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Quasistationary distribution in finite spaces

» Let E be a finite space.
> Let (x¢);>0 be the continuous time Markov chain with infinitesimal generator

Lf@) =Y pap)lf@) — f@),  pla.y) 20, S pley) = 1.

y€eE y€E

» Let D C E be nonempty, and let p = inf{t > 0: x¢ ¢ D}.

Quasistationary distribution (QSD)

A probability measure 7 on D is called quasistationary in D if

vt > 0, Pr(x¢t € |t < 1) = 7(-).

Perron-Frobenius Theorem

If the substochastic matrix! Pp = {p(z,v),z,y € D} is irreducible, then:
» there is a unique QSD T;
» the spectral radius 1 — A € (0, 1] of Py, is a single eigenvalue;
> Pim=(1—-M\)m.

1 Pp is seen as an operator on the functions D — R, and PS as an operator on the measures on D.
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Yaglom limit

In the sequel we always assume that Py, is irreducible.

Yaglom limit

Darroch, Seneta — J. Appl. Probab. ’67: for any initial distribution x on D,

m Pu(xe € [t <) = ().

» The QSD is particularly relevant in the study of metastability, where convergence
to the Yaglom limit occurs on a shorter time scale than exit from D.

> From Kramers - Physica *40 to many works by people at CIRM this week!

Nontrivial computational issue: how to sample from the QSD?
» Rejection Monte-Carlo fails in almost surely finite time.
> t— Pu(x¢ € -|t < 7p) obeys a nonlinear evolution.

» Occupation measure-based algorithm proposed by Aldous, Flannery, Palacios —
Probab. Engrg. Inform. Sci. ’88, see M. Benaim’s talk tomorrow.

» Particle system-based algorithm: Fleming-Viot particle system (Burdzy, Holyst,
March — Comm. Math. Phys. ’00).
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Sampling from the QSD: the Fleming-Viot particle system

» Take n copies (particles) of the process (xt);>¢ started iid according to x on D.

» When one attempts to exit from D, pick its next position uniformly among the
positions of the n — 1 remaining particles.

E\D We get a well-defined D"-valued exchangeable continuous
time Markov chain (x}, ...,x});>0, with empirical measure

1 n
n I )
Nt (z) = n E 11{,(%:33}, zeD,
1=

random process in the set (D) of probability measures on D.

> The chain is irreducible: n}* — n’% in distribution
(exponential/uniform rates in Cloez, Thai - Stoch. Proc. Appl. ’16).

In general spaces: Grigorescu, Kang - Stochastic Process. Appl. *04, Electron. J. Probab. ’06,
Rousset — SIAM J. Math. ’06, Ferrari, Maric — Electron. J. Probab. 07, Lobus - Math. Z. ’09,
Groisman, Jonckheere — Markov Process. Related Fields 13, Villemonais — ESAIM Probab.
Statist. *14, Ocafrain, Villemonais — Stoch. Anal. Appl. "17...
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LLN and CLT

What about the n — +oo limit?

Laws of Large Numbers by Asselah, Ferrari, Groisman - J. Appl. Probab. *11.
> Forallt > 0,n} — Pu(xt € -t < 7).
» For the stationary distribution: n%, — .

Central Limit Theorem by Cérou, Delyon, Guyader, Rousset — arXiv 16, ’17, see M.
Rousset’s talk on Friday.
» Forallt > 0, /n(n} —Pu(x¢ € |t < 7p)) converges in distribution to A/(0, K}*).
» If the system starts from the QSD, the covariance operator writes

KT15) = Vare(D+27 [ Vare(@upds, (mf) =

where Qs f(z) = Eg [f(xs)ll{s<‘rD}]'

» Extension to infinite time horizon not so straightforward.

