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Part I

Neural networks and their mean field

formulation
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Neural networks and their mean field formulation Introduction and mean field formulation

Applications of Neural networks

Neural networks and machine learning have revolutionized fields such
as image, text and speech recognition.

Growing interest in applying neural network techniques to engineering,
robotics, medicine, finance, identify cancer and model protein folding.
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Neural networks and their mean field formulation Introduction and mean field formulation

Applications of Neural networks

Deep neural networks have the ability to accurately approximate high
dimensional functions.

In certain problems it has been shown that they can overcome the
curse of dimensionality1

New and exciting directions in applied mathematics!

Need for mathematical understanding and mathematically appropriate
framework.

1Han, Jentzen and E (2017), Sirignano and Spiliopoulos (2016,2017), Jentzen et all
(2018)
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Neural networks and their mean field formulation Introduction and mean field formulation

Immense success in applications but very limited mathematical
understanding.

P. Bartlett, D. Foster, and M. Telgarsky (margin bounds for neural
networks)

Mallat (understanding deep convolutional neural networks)

Telgarsky (benefits of depth in neural networks)

Hornik, Stinchcombe, White, Barron, Cybenko (universal
approximation results and rates)
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Neural networks and their mean field formulation Introduction and mean field formulation

Some examples of neural networks:2

Feed forward NN

(a) Recurrent NN (RNN) (b) Long-Short-Term Memory Unit (LSTM)

2Source: http:// www.asimovinstitute.org/neural-network-zoo/
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Neural networks and their mean field formulation Introduction and mean field formulation

Mean field formulation of neural networks

Consider the one layer network

gN
θ (x) =

1

N

N∑
i=1

c iσ(w i · x), (1)

where

neural network parameters θ = (c1, . . . , cN ,w1, . . . ,wN) ∈ R(1+d)N

which must be estimated from data.

σ(w i · x) is the i-th “hidden unit”, and the vector(
σ(w1 · x), . . . , σ(wN · x)

)
is called the “hidden layer”.

The number of units in the hidden layer is N.
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Neural networks and their mean field formulation Introduction and mean field formulation

Mean field formulation of neural networks
The objective function, or loss function, is

L(θ) = EY ,X [(Y − gN
θ (X ))2], (2)

where the data (Y ,X ) is assumed to have a joint distribution π(dx , dy).
The parameters θ = (c ,w) are estimated using stochastic gradient
descent:

c ik+1 = c ik +
α

N
(yk − gN

θk
(xk))σ(w i

k · xk),

w i ,j
k+1 = w i ,j

k +
α

N
(yk − gN

θk
(xk))c ikσ

′(w i
k · xk)x jk , j = 1, · · · , d , (3)

where α is the learning rate and (xk , yk) ∼ π(dx , dy).

Stochastic gradient descent minimizes (2) using a sequence of noisy
(but unbiased) gradient descent steps ∇θ[(yk − gN

θk
(xk))2].

Typically ∇θ[(y − gN
θ (x))2] is not a priori globally Lipschitz nor

globally bounded as a function of θ.
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Neural networks and their mean field formulation Introduction and mean field formulation

Mean field formulation of neural networks

Question: Can we guarantee convergence of the algorithm? How
does the distribution of the trained parameters evolve over time?

Define the empirical measure

νNk (dc , dw) =
1

N

N∑
i=1

δc ik ,w
i
k
(dc, dw). (4)

The neural network’s output can be re-written in terms of the empirical
measure:

gN
θk

(x) =
〈
cσ(w · x), νNk

〉
. (5)

〈f , h〉 denotes the inner product of f and h. The scaled empirical measure
is

µNt = νNbNtc. (6)
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Neural networks and their mean field formulation Main results

Assumptions

At any time t, the scaled empirical measure µNt is a random element of
the Skorokhod space DE ([0,T ]) = D([0,T ];E ) with with E =M(R1+d).
We study the convergence in distribution of µNt in DE ([0,T ]).

The activation function σ ∈ C∞b (R), i.e. σ is continuously
differentiable and bounded.

The data (X ,Y ) ∈ X × Y is compactly supported.

The sequence of data samples (xk , yk) is i.i.d.

The random initialization is such that (c i0,w
i
0) is i.i.d. generated from

a distribution that has compact support.
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Neural networks and their mean field formulation Main results

Convergence result

Let numbers of neurons and number of iterations increase!

Theorem 1–Law of large numbers.

