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The killed Markov process

Consider a ’killed’ Markov process X = (Xt)t>0 in state space
F t {∂}. The process is stopped when hitting the cemetary ∂
with ∂ ∩ F = ∅.
The killing time is denoted τ∂ :

τ∂ := inf{t > 0,Xt = ∂}.

Goal: Simulate the conditional distribution

ηt := L(Xt |τ∂ > t),

and the probability of the rare event

pt := P(τ∂ > t)� 1.

M. Rousset CLT for AMS & Fleming-Viot
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Fleming-Viot Particle System

Definition (Fleming-Viot particle system)

Fleming-Viot particle system (X 1
t , · · · ,XN

t )t∈[0,T ] is the Markov
process with state space FN defined by the rules

Initialization: i.i.d. particles X 1
0 , . . . ,X

N
0

i.i.d.∼ η0,

Evolution and killing: each particle evolves independently
according to the law of the underlying Markov process X until
one of them hits ∂,
Splitting: the killed particle is taken from ∂, and is given
instantaneously the state of one of the (N − 1) other particles
(randomly uniformly chosen).
and so on until final time T .

M. Rousset CLT for AMS & Fleming-Viot
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Unbiased Estimation of survival probability

At each branching, the total ’surviving mass’ is multipled by
factor (N − 1)/N = 1− 1/N.
Denote Nt := the average number (= ON(1)) of branchings
per particle at time t.
Then

E
[

(1− 1
N

)NNt

]
= pt(= P[Xt 6= ∂])

M. Rousset CLT for AMS & Fleming-Viot
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Unbiased Estimators and Recap

Empirical measure of particles ηNt := 1
N

∑N
n=1 δX n

t

Non-normalized quantities unbiased estimation

γt(ϕ) := E[ϕ(Xt)1τ∂>1] = E[(1− 1/N)NNtηNt (ϕ)].

Recap of notation

ηNt = 1
N

∑N
i=1 δX i

t
, pNt =

(
1− 1

N

)NNt , γNt = pNt η
N
t .

↓ N →∞

ηt = L(Xt |Xt 6= ∂) pt = P(Xt 6= ∂) γt := ptηt
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Semi-group notation

Consider the sub-Markovian semi-group

Qt(ϕ)(x) := E[ϕ(Xt)1τ∂>t |X0 = x ].

N.B.: Qt(ϕ)(x) = E[ϕ(Xt)|X0 = x ] if ϕ|∂ ≡ 0 by convention,
which will always be the case here.
Remark that:

γt = η0Q
t :=

∫
x∈F

Qt(x , . )η0(dx)

as well as

ηt = η0Q
t

η0Qt(1)

M. Rousset CLT for AMS & Fleming-Viot
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Central Limit Theorems

Theorem (CLT)

Under Ass. 1 ’non-synchronous jumps’ and Ass. 2 ’non-explosion’
below, for any ϕ ∈ Cb(F ),

√
N
(
pNT − pT

)
D−−−−→

N→∞
N (0, σ2),

where

σ2 := p2
T ln(pT )︸ ︷︷ ︸

Universal part

+2
∫ T

0
Varηt (QT−t(11F ))p2

t d

(
ln

1
pt

)
.
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Theorem (CLT)

Under Ass. 1 ’non-synchronous jumps’ and Ass. 2 ’non-explosion’,
one has for any ϕ ∈ Cb(F )

√
N
(
ηNT (ϕ)− ηT (ϕ)

)
D−−−−→

N→∞
N (0, σ2

T (ϕ)).

where in the case ηT (ϕ) = 0

σ2
T (ϕ) := VarηT (ϕ)︸ ︷︷ ︸

Universal part

+
∫ T

0
Varηt (QT−t(ϕ)) p

2
t

p2
T

d

(
ln

1
pt

)
.
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Remarks on Asymptotic Variances

Bounds on the relative asymptotic variance of survival
probability estimator

log(1/pT ) 6 σ2/p2
T 6 2(1/pT − 1) + log(pT )

Lower bound is sharp and formally obtained in the limit
tkill � tmix → 0 (e.g. spectral radius of Q � large spectral
gap of Q).
Upper bound is sharp and and formally obtained in the limit
tkill � tmix →∞ with ’fate in initial condition’ limit

limPx(XT /∈ ∂) ∈ {0, 1} .

