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The unreasonable effectiveness of machine learning

¢ (Deep) neural networks have led to extraordinary progress 000000600000
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in speech arwd image recognlt}o , language processing 232920229222
and translation, object detection, etc. 333323233333
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e Problems assumed to be intractable a decade ago b 606C6G66EELGL GO
are now routine. Are image / speech recognition 727%1777 1727177
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inherently low dimensional? 297999399894
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e Alternatively, can neural networks accurately represent f:10,117 = 1{0,1,...,9,NaN}

high-dimensional data / functions?

e Standard representations, like Galerkin truncations or finite element decompositions, are
linear and cannot be scaled to high dimensional problem — curse of dimensionality.

¢ |n contrast, neural networks are nonlinear in their adjusting parameters — their effective
dimensionality is much higher than the number of these parameters.



Basic roadmap of neural network training

Approximate a target function f : €2 — R defined on 2 C R? by a neural network representation, e.g.
a single-layer network with sigmoid nonlinearity

n

fa(@) =) ch(ai-z+b), h(z)=1/(1+e7)

i=1 non-linear approximation

Measure the approximation error via the loss function

(1 1) =1 [ 17@) - fu@) du(@) = $Eoualf = fol
Q
In practice, estimate £( f, f.) via the empirical loss function

P
Eo(f, 1) = 5 S 1F ) — fu(m)P {p}foy = iid orawn from .
p=1

Train the network via stochastic gradient descent (SGD) to minimize the loss over the parameters
non-convex optimization
z(t+ At) = z(t) — AtV Lp(z(t)), problem

where z denotes the network parameters (e.g. z = (a1, b1,c1,...,Qn,bn, cpn))
and Lp(z) = £p(f, f») the empirical loss viewed as function of z.



A test case: Spherical 3-spin model

d
X) = Ap g, rXpXgXr, xe S (Vd| cRr? .. . .
/) p,q,z,,zl PAT=paTT ( ) Number of critical points exponential in d

(Ben Arous, etc.)
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d = 25 with n = 1024,

x;(0) = Vdcos®),  x;0)=Vdsin®), x@)=0 Vk#i,j. Two grid points per dimension
= 225=133,554,432 grid points



Representation power of neural networks

Universal Approximation Theorems (Barron, Cybenko, Park, others)

e Say that neural network representations are dense in the space of
square-integrable target functions. There is a neural network approximation
arbitrarily close to any such function.

e The theorems do not answer: How do we construct the representation?
1. Can the network be trained (i.e. how should we get the parameters)?
2. Do the typical machine learning algorithms converge”?

3. How does the error scale with the network size?



Neural networks as particle systems

e Using fn(x) = %Zn:cigp(a:,yi), the loss function 4(f, f,) = %fQ f(x) — fn(w)|2du(w) can be

expanded as

1 1 & 1
e f, fn) = Cy — ;ZC@F(%) + Q—nQZ ciciK(y;,y;), Cr= 5/9 f(@)|? dp()

where

F(y) = /Q f@)o(@, yydu(z), Ky, z) = /Q oz, y)p(x, 2)du(z) = K(2,y).

e Minimization of the loss over {c;, y,}I-_ is a complex, presumably non-convex optimization problem.



Neural networks as particle systems

Using f(x) = %Zn:cigp(a:,yi), the loss function 4(f, f,) = %fQ f(x) — fn(w)|2du(az) can be

=1
expanded as

S eeKoy)  Cr=>3 [ 17@F du@)

i,J=1

1. 1
O(f, fn) = Cy — gZCzF(yz) + 52

interaction potential
where

F(y) = /Q F(@)p(x, y)du(z), Ky, z) = /Q oz, y) (@, 2)du(z) = K(z, y).
one-body interaction two-body interaction

Minimization of the loss over {c;, y,}- is a complex, presumably non-convex optimization problem.

Parameters = particles; loss function = interaction potential




Non-equilibrium dynamics of training / optimization

1 n
e Gradient descent (GD) dynamics over loss function:  f,(t,x) = — E Ci(t)p(x,Y;(t)) with
n
i=1

dY; 1.
= C,VF(Y;) — =) CiC;VK(Y,Y)),
dt ni=
dC; 1S to be generalized to SGD
= F(Y) - Y GE(Y,Y) toreg ’
j=1

e Empirical distribution:

DxR

pult,0) = 23 (e~ OO ~ Y0, (@) = [ ep(@,y)pnlt,y, )dyde

e Dynamics = McKean-Vlasov equation

Oipn, = V - (—cVFpn + ccd VK (y, y’)p;pndy’dc)

DXxR

+ O (—Fpn + K (y, y’)p;pndy’dc’>

DxR



Asymptotic convexity in the mean field limit

e McKean-Vlasov equation = gradient descent flow in Wasserstein metric (Otto, Villani, Serfaty, etc.)

e Mean-field limit: p,(t) — po(t) as n — oo, where pg(t) descents on quadratic energy:

o0& o0& Propagation of chaos
Otpo =V - (POV—> + O (Po&—) bad
00 00
E[po] = Cy — / cFpodydc + 2 c K(y,y") popody
DxR (DxR)?

