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Quasistationary distribution in finite spaces

◮ Let E be a finite space.
◮ Let (xt)t≥0 be the continuous time Markov chain with infinitesimal generator

Lf(x) =
∑

y∈E

p(x, y)[f(y) − f(x)], p(x, y) ≥ 0,
∑

y∈E

p(x, y) = 1.

◮ Let D ⊂ E be nonempty, and let τD = inf{t ≥ 0 : xt 6∈ D}.

Quasistationary distribution (QSD)

A probability measure π on D is called quasistationary in D if

∀t ≥ 0, Pπ(xt ∈ ·|t < τD) = π(·).

Perron–Frobenius Theorem

If the substochastic matrix1 PD = {p(x, y), x, y ∈ D} is irreducible, then:
◮ there is a unique QSD π;
◮ the spectral radius 1− λ ∈ (0, 1] of PD is a single eigenvalue;
◮ P ∗

D
π = (1− λ)π.

1PD is seen as an operator on the functions D → R, and P∗
D

as an operator on the measures on D.
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Yaglom limit

In the sequel we always assume that PD is irreducible.

Yaglom limit

Darroch, Seneta – J. Appl. Probab. ’67: for any initial distribution µ on D,

lim
t→+∞

Pµ(xt ∈ ·|t < τD) = π(·).

◮ The QSD is particularly relevant in the study of metastability, where convergence
to the Yaglom limit occurs on a shorter time scale than exit from D.

◮ From Kramers – Physica ’40 to many works by people at CIRM this week!

Nontrivial computational issue: how to sample from the QSD?
◮ Rejection Monte-Carlo fails in almost surely finite time.
◮ t 7→ Pµ(xt ∈ ·|t < τD) obeys a nonlinear evolution.
◮ Occupation measure-based algorithm proposed by Aldous, Flannery, Palacios –

Probab. Engrg. Inform. Sci. ’88, see M. Benaïm’s talk tomorrow.
◮ Particle system-based algorithm: Fleming–Viot particle system (Burdzy, Hołyst,

March – Comm. Math. Phys. ’00).
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Sampling from the QSD: the Fleming–Viot particle system

◮ Take n copies (particles) of the process (xt)t≥0 started iid according to µ on D.
◮ When one attempts to exit from D, pick its next position uniformly among the

positions of the n− 1 remaining particles.

D E \ D We get a well-defined Dn-valued exchangeable continuous
time Markov chain (x1t , . . . , x

n
t )t≥0, with empirical measure

ηnt (x) =
1

n

n∑

i=1

1{xit=x}, x ∈ D,

random process in the set P(D) of probability measures on D.

◮ The chain is irreducible: ηnt → ηn∞ in distribution
(exponential/uniform rates in Cloez, Thai – Stoch. Proc. Appl. ’16).

In general spaces: Grigorescu, Kang – Stochastic Process. Appl. ’04, Electron. J. Probab. ’06,
Rousset – SIAM J. Math. ’06, Ferrari, Maric – Electron. J. Probab. ’07, Löbus – Math. Z. ’09,
Groisman, Jonckheere – Markov Process. Related Fields ’13, Villemonais – ESAIM Probab.

Statist. ’14, Oçafrain, Villemonais – Stoch. Anal. Appl. ’17...
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LLN and CLT

What about the n→ +∞ limit?

Laws of Large Numbers by Asselah, Ferrari, Groisman – J. Appl. Probab. ’11.
◮ For all t ≥ 0, ηnt → Pµ(xt ∈ ·|t < τD).
◮ For the stationary distribution: ηn∞ → π.

Central Limit Theorem by Cérou, Delyon, Guyader, Rousset – arXiv ’16, ’17, see M.
Rousset’s talk on Friday.

◮ For all t ≥ 0,
√
n(ηnt − Pµ(xt ∈ ·|t < τD)) converges in distribution to N (0, Kµ

t ).
◮ If the system starts from the QSD, the covariance operator writes

〈Kπ
t f, f〉 = Varπ(f) + 2λ

∫ t

s=0

e2λsVarπ(Qsf)ds, 〈π, f〉 = 0,

where Qsf(x) = Ex[f(xs)1{s<τD}
].

◮ Extension to infinite time horizon not so straightforward.

Our result: stationary Central Limit Theorem.
◮

√
n(ηn∞ − π) converges in distribution to N (0, K).

◮ The covariance operator writes

〈Kf, f〉 = Varπ(f) + 2λ

∫ ∞

s=0

e2λsVarπ(Qsf)ds, 〈π, f〉 = 0.