Dominant term 2(1− 1/pT ) is twice the naive Monte Carlo
variance.
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Regularity Assumption

Assumption 1 (Non-synchronous jumps of X )

For any initial condition and any ϕ ∈ Cb(F ):
(i) the jump times of the càdlàg version of the martingale process

t 7→ Lt := QT−t(ϕ)(Xt) have an atomless distribution:

P(Lt− 6= Lt |X0 = x) = 0 ∀t > 0.

(ii) The killing time τ∂ has also an atomless distribution.
The ’non-synchronous jumps’ Assumption is ’morally’ equivalent to:
all “martingale jumps” and/or branchings in the Fleming-Viot
system are never simultaneous.

M. Rousset CLT for AMS & Fleming-Viot
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Non-explosion Assumption

In addition we ask:

Assumption (Non-explosion)

The Fleming-Viot system is non-explosive in the sense that the
number of branching at any finite time is almost surely finite
P(NT < +∞) = 1.

M. Rousset CLT for AMS & Fleming-Viot
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Example with Hard Obstacle (The originality of our result !)

Proposition

t 7→ X̃t ∈ Rd be a diffusion with smooth and uniformly elliptic
coefficients.
Let F ⊂ Rd be a bounded open domain with smooth boundary
∂F = F \ F . Let τ∂ be the hitting time of F .

Xt = X̃t for t < τ∂ , else = ∂

Then Assumption ’non explosion’ holds true ([Grigorescu and
Kang, 2012]), as well as Assumption ’no synchronuous jumps’.

M. Rousset CLT for AMS & Fleming-Viot
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Proof: Stochastic calculus with jumps

Recall that one can integrate with respect ot ’semi-martingales’
X = montonous processes + martingales as follows:∫

Yt−dXt '
∫

Yt−(Xt+dt − Xt)

We then have the chain rule

d(XtYt) = Yt−dXt + Xt−dYt + d [X ,Y ]t
where t 7→ [X ,X ]t is an increasing process, bilinear with
respect to vector space structure on X called the quadratic
variation. Broadly speaking

[X ,X ]t =
P
lim

|ti+1−ti |7→0

∑
i

(Xti+1 − Xti )2

If X is monotonous, [X ,X ]t is the sum of the squares of the
jumps.

M. Rousset CLT for AMS & Fleming-Viot
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Stochastic calculus with jumps

If t 7→ Mt is a (local) martingale, then t 7→ M2
t − [M,M]t is

again a local martingale.
In the presence of jumps there ar plenty of ’quadratic
variation’-like increasing processes t 7→ i(M)t such that
t 7→ M2

t − i(M)t is a local martingale. For instance there is a
unique i(M)t =< M,M >t which is predictable.
Example: let t 7→ Mt ∈ {−1, 1} be Poisson-like Markov +
Martingale random walk process jumping up or down with
proba 1/2 at indep. expo. times. Then

[M,M]t =
∑

jumps

Var(jump) = 1

< M,M >t= dt

M. Rousset CLT for AMS & Fleming-Viot
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CLT for martingales with jumps

Theorem (Martinagle CLT (Ethier-Kurtz))

On a filtered probability space, let t 7→ mN
t denote a sequence of

càdlàg local martingales indexed by N > 1. Assume moreover that

(i) mN
0

D−−−−−→
N→+∞

µ0, where µ0 is a given probability on R.

(ii) Vanishing jumps: One has
limN→+∞ E[supt∈[0,T ]

∣∣mN
t −mN

t−

∣∣2] = 0.
(iii) For each N, there exists an increasing càdlàg quadratic

variation process t 7→ iNt i.e. t 7→
(
mN

t −mN
0
)2 − iNt is a local

martingale.
(iv) Vanishing jump: The process t 7→ iNt satisfies

limN→+∞ E
[
supt∈[0,T ] i

N
t − iNt−

]
= 0.

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

CLT for martingales with jumps

Theorem (Martinagle CLT (Ethier-Kurtz))

On a filtered probability space, let t 7→ mN
t denote a sequence of

càdlàg local martingales indexed by N > 1. Assume moreover that

(i) mN
0

D−−−−−→
N→+∞

µ0, where µ0 is a given probability on R.

(ii) Vanishing jumps: One has
limN→+∞ E[supt∈[0,T ]

∣∣mN
t −mN

t−

∣∣2] = 0.
(iii) For each N, there exists an increasing càdlàg quadratic

variation process t 7→ iNt i.e. t 7→
(
mN

t −mN
0
)2 − iNt is a local

martingale.
(iv) Vanishing jump: The process t 7→ iNt satisfies

limN→+∞ E
[
supt∈[0,T ] i

N
t − iNt−

]
= 0.

