Central Limit Theorem for stationary Fleming-Viot particle systems in finite spaces

Julien Reygner

CERMICS – École des Ponts ParisTech

Joint work with Tony Lelièvre (CERMICS/Inria) and Loucas Pillaud-Vivien (Inria)
Quasistationary distribution in finite spaces

- Let E be a finite space.
- Let $(x_t)_{t \geq 0}$ be the continuous time Markov chain with infinitesimal generator
 \[
 Lf(x) = \sum_{y \in E} p(x, y)[f(y) - f(x)], \quad p(x, y) \geq 0, \quad \sum_{y \in E} p(x, y) = 1.
 \]

- Let $D \subset E$ be nonempty, and let $\tau_D = \inf\{t \geq 0 : x_t \notin D\}$.

Quasistationary distribution (QSD)

A probability measure π on D is called quasistationary in D if

\[
\forall t \geq 0, \quad \mathbb{P}_\pi(x_t \in \cdot | t < \tau_D) = \pi(\cdot).
\]

Perron–Frobenius Theorem

If the substochastic matrix\(^1\) $P_D = \{p(x, y), x, y \in D\}$ is irreducible, then:

- there is a unique QSD π;
- the spectral radius $1 - \lambda \in (0, 1]$ of P_D is a single eigenvalue;
- $P_D^*\pi = (1 - \lambda)\pi$.

\(^1\) P_D is seen as an operator on the functions $D \to \mathbb{R}$, and P_D^* as an operator on the measures on D.
Yaglom limit

In the sequel we always assume that P_D is irreducible.

Yaglom limit

Darroch, Seneta – J. Appl. Probab. ’67: for any initial distribution μ on D,

$$\lim_{t \to +\infty} \mathbb{P}_\mu(x_t \in \cdot | t < \tau_D) = \pi(\cdot).$$

- The QSD is particularly relevant in the study of **metastability**, where convergence to the **Yaglom limit** occurs on a **shorter time scale** than exit from D.
- From **Kramers – Physica ’40** to many works by people at CIRM this week!

Nontrivial computational issue: **how to sample from the QSD**?

- **Rejection** Monte-Carlo fails in almost surely finite time.
- $t \mapsto \mathbb{P}_\mu(x_t \in \cdot | t < \tau_D)$ obeys a **nonlinear** evolution.
Take \(n \) copies (particles) of the process \((x_t)_{t \geq 0}\) started iid according to \(\mu \) on \(D \).

When one attempts to exit from \(D \), pick its next position uniformly among the positions of the \(n-1 \) remaining particles.

We get a well-defined \(D^n \)-valued exchangeable continuous time Markov chain \((x^1_t, \ldots, x^n_t)_{t \geq 0}\), with empirical measure

\[
\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{\{x^i_t = x\}}, \quad x \in D,
\]

random process in the set \(\mathcal{P}(D) \) of probability measures on \(D \).

The chain is irreducible: \(\eta^n_t \to \eta^n_\infty \) in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Take \(n \) copies (particles) of the process \((x_t)_{t \geq 0}\) started iid according to \(\mu \) on \(D \).

When one attempts to exit from \(D \), pick its next position uniformly among the positions of the \(n - 1 \) remaining particles.

We get a well-defined \(D^n \)-valued exchangeable continuous time Markov chain \((x^1_t, \ldots, x^n_t)_{t \geq 0}\), with empirical measure

\[
\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x^i_t = x\}}, \quad x \in D,
\]

random process in the set \(\mathcal{P}(D) \) of probability measures on \(D \).

The chain is irreducible: \(\eta^n_t \to \eta^n_\infty \) in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. '16).

Sampling from the QSD: the Fleming–Virot particle system

- Take n copies (particles) of the process $(x_t)_{t \geq 0}$ started iid according to μ on D.
- When one attempts to exit from D, pick its next position uniformly among the positions of the $n - 1$ remaining particles.

We get a well-defined D^n-valued exchangeable continuous time Markov chain $(x_1^t, \ldots, x_n^t)_{t \geq 0}$, with empirical measure

$$\eta_t^n(x) = \frac{1}{n} \sum_{i=1}^{n} 1_{\{x_i^t = x\}}, \quad x \in D,$$

random process in the set $\mathcal{P}(D)$ of probability measures on D.

- The chain is irreducible: $\eta_t^n \rightarrow \eta_\infty^n$ in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. '16).

Take \(n \) copies (particles) of the process \((x_t)_t\geq 0\) started iid according to \(\mu \) on \(D \).