Our result: stationary Central Limit Theorem.
> /n(n%, — m) converges in distribution to NV'(0, K).
» The covariance operator writes

oo
(Kf gy =Vars(H) 427 [~ @ Vare(@uf)ds,  (m ) =0.
s=0



Asymptotics of the Fleming—Viot particle system

FV particle system

ng
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Asymptotics of the Fleming—Viot particle system

Central Limit Theo- |
rem by Cérou, Delyon, !
Guyader, Rousset

Conditional law
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t = 400 . . t — +oo
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%
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Asymptotics of the Fleming—Viot particle system
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Asymptotics of the Fleming—Viot particle system

1| FV particle system Conditional law Central Limit Theo- !

I N rem by Cérou, Delyon, !
|

| ny P.(xt € -|t <7p) | Guyader, Rousset

[ mp——— e, e A T |
t — +oo . . t — +oo Asymptotic variance is consistent

irreducibility Asselah, Ferrari, Groisman | Yaglom limit in the t — 4 oo limit

== - — = — — — — — — — — — — - — — — N —— — = — — — — —_— — — — — e

! Mo 4 We prove a stationary:

| imi

| Stationary distribution QSD Central Limit Theorem |

1 ___ |
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Sketch of the proof

» We aim to prove that n(n% — m) — N (0, K),
> in the space Mo (D) of signed measures £ on D such that 3~ &(z) = 0.

© We write the infinitesimal generator M™ of the process \/n(ny* — ) in Mq(D).

© We compute the limit M of M™. .
~ Any limit of /n(n%, — ) is thus a stationary distribution for M.

© We identify M as the infinitesimal generator of a linear diffusion process (&;):+>0
on Mo (D), whose unique stationary distribution is a Gaussian measure N'(0, K).

© We solve a Lyapunov equation to compute K explicitly.
© We prove that the sequence /n(n?%, — ) is tight.

Julien Reygner CLT for stationary Fleming-Viot



Step 1 of the proof: infinitesimal generators

> The law of n7, is the stationary distribution of the P(D)-valued process (N} )¢>0
with infinitesimal generator

L (n) = > nn(x) (p(r,y) +q(x)v:l__(y)) [d) (n+ %9”) - d)(n)} ,

1
x,yeD

where ¢(z) = Z p(z,y)and 0¥ = 1, — 1.
yeE\D

> The law of &7 := /n(n?y, — =) is the stationary distribution of the Mg (D)-valued
process (£7)¢>0 := (v/n(ny — 7))¢>0 with infinitesimal generator

MO = 30 (r@+ 52 (ves) + 0005 (70 + 21

x {uz <5+ %ey) —¢(£)] .
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Step 2 of the proof: taking the limit

Take ¢ € C° (Mo (D)). When n — +oo,

M"(€) — My () = ((P5)* — (1 = N)E, Vo) + AF 2 VZ4)(x),  uniformly in ¢,
with the following notation:
> PJ is the stochastic matrix with coefficients
ro(z,y) =p(z,y) +a(@)n(y), =»y€D,
which defines the 7-return process.

» The m-return process describes the pathwise limit of the (stationary) Fleming—Viot
particle system, it is irreducible and ergodic with respect to 7.

» A[ is the symmetric operator defined by

1
(ARS, ) = 5 Z m(x)pp (x, v) [ f(y) — f(@)]2. (energy / Dirichlet form)
x,yeD
Consequence: assume tightness, so that £, — £ (up to a subsequence). Then
0=E[M"¢(EL)] = E[(M™ — M)y (E5,)] + E [My(&5,)] = E[My(Ea.)],
N———

—0  uniformly

therefore the law of £ is a stationary distribution for M.
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Step 3 of the proof: identification of the limit

The operator
My(€) = ((P3)" — (1= N1, Vi) + Af = VZ(x)
is the infinitesimal generator of the linear diffusion process (&;);>0 on Mo (D)
d&; = Bo&,dt + Sdwy,
with (w¢);>0 BMin R¥, 3 : RF — Mo (D) and Bg : Mo(D) — Mo (D) defined by
%22* — A5 and  Bo= (F)* — (1- N

> By irreducibility of the 7-return process, A is positive definite on Mo (D).
» There exists v > 0 such that any eigenvalue 7 € C of By satisfies Re 7 < —~.