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

CLT for martingales with jumps

Theorem (Martinagle CLT (Ethier-Kurtz))

On a filtered probability space, let t 7→ mN
t denote a sequence of

càdlàg local martingales indexed by N > 1. Assume moreover that

(i) mN
0

D−−−−−→
N→+∞

µ0, where µ0 is a given probability on R.

(ii) Vanishing jumps: One has
limN→+∞ E[supt∈[0,T ]

∣∣mN
t −mN

t−

∣∣2] = 0.

(iii) For each N, there exists an increasing càdlàg quadratic
variation process t 7→ iNt i.e. t 7→

(
mN

t −mN
0
)2 − iNt is a local

martingale.
(iv) Vanishing jump: The process t 7→ iNt satisfies

limN→+∞ E
[
supt∈[0,T ] i

N
t − iNt−

]
= 0.

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

CLT for martingales with jumps

Theorem (Martinagle CLT (Ethier-Kurtz))

On a filtered probability space, let t 7→ mN
t denote a sequence of

càdlàg local martingales indexed by N > 1. Assume moreover that

(i) mN
0

D−−−−−→
N→+∞

µ0, where µ0 is a given probability on R.

(ii) Vanishing jumps: One has
limN→+∞ E[supt∈[0,T ]

∣∣mN
t −mN

t−

∣∣2] = 0.
(iii) For each N, there exists an increasing càdlàg quadratic

variation process t 7→ iNt i.e. t 7→
(
mN

t −mN
0
)2 − iNt is a local

martingale.

(iv) Vanishing jump: The process t 7→ iNt satisfies
limN→+∞ E

[
supt∈[0,T ] i

N
t − iNt−

]
= 0.

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

CLT for martingales with jumps

Theorem (Martinagle CLT (Ethier-Kurtz))

On a filtered probability space, let t 7→ mN
t denote a sequence of

càdlàg local martingales indexed by N > 1. Assume moreover that

(i) mN
0

D−−−−−→
N→+∞

µ0, where µ0 is a given probability on R.

(ii) Vanishing jumps: One has
limN→+∞ E[supt∈[0,T ]

∣∣mN
t −mN

t−

∣∣2] = 0.
(iii) For each N, there exists an increasing càdlàg quadratic

variation process t 7→ iNt i.e. t 7→
(
mN

t −mN
0
)2 − iNt is a local

martingale.
(iv) Vanishing jump: The process t 7→ iNt satisfies

limN→+∞ E
[
supt∈[0,T ] i

N
t − iNt−

]
= 0.

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

CLT for martingales with jumps

Theorem (Martinagle CLT (Ethier-Kurtz))

For the increasing càdlàg process t 7→ iNt (with vanishing jumps)
such that

t 7→
(
mN

t −mN
0

)
2 − iNt

is a local martingale:

(v) !! Main Assumption !!: There is a cont. and incr. det.
function t 7→ it s. t., ∀t ∈ [0,T ], iNt

P−−−−−→
N→+∞

it .

Then (mN
t )t∈[0,T ] converges in law (under the Skorokhod topology)

to (Mt)t∈[0,T ], where M0 ∼ µ0 and (Mt −M0)t∈[0,T ] is a Gaussian
martingale, independent of M0, with independent increments and
variance function it (time changed Brownian motion).
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CLT for martingales with jumps

In short, we need to construct martingales of order 1/
√
N from the

particle system and ensure the convergence of ’a’ quadratic
variation of those martingales of order 1/N.
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AMS

Overview of the proof

Key object: the càdlàg martingale

t 7→ γNt (Q) := γNt

(
QT−t(ϕ)

)
.

Initial condition treated separately (easy).
We will handle the distribution of γNT (Q) in the limit N →∞
by using a Central Limit Theorem for continuous time
martingales.
Not straightforward: the convergence of the quadratic
variation N[γN(Q), γN(Q)]t is difficult (lots of IPPs !!).
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Proof
AMS

Martingale decomposition [Villemonais 2014]

The key martingale decomposition is the following:

γNt (Q) = γN0 (Q) + 1√
N

∫ t

0
pNu−(dMu + dMu).

With Mt := 1√
N

∑N
n=1 Mn

t andMt := 1√
N

∑N
n=1Mn

t .