When one attempts to exit from \(D \), pick its next position uniformly among the positions of the \(n - 1 \) remaining particles.

We get a well-defined \(D^n \)-valued exchangeable continuous time Markov chain \((x^1_t, \ldots, x^n_t)_t\geq 0\), with empirical measure

\[
\eta_t^n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x^i_t = x\}}, \quad x \in D,
\]

random process in the set \(\mathcal{P}(D) \) of probability measures on \(D \).

The chain is irreducible: \(\eta_t^n \rightarrow \eta_\infty^n \) in distribution

Sampling from the QSD: the Fleming–Viot particle system

- Take n copies (particles) of the process $(x_t)_{t \geq 0}$ started iid according to μ on D.
- When one attempts to exit from D, pick its next position uniformly among the positions of the $n - 1$ remaining particles.

We get a well-defined D^n-valued exchangeable continuous time Markov chain $(x^1_t, \ldots, x^n_t)_{t \geq 0}$, with empirical measure

$$\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} 1\{x^i_t = x\}, \quad x \in D,$$

random process in the set $\mathcal{P}(D)$ of probability measures on D.

- The chain is irreducible: $\eta^n_t \rightarrow \eta^n_\infty$ in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Sampling from the QSD: the Fleming–Viot particle system

- Take n copies (particles) of the process $(x_t)_{t \geq 0}$ started iid according to μ on D.
- When one attempts to exit from D, pick its next position uniformly among the positions of the $n-1$ remaining particles.

We get a well-defined D^n-valued exchangeable continuous time Markov chain $(x^1_t, \ldots, x^n_t)_{t \geq 0}$, with empirical measure

$$\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x^i_t = x\}}, \quad x \in D,$$

random process in the set $\mathcal{P}(D)$ of probability measures on D.

- The chain is irreducible: $\eta^n_t \xrightarrow{\text{in distribution}} \eta^\infty_n$ (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Sampling from the QSD: the Fleming–Virot particle system

- Take n copies (particles) of the process $(x_t)_{t \geq 0}$ started iid according to μ on D.
- When one attempts to exit from D, pick its next position uniformly among the positions of the $n - 1$ remaining particles.

We get a well-defined D^n-valued **exchangeable** continuous time Markov chain $(x^n_1, \ldots, x^n_n)_{t \geq 0}$, with empirical measure

$$\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} 1 \{x^n_i = x\}, \quad x \in D,$$

random process in the set $\mathcal{P}(D)$ of probability measures on D.

- The chain is irreducible: $\eta^n_t \to \eta^n_\infty$ in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Sampling from the QSD: the Fleming–Viot particle system

- Take \(n \) copies (particles) of the process \((x_t)_{t \geq 0}\) started iid according to \(\mu \) on \(D \).
- When one attempts to exit from \(D \), pick its next position uniformly among the positions of the \(n - 1 \) remaining particles.

We get a well-defined \(D^n \)-valued exchangeable continuous time Markov chain \((x_1^t, \ldots, x_n^t)_{t \geq 0}\), with empirical measure

\[
\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x_i^t = x\}}, \quad x \in D,
\]

random process in the set \(\mathcal{P}(D) \) of probability measures on \(D \).

- The chain is irreducible: \(\eta^n_t \rightarrow \eta^n_\infty \) in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Sampling from the QSD: the Fleming–Viot particle system

- Take \(n \) copies (particles) of the process \((x_t)_{t \geq 0} \) started iid according to \(\mu \) on \(D \).
- When one attempts to exit from \(D \), pick its next position uniformly among the positions of the \(n - 1 \) remaining particles.

We get a well-defined \(D^n \)-valued exchangeable continuous time Markov chain \((x^1_t, \ldots, x^n_t)_{t \geq 0} \), with empirical measure

\[
\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^n 1_{\{x^i_t = x\}}, \quad x \in D,
\]

random process in the set \(\mathcal{P}(D) \) of probability measures on \(D \).

- The chain is irreducible: \(\eta^n_t \to \eta^n_\infty \) in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Sampling from the QSD: the Fleming–Viot particle system

- Take \(n \) copies (particles) of the process \((x_t)_{t \geq 0}\) started iid according to \(\mu \) on \(D \).
- When one attempts to exit from \(D \), pick its next position uniformly among the positions of the \(n - 1 \) remaining particles.

