Sampling from Rough Energy Landscapes

Gideon Simpson

Department of Mathematics Drexel University

September 18, 2018

Joint with P. Plechac (U. Delaware)

- ∢ ศ⊒ ▶

Motivation & Background

- Motivating Example
- Sampling Strategies
- Tuning Algorithms
- An Explicit Computation
- Managing Roughness
 - Two Scale Potentials
 - Dissection of the Potential
 - Dissection on the Fly
- Oumerical Experiments
 - Rough Harmonic Potential
 - Rough Doublewell Potential
 - Local Entropy Smoothing
 - Summary & Acknowledgements

Rough Energy Landscapes

- (b) is potential from (a) $+A\cos(x/\epsilon)$
- Expect (b) to be more difficult to sample than (a) Quantification?
- Can we modify algorithms to improve sampling on (b)?
- Inspired by superbasin/low energy barrier problems

Considerations

- CAVEAT: This is work in progress
- Focus on unbiased samplers (*i.e.*, include MH step)
- Finite d vs. $d \to \infty$
- Stationary vs. nonstationary data
- May or may not have explicit scale separation

$$V(x) = V_0(x) + V_1(x, x/\epsilon)$$
 (1)

Metropolis Adjusted Langevin (MALA) Example

•
$$V(x) = \frac{1}{2}x^2 + \frac{1}{8}\cos(x/\epsilon)$$

• Sample $e^{-\beta V}$ at $\beta = 5$ by MALA,

$$X_{n+1}^{p} = x_{n} - \nabla V(X_{n})\Delta t + \sqrt{2\beta^{-1}\Delta t}\xi_{n+1}$$
(2)

$$X_{n+1} = \begin{cases} X_{n+1}^{p} & \text{with probability } 1 \wedge e^{R(X_{n}, X_{n+1}^{p})} \\ X_{n} & \text{with probability } 1 - 1 \wedge e^{R(X_{n}, X_{n+1}^{p})} \\ R(x, y) = \log \frac{e^{-\beta V(y)}q(y \to x)}{e^{-\beta V(x)}q(x \to y)}$$
(4)

• Use $\Delta t = 0.1$

3

(日) (同) (三) (三)

MALA Example, Continued

• Increasing stagnation (poorer sampling) as $\epsilon
ightarrow 0$

- 一司

Sample of Sampling Methods

RWM
$$X_{n+1}^{p} = X_n + \sqrt{2\Delta t}\xi_{n+1}$$
 - no information about V in
proposal (cheap)
MALA $X_{n+1}^{p} = X_n - \nabla V(X_n) + \sqrt{2\Delta t}\xi_{n+1}$
Precond. MALA $X_{n+1}^{p} = X_n - P\nabla V(X_n) + \sqrt{2\Delta tP}\xi_{n+1}$ - need a
preconditioning matrix P
Metropolized Langevin $(X_{n+1}^{p}, P_{n+1}^{p})$ from second order Langevin –
marginalize out momentum
HMC $(X_{n+1}^{p}, P_{n+1}^{p})$ from Hamiltonian flow – velocities are
Gaussian, marginalize out momentum
Others Riemannian Manifold methods (MALA, Langevin),
Irreversible & biased methods, ...
Focus on methods with accept/reject step, $1 \wedge e^{R(x,x^{p})}$,

$$R(x,y) = V(x) - V(y) + \log \frac{q(y \to x)}{q(x \to y)}$$
(5)

Choices of Parameters

RWM/MALA Need to choose step size Δt

Precond. MALA Need to choose Δt and preconditioning matrix

Langevin For a given splitting (there are many) need to choose Δt , damping, mass

HMC Δt , time of Hamiltonian trajectory, mass

Poor choice of parameter (Δt) ?