Mn
t is the martingale contribution except for branching times

of particle n.
Mn

t is the martingale contribution at branchings only of
particle n.
No ambiguity, natural way to do this.
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AMS

Orthogonality

The 2N martingales {Mn
t ,Mm

t }16n,m6N are mutually orthogonal.

More specifically
(i) [M,M]t is a local martingale,
(ii)

[M,M]t = 1
N

N∑
n=1

[Mn,Mn]t ,

(iii) Moreover, if we note the ’intermediate’ quadratic variation

(M,M)t = 1
N

N∑
n=1

[Mn,Mn]t ,

then the process [M,M]t − (M,M)t is also a local martingale.

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

Ingredient (i): A ’key formula’

Lemma
The quadratic variation of martingales associated with the particles
dynamics outside branchings can be related to

γNt (Q2) = γNt ([QT−t(ϕ)]2)

through the key formula

pNt−d(M,M)t = dγNt (Q2) + Martingale

M. Rousset CLT for AMS & Fleming-Viot
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Proof
AMS

Ingredient (ii): L2 apriori estimates

Proposition (Villemonais 2014, CDGR 2017)

For any ϕ ∈ D, we have

E
[(
γNT (ϕ)− γT (ϕ)

)
2
]
6

6 ‖ϕ‖2∞
N

.

Proof.

γNT (ϕ)− γT (ϕ) = 1√
N

∫ T

0
pNt− dMt + 1√

N

∫ T

0
pNt− dMt

+ γN0 (QTϕ)− γ0(QTϕ),

(i) Initial condition is OK by independence.
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AMS

L2 estimates

(ii)M-terms. Using Ito’s isometry and d [M,M]t 6 4‖ϕ‖2∞dNt ,
we obtain

E

[(∫ T

0
pNt−dMt

)2]
= E

[∫ T

0

(
pNt−
)2
d [M,M]t

]

6 4‖ϕ‖2∞
1
N

∞∑
j=1

(
1− 1

N

)2(j−1) 6 4‖ϕ‖2∞.

(iii) M-terms. In the same way, applying Ito’s isometry and the ’key
formula’ pNt−d(M,M)t = dγNt (Q2) + Martingale, we get

E

[(∫ T

0
pNt−dMt

)2]
= E

[∫ T

0

(
pNt−
)2
d [M,M]t

]
6 E

[∫ T

0
pNt−d(M,M)t

]
= E

[
γNT (Q2)

]
6 ‖ϕ‖2∞.
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AMS

Ingredient (iii): Time uniform a priori estimate of pNt

Lemma
One has

sup
t∈[0,T ]

∣∣∣pNt − pt

∣∣∣ P−−−−→
N→∞

0.

Proof. Independent of the context.t 7→ pt is continuous on [0,T ]
by construction, it is cleat that t 7→ pNt is decreasing for all N > 2.
The Lemma results of last Proposition and a from a probabilistic
version of Second Dini (or Pólya) theorem: if a sequence of
monotone functions converges pointwise on a compact interval and
if the limit function is also continuous, then the convergence is
uniform on that interval.
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AMS

Increasing Process in general CLT

In order to use martingale CLT, we need a càdlàg increasing
process iNt such that (γN(Q)t)2 − iNt is a martingale
(quadratic variation - like).
After tedious computations and trials and errors we chose a
quadratic variation with only the branching jumps integrated.

iNt =
∫ t

0

(
pNu−

)
2d(M,M)u −

∫ t

0
VarηN

u−
(Q)pNu−dp

N
u

+ 1
N

∫ t

0

(
pNu−
)2
dRu.

NB: with the rest term is O(1/N) with

Rt =
N∑

n=1

+∞∑
k=1

((
1− 1

N

)2 Var
η

(n)
τ−
n,k

(Q)− VarηN
τ−
n,k

(Q)
)
11t>τn,k .
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Integration by parts formulas

Let t 7→ zNt be any càdlàg semi-martingale, c > 0 a deterministic
constant, and assume for any branching time τj , j > 1:

If |∆zNτj | 6 c/N,then∫ t

0
pNs−dz

N
s = pNt z

N
t − zN0 −

∫ t

0
zNs−dp

N
s + O(1/N).

If |zN
τ−
j

| 6 c(1− 1/N)j ,∫ t

0
zNs−

(
pNs−

)
−1dpNs =

∫ t

0
zNs−d ln pNs + O(1/N).