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Conditional law

Pµ(xt ∈ ·|t < τD)

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Conditional law

Pµ(xt ∈ ·|t < τD)

t → +∞
Yaglom limit

π

QSD

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Conditional law

Pµ(xt ∈ ·|t < τD)

t → +∞
Yaglom limit

π

QSD

n → +∞

n → +∞

Asselah, Ferrari, Groisman

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Conditional law

Pµ(xt ∈ ·|t < τD)

t → +∞
Yaglom limit

π

QSD

n → +∞

n → +∞

Asselah, Ferrari, Groisman

Central Limit Theo-
rem by Cérou, Delyon,
Guyader, Rousset

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Conditional law

Pµ(xt ∈ ·|t < τD)

t → +∞
Yaglom limit

π

QSD

n → +∞

n → +∞

Asselah, Ferrari, Groisman

Central Limit Theo-
rem by Cérou, Delyon,
Guyader, Rousset

We prove a stationary
Central Limit Theorem

Julien Reygner CLT for stationary Fleming-Viot



Asymptotics of the Fleming–Viot particle system

FV particle system

ηnt

t → +∞
irreducibility

ηn∞

Stationary distribution

Conditional law

Pµ(xt ∈ ·|t < τD)

t → +∞
Yaglom limit

π

QSD

n → +∞

n → +∞

Asselah, Ferrari, Groisman

Central Limit Theo-
rem by Cérou, Delyon,
Guyader, Rousset

We prove a stationary
Central Limit Theorem

Asymptotic variance is consistent
in the t → +∞ limit
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Sketch of the proof

◮ We aim to prove that
√
n(ηn∞ − π) → N (0, K),

◮ in the space M0(D) of signed measures ξ on D such that
∑

x∈D
ξ(x) = 0.

1 We write the infinitesimal generator Mn of the process
√
n(ηnt − π) in M0(D).

2 We compute the limit M of Mn.
 Any limit of

√
n(ηn∞ − π) is thus a stationary distribution for M.

3 We identify M as the infinitesimal generator of a linear diffusion process (ξt)t≥0

on M0(D), whose unique stationary distribution is a Gaussian measure N (0,K).

4 We solve a Lyapunov equation to compute K explicitly.

5 We prove that the sequence
√
n(ηn∞ − π) is tight.
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Step 1 of the proof: infinitesimal generators

◮ The law of ηn∞ is the stationary distribution of the P(D)-valued process (ηnt )t≥0

with infinitesimal generator

L
nφ(η) =

∑

x,y∈D

nη(x)

(

p(x, y) + q(x)
nη(y)

n− 1

)[

φ

(

η +
1

n
θx,y

)

− φ(η)

]

,

where q(x) =
∑

y∈E\D

p(x, y) and θx,y = 1y − 1x.

◮ The law of ξn∞ :=
√
n(ηn∞ − π) is the stationary distribution of the M0(D)-valued

process (ξnt )t≥0 := (
√
n(ηnt − π))t≥0 with infinitesimal generator

M
nψ(ξ) =

∑

x,y∈D

n

(

π(x) +
ξ(x)√
n

)(

p(x, y) + q(x)
n

n− 1

(

π(y) +
ξ(y)√
n

))

×
[

ψ

(

ξ +
1√
n
θx,y

)

− ψ(ξ)

]

.
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Step 2 of the proof: taking the limit

Take ψ ∈ C∞
c (M0(D)). When n → +∞,

M
nψ(ξ) → Mψ(ξ) = 〈((Pπ

D
)∗ − (1− λ)I)ξ,∇ψ〉 +Aπ

D
:: ∇2ψ(x), uniformly in ξ,

with the following notation:
◮ Pπ

D
is the stochastic matrix with coefficients

pπ
D
(x, y) = p(x, y) + q(x)π(y), x, y ∈ D,

which defines the π-return process.
◮ The π-return process describes the pathwise limit of the (stationary) Fleming–Viot

particle system, it is irreducible and ergodic with respect to π.
◮ Aπ

D
is the symmetric operator defined by

〈Aπ
D
f, f〉 = 1

2

∑

x,y∈D

π(x)pπ
D
(x, y)[f(y) − f(x)]2. (energy / Dirichlet form)

Consequence: assume tightness, so that ξn∞ → ξ∞ (up to a subsequence). Then

0 = E [Mnψ(ξn∞)] = E[(Mn −M)ψ(ξn∞)
︸ ︷︷ ︸

→0 uniformly

] + E
[
Mψ(ξn∞)

]
→ E[Mψ(ξ∞)],

therefore the law of ξ∞ is a stationary distribution for M.
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Step 3 of the proof: identification of the limit

The operator

Mψ(ξ) = 〈((Pπ
D
)∗ − (1− λ)I)ξ,∇ψ〉+ Aπ

D
:: ∇2ψ(x)

is the infinitesimal generator of the linear diffusion process (ξt)t≥0 on M0(D)

dξt = B0ξtdt +Σdwt,

with (wt)t≥0 BM in Rk, Σ : Rk → M0(D) and B0 : M0(D) → M0(D) defined by

1

2
ΣΣ∗ := Aπ

D
and B0 = (Pπ

D
)∗ − (1− λ)I.