We get a well-defined \(D^n \)-valued exchangeable continuous time Markov chain \((x^1_t, \ldots, x^n_t)_{t \geq 0}\), with empirical measure

\[
\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x^i_t = x\}}, \quad x \in D,
\]

random process in the set \(\mathcal{P}(D) \) of probability measures on \(D \).

- The chain is irreducible: \(\eta^n_t \to \eta^n_{\infty} \) in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Sampling from the QSD: the Fleming–Viot particle system

- Take n copies (particles) of the process $(x_t)_{t \geq 0}$ started iid according to μ on D.
- When one attempts to exit from D, pick its next position uniformly among the positions of the $n - 1$ remaining particles.

We get a well-defined D^n-valued exchangeable continuous time Markov chain $(x^1_t, \ldots, x^n_t)_{t \geq 0}$, with empirical measure

$$\eta^n_t(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x^i_t = x\}}, \quad x \in D,$$

random process in the set $\mathcal{P}(D)$ of probability measures on D.

- The chain is irreducible: $\eta^n_t \rightarrow \eta^\infty$ in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

Take n copies (particles) of the process $(x_t)_{t \geq 0}$ started iid according to μ on D.

When one attempts to exit from D, pick its next position uniformly among the positions of the $n - 1$ remaining particles.

We get a well-defined D^n-valued exchangeable continuous time Markov chain $(x_1^t, \ldots, x_n^t)_{t \geq 0}$, with empirical measure

$$\eta_t^n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\{x_i^t = x\}}, \quad x \in D,$$

random process in the set $\mathcal{P}(D)$ of probability measures on D.

The chain is irreducible: $\eta_t^n \rightarrow \eta_\infty^n$ in distribution (exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

LLN and CLT

What about the $n \to +\infty$ limit?

- For all $t \geq 0$, $\eta^n_t \to \mathbb{P}_\mu(x_t \in \cdot | t < \tau_D)$.
- For the stationary distribution: $\eta^n_\infty \to \pi$.

Central Limit Theorem by Cérou, Delyon, Guyader, Rousset – arXiv ’16, ’17, see M. Rousset’s talk on Friday.
- For all $t \geq 0$, $\sqrt{n}(\eta^n_t - \mathbb{P}_\mu(x_t \in \cdot | t < \tau_D))$ converges in distribution to $\mathcal{N}(0, K^\mu_t)$.
- If the system starts from the QSD, the covariance operator writes
 $$\langle K^\pi_t f, f \rangle = \text{Var}_\pi(f) + 2\lambda \int_{s=0}^{t} e^{2\lambda s} \text{Var}_\pi(Q_s f) ds, \quad \langle \pi, f \rangle = 0,$$
 where $Q_s f(x) = \mathbb{E}_x[f(x_{s})1_{\{s < \tau_D\}}]$.
- Extension to infinite time horizon not so straightforward.

Our result: **stationary Central Limit Theorem**.
- $\sqrt{n}(\eta^n_\infty - \pi)$ converges in distribution to $\mathcal{N}(0, K)$.
- The covariance operator writes
 $$\langle K f, f \rangle = \text{Var}_\pi(f) + 2\lambda \int_{s=0}^{\infty} e^{2\lambda s} \text{Var}_\pi(Q_s f) ds, \quad \langle \pi, f \rangle = 0.$$

Julien Reygner CLT for stationary Fleming-Viot
Asymptotics of the Fleming–Viot particle system

FV particle system

η^n_t
Asymptotics of the Fleming–Viot particle system

FV particle system
\[\eta^n_t \]

\(t \to +\infty \)
irreducibility

\[\eta^n_\infty \]
Stationary distribution
Asymptotics of the Fleming–Viot particle system

FV particle system
\[\eta^n_t \]

\[t \rightarrow +\infty \]
irreducibility

\[\eta^n_\infty \]
Stationary distribution

Conditional law
\[\mathbb{P}_\mu(x_t \in \cdot | t < \tau_D) \]
Asymptotics of the Fleming–Viot particle system

FV particle system
\[\eta^n_t \]

\[t \to +\infty \]
irreducibility

\[\eta^n_\infty \]
Stationary distribution

Conditional law
\[\mathbb{P}_\mu(x_t \in \cdot | t < \tau_D) \]

\[t \to +\infty \]
Yaglom limit

\[\pi \]
QSD

Julien Reygner

CLT for stationary Fleming-Viot
Asymptotics of the Fleming–Viot particle system

FV particle system
\[\eta^n_t \]