2
— %/Q (f(a:) — %/DXcho(fB,y)PodydC> dp(x)

e Ruggedness of the microscopic landscape viewed by particles / parameters disappears at the level of
their empirical distribution.

Asymptotic convexity Similar results appeared recently in:

Mei, Montanari, & Nguyen arXiv:1804.06561;

Not the full story: particular shape of interaction potential Sirigano & Spiliopoulos arXiv:1805.01053

from network architecture matters to avoid stationary points



Law of Large Numbers (LLN)

o pn(t) — po(t) as n — oo, where fo(t,x) = [, »co(x,y)po(t,y,c)dydce satisfies gradient flow
over loss function:

O folt,z) = — /Q M([po(8)], 2, ) (fo(t,x') — F(x')) du(a’)

(1)
- _ /Q M ([po(D)], z,2") Dy, a0 f(f, fo(t))du(z’)

where D,y denotes the gradient with respect to f () in the L(£2, 1)-norm and

M([p], z, z') = / (Vo (z, y) Vo @', ) + o, y)e(a',y)) ply, ) dyde.

DxR

Prop 1 (LLN) Let f.(t) = = 3 Ci(£) (-, Yi(t)). Then
n 1=1
lim f.(t) = fo(t) almost surely
n—oo
where fo(t) solves (1) and satisfies

tlim fo(t) = f a.e in 2 if lim | po(-,c¢)de >0 a.e. in D
—00

t—00 R

e Dynamical variant of Universal Representation Theorem which also indicates how to realize it in practice.

e Condition [, po(:,c)dc > 0 a.e.D generic under small perturbations.




—rror scaling

parameters drawn independently at =0

Prop 2 (CLT) Let f,.(t) = 1 ZCi(t)sa(-, Y (t)) with well-prepared initial conditions.
n 1=1
Then for any £ < 1 and any a,, > O such that a,,/ logn — oo asn — oo, we have

im né (fu(an) — f) =0 almostsurely  if lim [ po(:,c)de >0 ae. in D

I
n—00 t—00 R

Healing of errors by training:

e £ ="Y>initially — CLT scaling of jid initial conditions;

e £ =1 after optimization.




—rror scaling — Central Limit Theorem (CLT)

dY; = C;VF(Y;)dt — EZCZC]-VK(YZ-, Y, )dt + (Bn) 'V log m(Y;, C;)dt + \/Q(Bn)_ldWi,
n

j=1

1 n
dC; = F(Yy)dt — => C;K(Y;,Y;)dt 4 (Bn) 0. log m(Y;, Cy)dt + \/z(ﬁn)—ldwg
n —1
’ low-temperature regime

2
el =3[ <f(w)—% / Rcw(w,ymdydc) du(z) + (Bn) " [ plog(p/m)dyde

DxR

entropic correction

Prop 3 (CLT at finite temperature) Let f,(t) = 1 ZCi(t)gp(-, Y;(t)) with well-prepared initial con-
n 1=1
dition att = T'. Then

lim |lim n(f,(t) — f) = f1(t) in law

n—oo T'——o0o

where f1(t) is a Gaussian process such that: for any x € L?(2, ),

E /Q (@) f1(t, @) dp(z) = B! /Q (@) () dp(x)
2
E ( [x@) (5it,2) ~ 57 @) du(az)) =57 [ M@




Discrete training set and stochastic gradient descent

e Loss function approximated by empirical loss

P
to(f, fa) = 5 1) — ful@p)P, {my}ey = i drawn from .
p=1

e Stochastic gradient descent (SGD):
Z(t+ At) = Z(t) — V. Lp(Z(t)) At
where At > 0 is some time-step and Lp(z) = nép(f, f») is the empirical loss viewed as a function
of the parameters z = (c1,¥Y1,---,¢n, Y,,),

e |[f training set {wp}]f:l is redrawn from p independently at every time step ¢, leads to an effective SDE:
dZ = —V,L(Z)dt + V0dB
where L(z) = nf(f, f»(2)), and the quadaric variation of the noise is the covariance of the empirical

loss

(dB,dB) = E (V(Lp=1(2) — nl(f, fn(2))))** dt
and
60 = At/P = time step / batch size



LLN and CLT for SGD

e Setting 8 = At/P = an?*witha > 0, a > 0 (e.g. P = O(n?®)), the empirical distribution
satisfies

Otpn =V - (—CVFpn + VK (y, y’)p;pndy’dc’> + O (—Fpn + ¢ K (y, y’)p%pndy’dc’)
DxR

+ 5an" VY ¢ (pnc® Ao([£a(t) = f1,y,9)) + 3an"26Z (pnAo([fn(t) — 1, 4,9))
+ an2%0.V - (pncA1([fn(t) — 1.y, 1)) additional terms higher order:;

@n—a (2, yD noise term dominates those.