Optimal Tuning

- Maximizing acceptance rate is the wrong objective
- Sending $\Delta t
 ightarrow$ 0 always sends the mean acceptance rate to 1 For RWM

$$1 - a(x, y) = 1 - 1 \wedge e^R \leq R(x, y)^-$$

Mean Rejection Rate $= \mathbb{E}[1 - a(x, y)] \le \sqrt{\mathbb{E}[|R(x, y)|^2]} \lesssim \sqrt{\Delta t}$

- Try to maximize "mixing"
- Proxy for mixing: One Step Mean Square Displacement (per d.o.f.):

$$MSD = \mathbb{E}[|X_1^{(1)} - X_0^{(1)}|^2]$$
(6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 3

Results on Tuning in Equilibirum

High Dimensional Product Measures – Roberts, Rosenthal '97, Roberts, Gelman, Gilks '98, Beskos, Roberts, Stuart '09, Beskos et al. '13, Bou-Rabee, Sanz-Serna,'18, ...

• Product measure ansatz:

$$V_d(x) = \sum_{i=1}^d v(x_i), \quad v : \mathbb{R} \to \mathbb{R}, \quad e^{-V_d(x)} = \prod_{i=1}^d e^{-v(x_i)}$$
 (7)

- d.o.f.'s only interact during accept/reject step
- As $d \to \infty$, ensemble average acceptance and MSD can be predicted:

$$A(\ell) = 2\Phi\left(-\frac{\ell^p}{2}\sqrt{K}\right), \quad \mathsf{MSD} = \underbrace{\ell^2 d^{-q}}_{\Delta t} A(\ell) = h(\ell) d^{-q} \qquad (8)$$

with K is a functional of v (independent of d)

- Maximize h over ℓ (independent of d)
- In some cases $h(\ell)$ appears in a $d \to \infty$ limiting diffusion in **one** d.o.f.

$$dy_t = -\frac{1}{2}h(\ell)v'(y_t) + \sqrt{h(\ell)}dw_t \tag{9}$$

10 / 34

Results on Tuning, Continued

- Optimal ℓ for RWM corresponds to A=.234 and $\Delta t \propto d^{-1}$
- Optimal ℓ for MALA corresponds to A=.574 and $\Delta t \propto d^{-1/3}$
- Optimal ℓ for HMC (with Verlet) corresponds to A=.651 and $\Delta t \propto d^{-1/4}$

Known Results on Tuning, Continued

• For RWM, p = 1, q = -1 and $K = \mathbb{E}[|v'|^2]$ – Optimal choice

$$\Delta t_{\star} = rac{\ell_{\star}^2}{d}, \quad \ell_{\star} \sim rac{1}{\sqrt{K}}$$
 (10)

- Tends to zero as $d o \infty$ or v becomes rough
- For $v = v(x, x/\epsilon)$, $K \sim \epsilon^{-2}$ so $\Delta t_{\star} \sim \epsilon^{2}$:

$$\mathsf{MSD} = \ell_{\star}^2 d^{-1} A(\ell_{\star}) = \mathsf{O}(\epsilon^2)$$

• An optimal choice exists, but performance degrades with roughness

Out of Equilibrium and Non-Product Results

Jourdain, Lelièvre, Miasojedow '14,'15, Beskos, Roberts, Stuart, '09, Beskos, Roberts, Thiery, Pillai, '15

- RWM with nonstationary data similar to stationary limit. MALA more complicated, with no single optimal choice.
- Perturbations of the product measure case

$$d\mu \propto e^{-\Phi(x)} d\mu_0, \quad \mu_0$$
 a product measure (11)

• For multiscale $V = V_0(x) + V_1(x, x/\epsilon)$ in finite *d* (ridged densities) limiting process is

$$dX_t = \mathcal{D}_{V,\sigma^2}(X_t)dt + \sigma(X_t)dW_t \tag{12}$$

 $\sigma^2(x) = \ell^2 a_0(x, \ell)$, Conditional Acceptance Rate (13)

イロト イポト イヨト イヨト 二日

Harmonic Potential in 1D

Mathematica

$$V(x) = \frac{k}{2}x^2, \quad \delta = k\Delta t \tag{14}$$

For RWM

$$A(\delta) = \frac{2}{\pi} \arctan \sqrt{\frac{2}{\delta}}$$
(15)

$$F(\delta) = 2\delta A(\delta) - \frac{4\sqrt{2}\delta^{3/2}}{\pi(2+\delta)}$$
(16)

$$A(\delta) = \frac{2}{\pi} \arctan \sqrt{\frac{8}{\delta^3}}$$
(17)

$$F(\delta) = \delta(2+\delta)A(\delta) - \frac{4\sqrt{2}\delta^{5/2}}{\pi(4+\delta(-2+\delta))}$$
(18)