The scaled empirical measure µNt converges in distribution to µ̄t in
DE ([0,T ]) as N → ∞. For every f ∈ C 2

b (R1+d), µ̄ satisfies the measure
evolution equation

〈f , µ̄t〉 = 〈f , µ̄0〉+

∫ t

0

(∫
X×Y

α
(
y −

〈
c ′σ(w ′ · x), µ̄s

〉 )
〈∇(cσ(w · x)) · ∇f , µ̄s〉π(dx , dy)

)
ds

(7)
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Neural networks and their mean field formulation Main results

Convergence result

Corollary 1.

Suppose that µ̄0 admits a density p0(c ,w) and there exists a solution to
the nonlinear partial differential equation

∂p(t, c,w)

∂t
= −α

∫
X×Y

((
y −

〈
c ′σ(w ′ · x), p(t, c ′,w ′)

〉 ) ∂
∂c

[
σ(w · x)p(t, c,w)

])
π(dx , dy)

− α
∫
X×Y

((
y −

〈
c ′σ(w ′ · x), p(t, c ′,w ′)

〉 )
x · ∇w

[
cσ′(w · x)p(t, c,w)

])
π(dx , dy),

p(0, c,w) = p0(c,w). (8)

Then, we have that the solution to the measure evolution equation (7) is
such that

µ̄t(dc , dw) = p(t, c ,w)dcdw .
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Neural networks and their mean field formulation Main results

Convergence result

Theorem 2-Propagation of chaos.

Consider T < ∞ and let t ∈ (0,T ]. Define the probability measure ρNt ∈
M(R(1+d)N) where

ρNt (dx1, . . . , dxN) = P[(c1
bNtc,w

1
bNtc) ∈ dx1, . . . , (cNbNtc,w

N
bNtc) ∈ dxN ].

Then, the sequence of probability measures ρN· is µ̄·-chaotic. That is, for
k ∈ N

lim
N→∞

〈
f1(x1)× · · · × fk (xk ), ρN· (dx1, . . . , dxN)

〉
=

k∏
i=1

〈fi , µ̄·〉 , ∀f1, . . . , fk ∈ C2
b (R1+d ).
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Neural networks and their mean field formulation Main results

Convergence result-fluctuations
Define the fluctuation process

ηNt =
√
N(µNt − µ̄t). (9)

Theorem 3-Fluctuations.

let J ≥ 3
⌈
d+1

2

⌉
+7. Let T > 0 be given. The sequence {ηNt , t ∈ [0,T ]}N∈N

is relatively compact in DW−J,2([0,T ]) and {ηNt , t ∈ [0,T ]}N∈N converges
in distribution in DW−J,2([0,T ]) to the process {η̄t , t ∈ [0,T ]} where

〈f , η̄t〉 = 〈f , η̄0〉+

∫ t

0

∫
X×Y

α
(
y − 〈cσ(w · x), µ̄s〉

)
〈∇(cσ(w · x))∇f , η̄s〉π(dx , dy)ds

−
∫ t

0

∫
X×Y

α 〈cσ(w · x), η̄s〉 〈∇(cσ(w · x))∇f , µ̄s〉π(dx , dy)ds +
〈
f , M̄t

〉
, (10)

for every f ∈ W J,2
0 (Ω). M̄t is a mean-zero distribution valued Gaussian

process. Finally, the stochastic evolution equation (10) has a unique solution
in W−J,2.
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Neural networks and their mean field formulation Main results

Variance-covariance structure

Define the operator

Rx,y,µ[h] = (y − 〈cσ(w · x), µ〉) 〈∇(cσ(w · x)) · ∇h, µ〉 .

Then, for every f , g ∈W J,2
0 (Θ),

(
√
N
〈
f ,MN

t

〉
,
√
N
〈
g ,MN

t

〉
) ∈ DR2([0,T ]) converges to a distribution

valued mean-zero Gaussian martingale with covariance function

Cov

[ 〈
f , M̄t

〉
,
〈
g , M̄t

〉 ]
= α2

∫ t

0

[ ∫
X×Y

(
Rx,y,µ̄s [f ]−

∫
X×Y

Rx,y,µ̄s [f ]π(dx , dy)

)
×

×
(
Rx,y,µ̄s [g ]−

∫
X×Y

Rx,y,µ̄s [g ]π(dx , dy)

)
π(dx , dy)

]
ds.
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Neural networks and their mean field formulation Main results

Insights from convergence results

As N →∞, the neural network converges (in probability) to a
deterministic model. This is despite the fact that the neural network
is randomly initialized and it is trained on a random sequence of data
samples via stochastic gradient descent.