Consequence

The unique stationary distribution of M is the centered Gaussian measure on Mg (D)
with covariance operator K defined as the unique solution to the Lyapunov equation

BoK + KB} + 2A% = 0.

Uniqueness follows from uniform ellipticity.

Linearity of evolution preserves Gaussian measures.

Lyapunov equation is Ito’s formula for the covariance of (€;);>o.

Existence of a solution for Lyapunov equation follows from spectral stability of the drift.
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Step 4 of the proof: computation of the covariance

> The solution K to Lyapunov equation BoK + K Bj + 2A[ = 0 is known to write
+oo N
K= 2/ e*Bo AT esBo ds.
s=0
» Take f: D — R such that (7, f) = 0, and compute
Foo x x
(Kf.f)=2 / (AReB 1, B8 f)ds
s=0

: _ * SBY £ — oASoSLE £ — oAs .
> Since By = (P§)* — (1 — A)I, e®70 f = %D f = e** P, f, where:
> LJ = PJ — I is the infinitesimal generator of the 7-return process,
™ .
> Plp= e*ED is the semigroup of the wr-return process.
> As a consequence,

—+ oo
(Kf,f) =2 / e ABPIof PIof) d
S= —/_/

1d -
—Ed—Varw(P of)

—+ oo
= Var:(f) + 2\ e**Vary (P f)ds
s=0

> (m, f) = 0 then ensures that PT' f(z) = Qs f(z) = Ee[f(xs) 1 {s<rp}]-
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Step 5 of the proof: tightness of £

>

Recall that we denote by L™ the infinitesimal generator of the empirical
distribution (n?);>¢ of the FV particle system, so that E[L"¢(nZ,)] = 0.

v

Take ¢(n) = %(n — m, R(n — 7)), where R is a symmetric operator.

\{

Little algebra yields the inequality
E[(-B'&)es, REG)] < C(R), &% = Vai — ),

where B'[n] := Bo + (n — 7,4), 4(z) = 32, cp\p P(2: )-
> Quadratic part consistent with the limit M — Mo,
> cubic nonlinearity originates from the fact that ¢ is not bounded.
If there were no cubic nonlinearity, then:
> take R = N ' where N solves the Lyapunov equation By N + N B + 2I = 0,
> this yields (—Bo&, R€) = —3 (N~ 'Bo + ByN~1)¢, ) = [N~ '¢|%,
> from which you deduce the variance control ¢, 1 E[[|E% [|?] < C(N 1).
LLN on n’% by Asselah, Ferrari, Groisman: with large probability,

> (L, — 7, q) is small,
> the Lyapunov equation with B’[n’,] := By + perturbation remains solvable.

v

\{

v

We get tightness but no variance control.
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Some questions remain: variance control

In our finite space setting, can we obtain uniform variance control of the form
c
2
Efng —=l*] <~ 7
n
Such an estimate is known (at least) for:
» diffusions with soft killing (Rousset — SIAM J. Math. ’06),

» discrete space Markov chains with strong mixing condition (Cloez, Thai - Stoch.
Proc. Appl. ’16).

A possible approach: uniform and quantitative control of correlations.
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Some questions remain: extension to general state spaces

Can we extend our CLT to more general Markov processes?
(ideally, the same level of generality as Cérou, Delyon, Guyader, Rousset — arXiv 16, ’17)

> An easy conjecture: any limit of £, € Mo (D) is a stationary distribution of the
‘measure-valued’ linear diffusion

d& = ((L5)* 4+ A& dt + dmy,

where:

> L is the infinitesimal generator of the 7r-return process,
> (my¢)¢>0 is a ‘measure-valued’ martingale with quadratic variation given by the Dirichlet
form A of the w-return process.

» Do spectral properties of the 7-return process still hold? What about tightness?
» How to make sense of all this?
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