Conditional law
\[\mathbb{P}_\mu(x_t \in \cdot | t < \tau_D) \]

\[n \to +\infty \]

irreducibility

Asselah, Ferrari, Groisman

Stationary distribution
\[\eta^n_{\infty} \]

Yaglom limit
\[t \to +\infty \]

QSD
\[\pi \]
Asymptotics of the Fleming–Viot particle system

- **FV particle system** \(\eta_t^n \)
- **Conditional law** \(\mathbb{P}_\mu(x_t \in \cdot | t < \tau_D) \)
- **Central Limit Theorem** by Cérou, Delyon, Guyader, Rousset

- \(n \to +\infty \)
- \(t \to +\infty \) irreducibility
- \(n \to +\infty \) Yaglom limit
- \(n \to +\infty \) stationary distribution

- \(\eta_{\infty}^n \)
- \(\pi \)
- QSD

Asselah, Ferrari, Groisman
Asymptotics of the Fleming–Viot particle system

- **FV particle system** η^n_t
 - $t \to +\infty$
 - Irreducibility
 - Asselah, Ferrari, Groisman

- **Conditional law** $\mathbb{P}_\mu(x_t \in \cdot | t < \tau_D)$
 - $t \to +\infty$
 - Yaglom limit

- **Stationary distribution** η^n_{∞}
 - $n \to +\infty$

- **Central Limit Theorem** by Cérou, Delyon, Guyader, Rousset

- **Stationary distribution** π
 - $n \to +\infty$
 - QSD

- We prove a stationary Central Limit Theorem

CLT for stationary Fleming-Viot

Julien Reygner
Asymptotics of the Fleming–Viot particle system

FV particle system

η^n_t

Conditional law

$P_\mu(x_t \in \cdot | t < \tau_D)$

Central Limit Theorem by Cérou, Delyon, Guyader, Rousset

$t \to +\infty$

irreducibility

η^n_t

Stationary distribution

$n \to +\infty$

η^n_∞

π

QSD

We prove a stationary Central Limit Theorem

$t \to +\infty$

Yaglom limit

Asymptotic variance is consistent in the $t \to +\infty$ limit

Julien Reygner CLT for stationary Fleming-Viot
Sketch of the proof

1. We aim to prove that $\sqrt{n}(\eta^n_\infty - \pi) \to \mathcal{N}(0, K)$,
2. in the space $\mathcal{M}_0(D)$ of signed measures ξ on D such that $\sum_{x \in D} \xi(x) = 0$.
3. We write the infinitesimal generator M^n of the process $\sqrt{n}(\eta^n_t - \pi)$ in $\mathcal{M}_0(D)$.
4. We compute the limit \overline{M} of M^n.
5. Any limit of $\sqrt{n}(\eta^n_\infty - \pi)$ is thus a stationary distribution for \overline{M}.
6. We identify \overline{M} as the infinitesimal generator of a linear diffusion process $(\overline{\xi}_t)_{t \geq 0}$ on $\mathcal{M}_0(D)$, whose unique stationary distribution is a Gaussian measure $\mathcal{N}(0, K)$.
7. We solve a Lyapunov equation to compute K explicitly.
8. We prove that the sequence $\sqrt{n}(\eta^n_\infty - \pi)$ is tight.
Step 1 of the proof: infinitesimal generators

The law of η^n_∞ is the stationary distribution of the $\mathcal{P}(D)$-valued process $(\eta^n_t)_{t \geq 0}$ with infinitesimal generator

$$L^n \phi(\eta) = \sum_{x,y \in D} n\eta(x) \left(p(x,y) + q(x) \frac{n\eta(y)}{n-1} \right) \left[\phi \left(\eta + \frac{1}{n} \theta^x,y \right) - \phi(\eta) \right],$$

where $q(x) = \sum_{y \in E \setminus D} p(x,y)$ and $\theta^x,y = 1_y - 1_x$.