The learning rate α was assumed to be constant and to not decay
with time. For finite N, the α must decay with the number of
iterations in order for stochastic gradient descent to converge.
Despite this, the noise disappears and the neural network’s parameter
distribution converges to a deterministic evolution equation. This is
due to the normalization of 1

N in the hidden layer replacing the role of
the learning rate decay.
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Neural networks and their mean field formulation Main results

Insights from convergence results

Under the setup of (1), (2) and (3), the limiting equation
characterizing the evolution of the distribution of parameters is a
first-order PDE. Therefore, the asymptotic dynamics are of a
“transport” instead of a “diffusive” nature.

The propagation of chaos result (9) indicates that, as N →∞, the
dynamics of the weights (c ik ,w

i
k) will become independent of the

dynamics of the weights (c jk ,w
j
k) for any i 6= j . Note that the

dynamics (c ik ,w
i
k) are still random due to the random initialization.

However, the dynamics of the i-th set of weights will be uncorrelated
with the dynamics of the j-th set of weights in the limit as N →∞.
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Neural networks and their mean field formulation Main results

Insights from convergence results

The fluctuations theorem indicates that for large N the empirical
distribution of the neural network’s parameters behaves as

µN ≈ µ̄+
1√
N
η̄, (11)

where η̄ has a Gaussian distribution.

The relation between the number of particles (“hidden units” in the
language of neural networks) and the number of stochastic gradient
steps should be of the same order to have convergence and
statistically good behavior.
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Neural networks and their mean field formulation Main results

Related Literature

Extensive research on stochastic gradient descent in discrete time.

Relatively little mathematical work of convergence properties of
neural networks and machine learning algorithms.

Mei and Montanari and Nguyen (2018), Rotskoff and Vanden-Eijnden
(2018), Wang and Mattingly and Lu (2017)
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Part II

Real data analysis
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Real data analysis

Real data analysis

MNIST dataset, which is a standard image dataset in machine
learning. The dataset includes 60, 000 images of handwritten numbers
{0, 1, 2, . . . , 9}.
The neural network is trained to identify the handwritten numbers
using only the image pixels as an input (i.e., it learns to recognize
images as a human would).

In the MNIST dataset, each image has 784 pixels. A pixel takes
values in {0, 1, . . . , 255}. Neural networks can achieve 98-99%
out-of-sample accuracy on the MNIST dataset.
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Real data analysis

Real data analysis

Figure 1: Examples of images from the MNIST dataset. Each image is described
by a 28× 28 array of pixels, which can be re-arranged into a vector x ∈ R784.
The vector x containing the pixel values is the input to the neural network, which
attempts to correctly predict the handwritten number in the image.
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Real data analysis

Real data analysis

The neural network has a single hidden layer followed by a softmax
function. Figure 2 reports the distribution of the parameters
connecting the hidden layer to the softmax function.

The distributions are presented as histograms.

The neural network is trained on the MNIST dataset.

Figure 2 shows that the distribution of parameters converges to a
fixed distribution as N →∞.
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Real data analysis

Real data analysis

Figure 2: Clockwise: N = 1, 000, N = 10, 000, N = 100, 000, and N = 250, 000
hidden units.
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Part III

Overview of the proofs
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Overview of the proofs

In general...

Tightness of the involved measure valued processes

Identification of the limit

Uniqueness to the solution of the limiting equation
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Overview of the proofs Proof for law of large numbers

Relative compactness (tightness)
Lemma (compact containment).

For each η > 0 and t ≥ 0, there is a compact subset K of E such that

sup
N∈N,0≤t≤T

P[µNt /∈ K] < η.

In fact, there is a uniform constant C (which does not depend on k nor N,
but can depend on T ) such that for all k < TN

|c ik |+ ‖ w i
k ‖≤ C .

This uniform bound actually implies the stronger statement of compact
support. Define

K =
{
ω ∈ M(R1+d) : ω

(
[−C ,C ]1+d

)
= 1
}
.

Then K ⊂⊂ M(R1+d), and P-a.s. µNt ∈ K for all N ∈ N and t ∈ [0,T ].
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Overview of the proofs Proof for law of large numbers

Relative compactness (tightness)

Lemma (regularity).

Define the function q(z1, z2) = min{|z1 − z2|, 1} where z1, z2 ∈ R. For
any p ∈ (0, 1), there is a constant C < ∞ such that for 0 ≤ u ≤ δ,
0 ≤ v ≤ δ ∧ t, t ∈ [0,T ],

E
[
q(
〈
f , µNt+u

〉
,
〈
f , µNt

〉
)q(
〈
f , µNt

〉
,
〈
f , µNt−v

〉
)
∣∣FN

t

]
≤ Cδp + ON(1).