◮ By irreducibility of the π-return process, Aπ
D

is positive definite on M0(D).
◮ There exists γ > 0 such that any eigenvalue τ ∈ C of B0 satisfies Re τ ≤ −γ.

Consequence

The unique stationary distribution of M is the centered Gaussian measure on M0(D)
with covariance operator K defined as the unique solution to the Lyapunov equation

B0K +KB∗
0 + 2Aπ

D
= 0.

◮ Uniqueness follows from uniform ellipticity.
◮ Linearity of evolution preserves Gaussian measures.
◮ Lyapunov equation is Ito’s formula for the covariance of (ξt)t≥0.
◮ Existence of a solution for Lyapunov equation follows from spectral stability of the drift.
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Step 4 of the proof: computation of the covariance

◮ The solution K to Lyapunov equation B0K +KB∗
0
+ 2Aπ

D
= 0 is known to write

K = 2

∫
+∞

s=0

esB0Aπ
D
esB

∗
0 ds.

◮ Take f : D → R such that 〈π, f〉 = 0, and compute

〈Kf, f〉 = 2

∫ +∞

s=0

〈Aπ
D
esB

∗
0 f, esB

∗
0 f〉ds.

◮ Since B0 = (Pπ
D
)∗ − (1− λ)I, esB

∗
0 f = eλsesL

π
D f = eλsPπ

s,D
f , where:

◮ Lπ
D

= Pπ
D

− I is the infinitesimal generator of the π-return process,
◮ Pπ

s,D = esL
π
D is the semigroup of the π-return process.

◮ As a consequence,

〈Kf, f〉 = 2

∫ +∞

s=0

e2λs 〈Aπ
D
Pπ
s,Df, P

π
s,Df〉

︸ ︷︷ ︸

−1

2

d

ds
Varπ(P

π
s,Df)

ds

= Varπ(f) + 2λ

∫
+∞

s=0

e2λsVarπ(P
π
s,Df)ds.

◮ 〈π, f〉 = 0 then ensures that Pπ
s,D
f(x) = Qsf(x) = Ex[f(xs)1{s<τD}].
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Step 5 of the proof: tightness of ξn∞

◮ Recall that we denote by L
n the infinitesimal generator of the empirical

distribution (ηnt )t≥0 of the FV particle system, so that E[Lnφ(ηn∞)] = 0.

◮ Take φ(η) = 1

2
〈η − π,R(η − π)〉, where R is a symmetric operator.

◮ Little algebra yields the inequality

E
[
〈−B′[ηn∞]ξn∞, Rξn∞〉

]
≤ C(R), ξn∞ =

√
n(ηn∞ − π),

where B′[η] := B0 + 〈η − π, q〉, q(x) = ∑

y∈E\D p(x, y).

◮ Quadratic part consistent with the limit Mnψ → Mψ,
◮ cubic nonlinearity originates from the fact that φ is not bounded.

◮ If there were no cubic nonlinearity, then:
◮ take R = N−1 where N solves the Lyapunov equation B0N +NB∗

0
+ 2I = 0,

◮ this yields 〈−B0ξ, Rξ〉 = − 1

2
〈(N−1B0 +B∗

0
N−1)ξ, ξ〉 = ‖N−1ξ‖2,

◮ from which you deduce the variance control c
N−1E[‖ξ

n
∞‖2] ≤ C(N−1).

◮ LLN on ηn∞ by Asselah, Ferrari, Groisman: with large probability,
◮ 〈ηn

∞ − π, q〉 is small,
◮ the Lyapunov equation with B′[ηn

∞] := B0 + perturbation remains solvable.

◮ We get tightness but no variance control.
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Some questions remain: variance control

In our finite space setting, can we obtain uniform variance control of the form

E
[
‖ηn∞ − π‖2

]
≤ C

n
?

Such an estimate is known (at least) for:
◮ diffusions with soft killing (Rousset – SIAM J. Math. ’06),
◮ discrete space Markov chains with strong mixing condition (Cloez, Thai – Stoch.

Proc. Appl. ’16).

A possible approach: uniform and quantitative control of correlations.
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Some questions remain: extension to general state spaces

Can we extend our CLT to more general Markov processes?
(ideally, the same level of generality as Cérou, Delyon, Guyader, Rousset – arXiv ’16, ’17)

◮ An easy conjecture: any limit of ξn∞ ∈ M0(D) is a stationary distribution of the
‘measure-valued’ linear diffusion

dξt = ((Lπ
D
)∗ + λ)ξtdt + dmt,

where:
◮ Lπ

D
is the infinitesimal generator of the π-return process,

◮ (mt)t≥0 is a ‘measure-valued’ martingale with quadratic variation given by the Dirichlet
form Aπ

D
of the π-return process.

◮ Do spectral properties of the π-return process still hold? What about tightness?
◮ How to make sense of all this?
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