The law of $\xi^n_\infty := \sqrt{n}(\eta^n_\infty - \pi)$ is the stationary distribution of the $\mathcal{M}_0(D)$-valued process $(\xi^n_t)_{t \geq 0} := (\sqrt{n}(\eta^n_t - \pi))_{t \geq 0}$ with infinitesimal generator

$$M^n \psi(\xi) = \sum_{x,y \in D} n \left(\pi(x) + \frac{\xi(x)}{\sqrt{n}} \right) \left(p(x,y) + q(x) \frac{n}{n-1} \left(\pi(y) + \frac{\xi(y)}{\sqrt{n}} \right) \right) \times \left[\psi \left(\xi + \frac{1}{\sqrt{n}} \theta^x,y \right) - \psi(\xi) \right].$$
Step 2 of the proof: taking the limit

Take \(\psi \in C^\infty_c(M_0(D)) \). When \(n \to +\infty \),

\[
M^n \psi(\xi) \to \overline{M}\psi(\xi) = \langle ((P_\pi^D)^* - (1 - \lambda)I)\xi, \nabla \psi \rangle + A_\pi^D \cdot \nabla^2 \psi(x), \quad \text{uniformly in } \xi,
\]

with the following notation:

- \(P_\pi^D \) is the stochastic matrix with coefficients
 \[
p_\pi^D(x, y) = p(x, y) + q(x)\pi(y), \quad x, y \in D,
\]
 which defines the \(\pi \)-return process.

- The \(\pi \)-return process describes the pathwise limit of the (stationary) Fleming–Viot particle system, it is irreducible and ergodic with respect to \(\pi \).

- \(A_\pi^D \) is the symmetric operator defined by
 \[
 \langle A_\pi^D f, f \rangle = \frac{1}{2} \sum_{x, y \in D} \pi(x) p_\pi^D(x, y) [f(y) - f(x)]^2.
 \]
 (energy / Dirichlet form)

Consequence: assume tightness, so that \(\xi_n \to \overline{\xi}_{\infty} \) (up to a subsequence). Then

\[
0 = \mathbb{E} [M^n \psi(\xi_{n\infty})] = \mathbb{E}[(M^n - \overline{M})\psi(\xi_{n\infty})] + \mathbb{E} [\overline{M}\psi(\xi_{n\infty})] \to \mathbb{E}[\overline{M}\psi(\overline{\xi}_{\infty})],
\]

\(\to 0 \) uniformly

therefore the law of \(\overline{\xi}_{\infty} \) is a stationary distribution for \(\overline{M} \).
Step 3 of the proof: identification of the limit

The operator
\[
\overline{M} \psi(\xi) = \langle ((P^\pi_D)^* - (1 - \lambda)I)\xi, \nabla \psi \rangle + A^\pi_D : \nabla^2 \psi(x)
\]
is the infinitesimal generator of the **linear diffusion process** \((\overline{\xi}_t)_{t \geq 0}\) on \(\mathcal{M}_0(D)\)
\[
d\overline{\xi}_t = B_0 \overline{\xi}_t dt + \Sigma dw_t,
\]
with \((w_t)_{t \geq 0}\) BM in \(\mathbb{R}^k\), \(\Sigma : \mathbb{R}^k \to \mathcal{M}_0(D)\) and \(B_0 : \mathcal{M}_0(D) \to \mathcal{M}_0(D)\) defined by
\[
\frac{1}{2} \Sigma \Sigma^* := A^\pi_D \quad \text{and} \quad B_0 = (P^\pi_D)^* - (1 - \lambda)I.
\]

- By irreducibility of the \(\pi\)-return process, \(A^\pi_D\) is **positive definite** on \(\mathcal{M}_0(D)\).
- There exists \(\gamma > 0\) such that any eigenvalue \(\tau \in \mathbb{C}\) of \(B_0\) satisfies \(\Re \tau \leq -\gamma\).

Consequence

The **unique** stationary distribution of \(\overline{M}\) is the **centered Gaussian measure** on \(\mathcal{M}_0(D)\) with covariance operator \(K\) defined as the unique solution to the **Lyapunov equation**
\[
B_0 K + K B_0^* + 2A^\pi_D = 0.
\]

- Uniqueness follows from uniform ellipticity.
- Linearity of evolution preserves Gaussian measures.
- Lyapunov equation is Ito’s formula for the covariance of \((\overline{\xi}_t)_{t \geq 0}\).
- Existence of a solution for Lyapunov equation follows from spectral stability of the drift.
Step 4 of the proof: computation of the covariance

- The solution K to Lyapunov equation $B_0 K + KB_0^* + 2A_D^\pi = 0$ is known to write

$$K = 2 \int_{s=0}^{+\infty} e^{sB_0} A_D^\pi e^{sB_0^*} ds.$$

- Take $f : D \to \mathbb{R}$ such that $\langle \pi, f \rangle = 0$, and compute

$$\langle Kf, f \rangle = 2 \int_{s=0}^{+\infty} \langle A_D^\pi e^{sB_0^*} f, e^{sB_0^*} f \rangle ds.$$

- Since $B_0 = (P_D^\pi)^* - (1 - \lambda)I$, $e^{sB_0^*} f = e^{sL_D^\pi} f = e^{sL_D} f$, where:
 - $L_D^\pi = P_D^\pi - I$ is the infinitesimal generator of the π-return process,
 - $P_{s,D}^\pi = e^{sL_D^\pi}$ is the semigroup of the π-return process.