These two lemmas then imply relative compactness of {µN}N∈N in
DE ([0,T ]) (see for example Theorem 8.6 of Chapter 3 of Ethier and
Kurtz).

Konstantinos Spiliopoulos ( Department of Mathematics & Statistics, Boston University Partially supported by career award NSF-DMS 1550918 Joint work with Justin Sirignano (University of Illinois at Urbana-Champaign) )Mean Field Analysis of Neural Networks 29 / 45



Overview of the proofs Proof for law of large numbers

Limit identification

Recall that

c ik+1 = c ik +
α

N
(yk − gN

θk
(xk))σ(w i

k · xk),

w i,j
k+1 = w i,j

k +
α

N
(yk − gN

θk
(xk))c ikσ

′(w i
k · xk)x jk , j = 1, · · · , d ,

where α is the learning rate and (xk , yk) ∼ π(dx , dy).
Using Taylor expansion and the equations evolving c ik and w i

k we can write

〈
f , νNk+1

〉
−
〈
f , νNk

〉
=

1

N2

N∑
i=1

∂c f (c ik ,w
i
k)α(yk − gN

θk
(xk))σ(w i

k · xk)

+
1

N2

N∑
i=1

α(yk − gN
θk

(xk))c ikσ
′(w i

k · xk)∇w f (c ik ,w
i
k) · xk + O

(
N−2

)
.
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Overview of the proofs Proof for law of large numbers

Limit identification

Decomposing into drift and martingale components we then obtain for the
scaled empirical measure satisfies, as N grows,

〈
f , µNt

〉
−
〈
f , µN0

〉
=

∫ t

0

(∫
X×Y

α
(
y −

〈
cσ(w · x), µNs

〉 )〈
σ(w · x)∇c f , µ

N
s

〉
π(dx , dy)

)
ds

+

∫ t

0

(∫
X×Y

α
(
y −

〈
cσ(w · x), µNs

〉 )〈
cσ′(w · x)x · ∇w f , µ

N
s

〉
π(dx , dy)

)
ds

+ M1,N(t) + M2,N(t) + O(N−1).

such that

lim
N→∞

E
[(

M1,N(t)

)2]
= lim

N→∞
E
[(

M2,N(t)

)2]
= 0.
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Overview of the proofs Proof for law of large numbers

Uniqueness

Set up a Picard type of iteration and prove that it has a unique fixed point
through a contraction mapping. Notice that

〈f , µ̄t〉 = 〈f , µ̄0〉+

∫ t

0
〈G (z ,Q(µ̄s , ·)) · ∇f , µ̄s〉 ds, (12)

where for z = (c ,w1, · · · ,wd) ∈ R1+d , Q(µ̄, x) = 〈cσ(w · x), µ̄〉 we have

G (z ,Q(µ̄, ·)) = (G1(z ,Q(µ̄, ·)),G2(z ,Q(µ̄, ·))) ∈ R1+d

with

G1(z ,Q(µ̄, ·)) =

∫
X×Y

α(y − Q(µ̄, x))σ(w · x)π(dx , dy) ∈ R

G2(z ,Q(µ̄, ·)) =

∫
X×Y

α(y − Q(µ̄, x))cσ′(w · x)xπ(dx , dy) ∈ Rd .
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Overview of the proofs Proof for law of large numbers

Uniqueness

Let F : D([0,T ];R) 7→ D([0,T ];M(R1+d)) be such that for a path
(Rt)t∈[0,T ] ∈ D([0,T ];R), we have that F (R·) = Law(Y·) where Y· is
given by

Yt = Y0 +

∫ t

0
G (Ys ,Rs)ds, Y0 ∼ µ̄(0, c ,w).

Let us also define the map L : D([0,T ];M(R1+d)) 7→ D([0,T ];R)
taking a measure valued process µt and mapping it to
Q(µt , x) = L(µ) where

Q(µt , x) = 〈cσ(w · x), µt〉 .