• MSD =
$$k^{-1}F$$

Simpson (Drexel)

3

イロト イポト イヨト イヨト

Harmonic Potential in 1D, Continued

RWM

MALA

Simpson (Drexel)

Rough Landscapes-CIRM 2018

September 18, 2018 15 / 34

3

Harmonic Potential in 1D, Continued

RWM

MALA

3

- 4 週 1 - 4 三 1 - 4 三 1

Harmonic Potential in 1D, Continued

- Optimal RWM $\Delta t > 2 \times$ Optimal MALA Δt (inside EM stability region)
- Optimal MALA MSD $> 2 \times$ Optimal RWM MSD
- Optimal acceptance rates deviate from $d
 ightarrow \infty$ limit
- RWM and MALA both have MSD ightarrow 0 as $k=\epsilon^{-1}
 ightarrow\infty$

2 Managing Roughness

- Two Scale Potentials
- Dissection of the Potential
- Dissection on the Fly

3 Numerical Experiments

Homogenization with a Two Scale Potential

Duncan, Kalliadasis, Pavliotis, Pradas '16, Ben Arous, Owhadi '03, Owhadi '03

Assume

$$V(x) = V(x, x, \epsilon) = V_0(x) + V_1(x, x/\epsilon)$$
 (19)

where

- V_0 is large scale, trapping contribution
- V_1 is bounded, rough contribution
- In the case that V₁(x, y) is periodic in y in 1D, homogenization of overdamped Langevin leads to

$$dX_t = -\mathcal{M}(X_t)
abla \log Z(X_t) dt +
abla \cdot \mathcal{M}(X_t) dt + \sqrt{2\mathcal{M}(X_t)} dW_t$$
 (20)

- Does not address sampling
- Suggests effective dynamics position dependent proposals on a smoothed landscape

(日) (周) (三) (三)

Naive Dissection in MC Methods

$$R(x,y) = V(x) - V(y) + \log \frac{q(y \to x)}{q(x \to y)}$$

= $\underbrace{(V(x) - U(x))}_{\Delta(x)} - (V(y) - U(y))$
+ $\underbrace{\log \left(\frac{e^{-U(y)}q(y \to x)}{e^{-U(x)}q(x \to y)}\right)}_{\tilde{R}(x,y)}$ (21)

- Pick *U* and *q* such that:
 - U is captures the smooth, large scale features, and V U is the bounded, rough contribution
 - 2 q is a "good" proposal for e^{-U}
- Smooth proposals on U and corrected by Metropolis for V

Simpson (Drexel)

Rough Landscapes-CIRM 2018

September 18, 2018 19 / 34

Naive Dissection in MC Methods

Lower Bound on Performance

• Lower bound on R

$$R(x,y) = \Delta(x) - \Delta(y) + \tilde{R}(x,y)$$

$$\geq -\sup_{x'} \Delta(x') + \inf_{y'} \Delta(y') + \tilde{R}(x,y) = -\operatorname{osc} \Delta + \tilde{R}(x,y)$$
(22)

Lower bounds on acceptance and MSD

$$1 \wedge e^{R(x,y)} \ge e^{-\operatorname{osc} Delta} 1 \wedge e^{\tilde{R}(x,y)}$$
(23)

Image: Image:

$$MSD = \mathbb{E}[(X_1 - X_0)^2] = \mathbb{E}[(y - x)^2 1 \wedge e^{\mathcal{R}(x,y)}]$$

$$\geq e^{-\operatorname{osc} \Delta} \mathbb{E}[(y - x)^2 1 \wedge e^{\tilde{\mathcal{R}}(x,y)}]$$
(24)

• In high d product case, $\Delta = d\delta$ – ineffective lower bound

3

• • = • • = •

Local Entropy Smoothing

Chaudhari et al., '16, Chaudhari et al. '17

- Unlikely to have $V(x) = V_0(x) + V_1(x,x/\epsilon)$
- Inspired by works in nonconvex, nonlinear optimization (machine learning)
- Use Local Entropy approximation of V

$$V_{\gamma}(x) = -\beta^{-1} \log N(0,\gamma) * e^{-\beta V(x)}$$
(25)

