

The function f⇤ can also be realized as f⇤ = lim
n!1

1

n

nX

i=1

cj'(·,yj) for some choice of {yi, ci}i2N.

• How to realize this theorem in practice via dynamic training of the parameters? What is the rate of
convergence in time toward this approximation? What is the error due to the finiteness of n?

Stationary points of McKean-Vlasov equation

• The stationary points of the McKean-Vlasov equation satify

�F (y) +
Z

D0

K(y,y0)d�0(y0) = 0 for ⌫0-almost all y 2 D0 = supp ⌫0

where

lim
t!1

Z

D⇥R
�(y)⇢0(t, ·, c)dydc =

Z

D
�(y)d⌫0(y) lim

t!1

Z

D⇥R
�(y)c⇢0(t, ·, c)dydc =

Z

D
�(y)d�0(y)

• D0 may be a (singular) subset of D; however, if '(·,y) is discriminating in D0, i.e. if
Z

⌦
g(x)'(x, ·)dµ(x) = 0 a.e. in D0) g = 0 a.e. in ⌦ (2)

then Z

D0

'(·,y)d�0(y) = f a.e. in ⌦. (3)

• Even if '(·,y) is not discriminating in D0, we can continously deform D0 into a set such that (2) and
hence (3) hold. As a result these equations always hold in the presence of noise (as in SGD).

Universal Representation Thm