If |∆zNτj | 6 c(1− 1/N)j/N,∫ t

0
zNs−d ln pNs = zNt ln pNt −

∫ t

0
ln pNs−dz

N
s + O(1/N).
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Integration by parts for iNt

Using the intergation by parts formula abvoe and the key formula :

Lemma

The increasing process iNt can be integrated by parts and be
rewritten as

iNt = pNt γ
N
t

(
Q2)− γN0 (Q2)+

[
γNt (Q)

]
2 ln pNt

− 2
∫ t

0
γNu−(Q2)dpNu + O

( 1√
N

)
.
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Convergence of iNt and final proof of the CLT

By the non synchronous jump Assumption all the vanishing jump
assumptions in the martingale CLT are verified.
The only remaining remaining part to prove is the following:

Proposition

For any t ∈ [0,T ], one has

iNt
P−−−−→

N→∞
it(ϕ). where

iNt = pNt γ
N
t

(
Q2)−γN0 (Q2)+[γNt (Q)

]
2 ln pNt −2

∫ t

0
γNu−(Q2)dpNu +O

( 1√
N

)
,

it(ϕ) = ptγt(Q2)− γ0(Q2) + [γt(Q)]2 ln pt − 2
∫ t

0
γu
(
Q2)dpu.
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Proof of Convergence of iNt

After some calculations, all but one term can be treated using the
L2 a priori convergence estimate. The only remaing problem is the
following:

iNt − it(ϕ) =easy converging terms with L2-estimate and IPP+

−2
∫ t

0
(pNu− − pu) d γNu (Q2)

It is difficult to prove its convergence to 0 because the L2 estimate
is only pointwise. Hence handling the integrator is cumbersome !!.
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AMS

Convergence of iNt
This difficult term is then treated as follows. Use the ’key formula’∫ t

0
(pNu−−pu) d γNu (Q2) =

∫ t

0
(pNu−−pu)pNu−d(M,M)u+O

( 1√
N

)
Since (M,M) is an increasing process, it comes∣∣∣∣∫ t

0
(pNu− − pu)pNu−d(M,M)u

∣∣∣∣ 6 sup
u
|pNu− − pu|×

(∫ t

0
pNu−d(M,M)u

)
.

The ’key formula’ back again implies:

E
[∫ t

0
pNu−d(M,M)u

]
= E

[
γNt (Q2)

]
6 ‖ϕ‖2∞.

The a priori uniform estimate implies convergence of
supu |pNu− − pu|.

END OF PROOF

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

Convergence of iNt
This difficult term is then treated as follows. Use the ’key formula’∫ t

0
(pNu−−pu) d γNu (Q2) =

∫ t

0
(pNu−−pu)pNu−d(M,M)u+O

( 1√
N

)
Since (M,M) is an increasing process, it comes∣∣∣∣∫ t

0
(pNu− − pu)pNu−d(M,M)u

∣∣∣∣ 6 sup
u
|pNu− − pu|×

(∫ t

0
pNu−d(M,M)u

)
.

The ’key formula’ back again implies:

E
[∫ t

0
pNu−d(M,M)u

]
= E

[
γNt (Q2)

]
6 ‖ϕ‖2∞.

The a priori uniform estimate implies convergence of
supu |pNu− − pu|.

END OF PROOF

M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

Convergence of iNt
This difficult term is then treated as follows. Use the ’key formula’∫ t

0
(pNu−−pu) d γNu (Q2) =

∫ t

0
(pNu−−pu)pNu−d(M,M)u+O

( 1√
N

)
Since (M,M) is an increasing process, it comes∣∣∣∣∫ t

0
(pNu− − pu)pNu−d(M,M)u

∣∣∣∣ 6 sup
u
|pNu− − pu|×

(∫ t

0
pNu−d(M,M)u

)
.

The ’key formula’ back again implies:

E
[∫ t

0
pNu−d(M,M)u

]
= E

[
γNt (Q2)

]
6 ‖ϕ‖2∞.

The a priori uniform estimate implies convergence of
supu |pNu− − pu|.

END OF PROOF
M. Rousset CLT for AMS & Fleming-Viot



Introduction
Main Result

Proof
AMS

Adaptive Multilevel Splitting

Lemma
The AMS algorithm mapped with the level-indexed process

Xt := YSt , St = inf(s > 0|ξ(Ys) = t)

and stopped at iteration Jt (the first iteration when all particles
reach {ξ > t}) is actually a Fleming-Viot particle system.

Proof Picture: level function ξ define a time change.
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