As a consequence,

$$\langle Kf, f \rangle = 2 \int_{s=0}^{+\infty} e^{2\lambda s} \left(A_D^\pi P_{s,D}^\pi f, P_{s,D}^\pi f \right) ds - \frac{1}{2} \frac{d}{ds} \text{Var}_\pi(P_{s,D}^\pi f)$$

$$= \text{Var}_\pi(f) + 2\lambda \int_{s=0}^{+\infty} e^{2\lambda s} \text{Var}_\pi(P_{s,D}^\pi f) ds.$$

- $\langle \pi, f \rangle = 0$ then ensures that $P_{s,D}^\pi f(x) = Q_s f(x) = \mathbb{E}_x [f(x_s) 1_{\{s < \tau_D\}}].$
Step 5 of the proof: tightness of ξ^n_{∞}

- Recall that we denote by L^n the infinitesimal generator of the empirical distribution $(\eta^n_t)_{t \geq 0}$ of the FV particle system, so that $E[L^n \phi(\eta^n_{\infty})] = 0$.
- Take $\phi(\eta) = \frac{1}{2} \langle \eta - \pi, R(\eta - \pi) \rangle$, where R is a symmetric operator.
- Little algebra yields the inequality

$$E \left[\langle -B'[\eta^n_{\infty}]\xi^n_{\infty}, R\xi^n_{\infty} \rangle \right] \leq C(R), \quad \xi^n_{\infty} = \sqrt{n}(\eta^n_{\infty} - \pi),$$

where $B'[\eta] := B_0 + \langle \eta - \pi, q \rangle$, $q(x) = \sum_{y \in E \setminus D} p(x, y)$.

 - Quadratic part consistent with the limit $M^n \psi \to \bar{M} \psi$,
 - cubic nonlinearity originates from the fact that ϕ is not bounded.

- If there were no cubic nonlinearity, then:
 - take $R = N^{-1}$ where N solves the Lyapunov equation $B_0 N + N B^*_0 + 2 I = 0$,
 - this yields $\langle -B_0 \xi, R\xi \rangle = -\frac{1}{2} \langle (N^{-1} B_0 + B^*_0 N^{-1}) \xi, \xi \rangle = \|N^{-1} \xi\|^2$,
 - from which you deduce the variance control $cN^{-1} E[\|\xi^n_{\infty}\|^2] \leq C(N^{-1})$.

- LLN on η^n_{∞} by Asselah, Ferrari, Groisman: with large probability,
 - $\langle \eta^n_{\infty} - \pi, q \rangle$ is small,
 - the Lyapunov equation with $B'[\eta^n_{\infty}] := B_0 + \text{perturbation}$ remains solvable.

- We get tightness but no variance control.
Some questions remain: variance control

In our finite space setting, can we obtain uniform variance control of the form

\[\mathbb{E} \left[\| \eta^n - \pi \|^2 \right] \leq \frac{C}{n} \]

Such an estimate is known (at least) for:

- **diffusions** with **soft killing** ([Rousset – SIAM J. Math. ’06]),
- **discrete space** Markov chains with **strong mixing condition** ([Cloez, Thai – Stoch. Proc. Appl. ’16]).

A possible approach: uniform and quantitative control of correlations.

Julien Reygner

CLT for stationary Fleming-Viot
Some questions remain: extension to general state spaces

Can we extend our CLT to more general Markov processes? (ideally, the same level of generality as Cérou, Delyon, Guyader, Rousset – arXiv ’16, ’17)

- An easy conjecture: any limit of $\xi^n_\infty \in M_0(D)$ is a stationary distribution of the ‘measure-valued’ linear diffusion

$$d\xi_t = ((L_D^\pi)^* + \lambda)\xi_t dt + dm_t,$$

where:

- L_D^π is the infinitesimal generator of the π-return process,
- $(m_t)_{t \geq 0}$ is a ‘measure-valued’ martingale with quadratic variation given by the Dirichlet form A_D^π of the π-return process.

- Do spectral properties of the π-return process still hold? What about tightness?

- How to make sense of all this?