•
$$V = V_{\gamma} + (V - V_{\gamma})$$

- Need to estimate a fast scale $\sqrt{\gamma}$
- Need an efficient method for estimating V_{γ} (\square) (

Simpson (Drexel)

Rough Landscapes-CIRM 2018

э

Proposed Sampling Strategy

Thermostatted version of Chaudhari et al., '16, Chaudhari et al. '17

• Run short minibatch of

$$dY_t^{(k)} = -\nabla V(Y_t^{(k)})dt - \gamma^{-1}(Y_t^{(k)} - x)dt + \sqrt{2}dW_t^{(k)}, \quad (26)$$

and use these to estimate

$$\nabla V_{\gamma}(x) = \gamma^{-1} \int (x - y) \rho(y; x) dy$$

= $\gamma^{-1} \int (x - y) Z(x, \gamma)^{-1} e^{-V(y) - \frac{1}{2\gamma}|y - x|^2} dy$ (27)
 $\approx \frac{1}{M} \sum_{k} \gamma^{-1} (x - Y_{\tau}^{(k)})$

Then Metropolize against V

Simpson (Drexel)

2 Managing Roughness

3

- Numerical Experiments
 - Rough Harmonic Potential
 - Rough Doublewell Potential
 - Local Entropy Smoothing

Summary & Acknowledgements

Problem Setup

• Additive oscillatory term:

$$V(x) = \frac{1}{2}x^2 + \frac{1}{8}\cos(kx)$$
(28)

Product measures

- Use $V_0 = \frac{1}{2}x^2$ for modifiled MALA proposals
- Compute over a range of Δt to empirically identify the optimal value for different d and k
- 10⁸ iterations per run.

• As $k \to \infty$, Mod. MALA > RWM > MALA

• As $k \to \infty$, Mod. MALA > RWM > MALA

• As $k \to \infty$, Mod. MALA > RWM > MALA

• As $k \to \infty$, Mod. MALA > RWM > MALA

• As $k \to \infty$, Mod. MALA > RWM > MALA

• As $k \to \infty$, Mod. MALA > RWM > MALA

• As $k \to \infty$, Mod. MALA > RWM > MALA

Results, Continued

• As *d* increases, the Mod. MALA scheme continues to outperform RWM

Problem Setup

• Additive oscillatory term:

$$V(x) = (x^2 - 1)^2 + \frac{1}{8}\cos(kx)$$
⁽²⁹⁾

- Product measures
- Use $V_0 = (x^2 1)^2$ for modifiled MALA proposals
- Compute over a range of Δt to empirically identify the optimal value for different d and k
- 10⁸ iterations per run.

< - 17 →

2

2

(本語)と (本語)と (本語)と

2

▲ □ ► < □ ►</p>

2

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

2

▲ □ ► < □ ►</p>

2

イロト イヨト イヨト イヨト

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Results, Continued

• As *d* increases, the Mod. MALA scheme continues to outperform RWM

Problem Setup

Multiplicative oscillatory term:

$$V(x) = \frac{1}{2}x^2 + \frac{1}{8}e^{-10x^2}\cos(100x)$$
(30)

- Product measures
- Precompute V_{γ} by quadrature with $\gamma = 0.02$

• Performance gain improves wiht d

э

Results, Continued

• *d* = 100 case

- 一司

Remarks & Open Problems

- Performance of MALA suffers on multiscale energy landcapes
- Conjecture: Similar challenges with other methods involving ∇V , with V a multiscale potential
- Certain limiting cases of MALA (1D Harmonic, and d → ∞ product measure) show that roughness sends performance to zero – Is there a general result in finite d/non-product case?
- Can local entropy smoothing be made practical and exploited?
- Joint $\epsilon \to 0$ and $d \to \infty$ limit
- Restricted Observables

Acknowledgements

Collaborators P. Plechac (U. Delaware) Funding NSF 1818716, US DOE DE-SC0012733

http://www.math.drexel.edu/~simpson/

Simpson (Drexel)

글 > - + 글 > September 18, 2018 34 / 34

3