Then, we consider the mapping
H : D([0,T ];M(R1+d)) 7→ D([0,T ];M(R1+d)) defined via the
composition of the mappings F and L, we set H = F ◦ L.
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Overview of the proofs Proof for law of large numbers

Uniqueness

Let us define for notational convenience CT = C ([0,T ],R1+d) and let MT

be the set of probability measures on CT . For m,m′ ∈ MT and p ≥ 1
define the metric

DT ,p(m,m′) = inf

{(∫
CT×CT

sup
s≤T
‖xs − ys‖pp ∧ 1dν(x , y)

)1/p

, ν ∈ P(m,m′)

}
,

Lemma

Let m1,m2 ∈ MT and T <∞. Then, there exists a constant C <∞ that
may depend on T such that

Dt,1(H(m1),H(m2)) ≤ C

∫ t

0
Du,1(m1,m2)du,

for any 0 < t < T .
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Overview of the proofs Proof for law of large numbers

Uniqueness

The previous lemma immediately proves there is a contraction on the
interval [0,T0].

Dt,1(H(m1),H(m2)) ≤ C

∫ t

0
Du,1(m1,m2)du

≤ C

∫ t

0
Dt,1(m1,m2)du

≤ CtDt,1(m1,m2).

Then, choose T0 such that CT0 < 1. In fact we have:

Lemma

Let T <∞. The mapping HT = (F ◦ F )T has a unique fixed point.
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Overview of the proofs Proof for fluctuations

Main ideas for the proof of fluctuations...3

The analysis of the limiting behavior of the fluctuation process involves
issues that do not occur in the treatment of the LLN. It is considerably
more complicated.

Even though the fluctuation process ηNt =
√
N(µNt − µ̄t) is a

signed-measure-valued process, its limit process is distribution-valued
in an appropriate space.

In general, the space of signed measures endowed with the weak
topology is not metrizable.

The difficulty is then to identify a rich enough space, where tightness
and uniqueness can be proven.

It turns out that we have to consider the convergence in Sobolev
spaces W J

o (Ω) with “enough” weak derivatives J ≥ 3
⌈
d+1

2

⌉
+ 7.

3Kurtz and Xiong (2004), Fernandez and Meleard (1997), S. and Sirignano and
Giesecke (2014)
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Overview of the proofs Proof for fluctuations

Representation for fluctuation process

Let ηNt =
√
N(µNt − µ̄t). We can write

〈
f , ηNt

〉
−
〈
f , ηN0

〉
=

∫ t

0

(∫
X×Y

α
(
y − 〈cσ(w · x), µ̄s〉

) 〈
∇(cσ(w · x)) · ∇f , ηNs

〉
π(dx , dy)

)
ds

−
∫ t

0

(∫
X×Y

α
〈
cσ(w · x), ηNs

〉
〈∇(cσ(w · x)) · ∇f , µ̄s〉π(dx , dy)

)
ds

+
√
N
〈
f ,MN

t

〉
+ RN

t

where the remainder term

lim
N→∞

E

[
sup

t∈[0,T ]
|RN

t |

]
= 0.
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Overview of the proofs Proof for fluctuations

Relative compactness for fluctuation process

Lemma

Let J2 = 3
⌈
D
2

⌉
+ 6, T <∞ and r , t ∈ [0,T ] with (t − r) < δ. Then there

are unimportant constants C0,C1,C2 <∞ such that

sup
N∈N

E sup
t∈[0,T ]

∥∥∥ηNt ∥∥∥2

−J2

< C0.

E
[ ∥∥∥ηNt − ηNr ∥∥∥2

−J2

]
≤ C1δ + C2

1

N
.

Due to the fact that the set
{
φ ∈W−(J2+1),2 : ‖φ‖−J2

≤ Cε
}

is a compact

subset of W−(J2+1),2, we obtain the process {ηN· }N∈N is relatively
compact in W−J,2(Θ) with J ≥ J2 + 1 = 3

⌈
1+d

2

⌉
+ 7.
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Overview of the proofs Proof for fluctuations

Uniqueness and conclusion of the proof

Similarly {
√
NMN

· }N∈N is relatively compact in W−J,2(Θ) with
J ≥ 2

⌈
1+d

2

⌉
+ 5.

The limit of
√
NMN

· is a distribution valued Gaussian martingale with
the appropriate covariance structure.

The solution η̄ to the limiting stochastic evolution equation is unique
in W−J,2 (assume two solutions, subtract them and using a-priori
bounds show that the W−J,2 norm of their difference is zero).
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Part IV

Summary
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Summary

Summary

Mean field formulation of single layer neural networks.

Rigorously proved convergence of the empirical measures of the
parameters to the solution to a specific PDE.

Rigorously proved convergence of the fluctuations to the empirical
measures of the parameters to the solution to a SPDE.

This is just the beginning of the story!

Mean field formulation appears to be the way to go for quantitative
results!

Study of the limiting PDEs and SPDEs; properties etc.

Other related limiting results (e.g. effect of initialization)
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More Questions?
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