DxR

Prop 7 (LLN & CLT for SGD) Let f,(t) = ZC’ (1), Yi(t)) with {Yi(t), Ci(t)}'_, solution to

limiting SDE with @ = an™°% a > 0 a € (O, 1) Then for any a,, > O such that a,,/ logn — oo as

n — 0o, we have
lim n® (fn(an) — fo(arn)) =0 almost surely
n—oo

where fo(t) — f ast — oo

e if a < 1, training set error dominates
o if a = 1, training set error and discretization error are in the same scale;

e if a > 1, no gain (and convergence in time may be impeded)



3-spin model on the high-dimensional sphere

Spherical 3-spin model: f : S41(v/d) — R given by
1 d
f(x) = p Z Ap,q,rLpTqTr T € Sd_l(\/a) C R

p,q,r=1

where the coefficients {ap,q,r}g =1 are independent Gaussian random variables with mean zero and
variance one.

Complex function with a number of critical points that grows exponentially with the dimensionality d.
Previous works drew a parallel between the glassy 3-spin function and generic loss functions.

In contrast, we use the 3-spin function as a difficult target for approximation by neural networks, that is:
> we train networks to learn f with a particular realization of a, 4, and,;

> we study the accuracy of that representation as a function of the number of particles n.



Confirming the scaling

fn(x) = %Zn:%h(az‘ -+ b;), h(z)=1/(14+e%). =

log éP(fn(t) - f)

1Og éP(fn(t) - f)
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Empirical loss vs SGD training time.
At time 2EG, the batch size is increased to
initiate an additional quench.
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Error scaling for single layer neural network with

sigmoid nonlinearities. Dashed line are «n-1




Conclusions

e Neural networks are a potentially powerful tool for computational physics and applied
mathematics. They can massively reduce the cost of representing functions in high
dimensional spaces.

¢ \iewing the parameters as interacting particles, we can demonstrate that the loss
landscape is asymptotically convex and stochastic gradient descent converges to an
energy minimizer — dynamical generalization of Universal Representation Theorems.

e The approximation error can be identified up to a constant, L dowises Shadok
which shows that its scaling is universal.

e [his offers exciting possibilities in scientific computing
(free energy methods, quantum variational energy calculations,
PDE solving, etc.) that are only beginning to be explored.
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"That's another thing we've learned from your Nation," said Mein Herr,
‘map-making. But we've carried it much further than you. What do you
consider the largest map that would be really useful?"

"About six inches to the mile."

"Only six inches!" exclaimed Mein Herr. "We very soon got to six
yards to the mile. Then we tried a hundred yards to the mile. And then
came the grandest idea of all! We actually made a map of the country,
on the scale of a mile to the mile!"

"Have you used it much?" | enquired.

"It has never been spread out, yet," said Mein Herr: "the farmers
objected: they said it would cover the whole country, and shut out
the sunlight! So we now use the country itself, as its own map, and |
assure you it does nearly as well.

Lewis Carroll, Sylvie and Bruno, 1889 - 1893.



Functional formulation in the limit of large n

e Assume that the set {(ci, y,) }I—, is such that for some signed density G on D we have

1< ~
fo= D oeelou) = F= [ oGy as oo

e Make the loss function quadraticin G:  £(f, f) = C— / F(y)Gy)dy+i [ K(y,2)G(y)G(2)dydz
D

DxD

Universal Representation Theorem (Barron, Cybenko, Park,...) If the kernel ¢ is discriminating, then
givenany f € L?(2, ) and e > O:

f" suchthat ||f — ||t < €

and f* can be represented as

/D o( )G (y)dy = f* ae. in Q

where G* solves

F*(y) = /D K(y,2)G*(z)dz  with  F*(y) = /Q () p(x, y)du(x)

. . 1o .
The function f* can also be realized as f* = lim — E cje(+,y,) for some choice of {y,, ci }ien.
n—oo M,
=1




Stationary points of McKean-Vlasov equation

e The stationary points of the McKean-Vlasov equation satify

—F(y)+ | K(y,y)dvw(y) =0  forvg-almostall y € Dg = supp vo

Dy
where

lim X(y)po(t,-,c)d’ydc=/DX(CU)dVO(y)

t—o0 DxR

m [ x(y)epolt, -, ) dyde = /D ()dro(y)

li
t—o00 DxR

e Dy may be a (singular) subset of D; however, if ©(-, y) is discriminating in Do, i.e. if

/ g(x)p(x, )du(x) =0 ae.in Dg = g=0 ae.in Q (2)
Q
then Universal Representation Thm
/ e(,y)dvw(y) =f aein Q. (3)
Dy

e Evenif ©(-,y) is not discriminating in Dg, we can continously deform Dg into a set such that (2) and
hence (3) hold. As a result these equations always hold in the presence of noise (as in SGD).



