

Open Boundary Molecular Dynamics of a DNA molecule in a hybrid explicit/implicit salt solution

Matej Praprotnik

CIRM, Marseille, France

September 17 - 21, 2018

Outline

multiscale simulations:

- 1. Adaptive Resolution Scheme (AdResS)
- 2. coupling to supramolecular coarse-grained models
- 3. Open Boundary Molecular Dynamics (OBMD)

biomolecular applications:

- 1. DNA molecule in salt solution
- 2. columnar phases of DNA
- **3.** OBMD of a DNA molecule

Multiscale modeling & simulation

temporal scale

Multiscale simulation

atomistic simulation

- large length and time scales are difficult to capture
- coarse-grain simulation
 - atomistic details are lost
 - multiscale simulation

Adaptive Resolution Scheme (AdResS)

coarse-grained (CG) hybrid (HY) atomistic (AT) region

force between particle α and β :

$$\boldsymbol{F}_{\alpha}^{AdResS} = \sum_{\beta \neq \alpha} w \left(|\boldsymbol{R}_{\alpha} - \boldsymbol{R}| \right) w \left(|\boldsymbol{R}_{\beta} - \boldsymbol{R}| \right) \boldsymbol{F}_{\alpha\beta}^{AT} + \sum_{\beta \neq \alpha} \left[1 - w \left(|\boldsymbol{R}_{\alpha} - \boldsymbol{R}| \right) w \left(|\boldsymbol{R}_{\beta} - \boldsymbol{R}| \right) \right] \boldsymbol{F}_{\alpha\beta}^{CG} - \boldsymbol{F}_{\alpha}^{TD} \left(|\boldsymbol{R}_{\alpha} - \boldsymbol{R}| \right)$$

w(r)... position dependent weighting function

above force coupling scheme obeys Newton's third law

Praprotnik, Delle Site, Kremer; Annu. Rev. Phys. Chem. (2008)

Multiscale 1M NaCl salt solution

- atomistic force field:
 - TIP3P + Amber 03
- coarse-grained force field: derived with Boltzmann inversion

Bevc, Junghans, Kremer, Praprotnik; *New. J. Phys.* (2013) Zavadlav, Podgornik, Praprotnik; *JCTC* (2015)

Multiscale 1M NaCl salt solution

Zavadlav, Podgornik, Praprotnik; *JCTC* (2015)

Multiscale 1M NaCl salt solution

- density profile
- thermodynamic (TD) force on CG beads in HY region
- calculated iteratively

$$F_{TD}^{i+1} = F_{TD}^{i} - \frac{M_{\alpha}}{\rho_0^2 \kappa_T} \nabla \rho^i(x)$$

Zavadlav, Podgornik, Praprotnik; JCTC (2015)

Atomistic DNA in multiscale salt solution

Zavadlav, Podgornik, Praprotnik; J. Chem. Theory Comput. (2015)

structural properties of DNA molecule

root-mean-square deviation root-mean-square fluctuations

Zavadlav, Podgornik, Praprotnik; JCTC (2015)

structural properties of the surrounding solvent

Zavadlav, Podgornik, Praprotnik; JCTC (2015)

dielectric constant of DNA molecule

Group	ε (1.5 nm)	ε (1.8 nm)	ε (2.1 nm)	ε (2.4 nm)	ε (∞)
Phosphate	18.3	21.1	17.3	15.7	17.0
Sugar	2.7	2.8	2.7	2.4	2.6
Base	2.1	2.1	2.0	2.0	2.1
DNA	5.6	5.9	5.4	4.5	5.0

Zavadlav, Podgornik, Praprotnik; JCTC (2015)

dielectric constant of water

Zavadlav, Podgornik, Praprotnik; *JCTC* (2015)

Isotropic	Cholesteric	Hexagonal 2D progressive 3D longitudinal ordering	Orthorhombic	
$C(\text{mg/ml}) \approx 160 (*)$ mean interhelice		67 intermolecular distance a _H	0 1055 lattice parameters	
	distance a _m 49 Å 32 Å	31.5 Å 29 Å 23.7 Å	a = 24.09 Å $a = 20.77$ Å b = 39.33 Å $b = 29.72$ Å	
		helix 1	pitch P	

Durand, Doucet, Livolant, J. Phys. II France (1992)

Lyubartsev, Nordenskiöld, J. Phys. Chem. (1995), Yoo, Aksimentiev, J. Phys. Chem. Lett. (2011)

Isotropic	Cholesteric	Hexagonal 2D progressive 3D longitudinal ordering	Orthorhombic	
$C(mg/ml) \approx$	160 (*) 38 mean interhelices	0 67 intermolecular distance a ₃₄	0 1055 lattice parameters	
	distance a _m 49 Å 32 Å	31.5 Å 29 Å 23.7 Å	a = 24.09 Å a = 20.77 Å b = 39.33 Å b = 29.72 Å	
		helix pitch P 34.6 Å		

Durand, Doucet, Livolant, J.

system of 16 DNA

molecules

hexagonal/orthorhombic

Na⁺/Spd³⁺

Zavadlav, Podgornik, Praprotnik; Sci. Rep. (2017)

osmotic pressure vs. DNA density

Zavadlav, Podgornik, Praprotnik; Sci. Rep. (2017)

positional and orientational correlations

Zavadlav, Podgornik, Praprotnik; Sci. Rep. (2017)

order parameters

Next step: supramolecular mapping

- multiple AT molecules mapped to 1 CG bead
- motivation :
 - greater computational speed-up
 - with 4-to-1 mapping the MARTINI force field can be used

- half harmonic bonds between oxygen atoms
- different force constants -> model 1 and 2

Marrink, Risselada, Yefimov, Tieleman, de Vries; Phys. Chem. B (2007) Fuhrmans, Sanders, Marrink, de Vries; Theor. Chem. Acc. (2010)

DNA molecule in bundled-SPC/MARTINI salt solution

Zavadlav, Podgornik, Melo, Marrink, Praprotnik; EPJST (2016)

DNA molecule in bundled-SPC/MARTINI salt solution

$$Q_4 = 1 - \frac{3}{8} \sum_{i=1}^{3} \sum_{j=i+1}^{4} \left(\cos \theta_{ijk} + \frac{1}{3} \right)^2$$

Zavadlav, Podgornik, Melo, Marrink, Praprotnik; EPJST (2016)

Bundled-SPC water

pros:

- enables multiscale simulations with multi-molecule mapping
- interactions with non-water molecules mostly unaltered
- can reproduce the free energy of hydration of small molecules, the PMFs between pairs of amino acid side chains
- cons:
 - bundling affects the self-interactions of the water molecules -> altered water structure & dynamics
 - slow-down in the kinetics by factor of ca. 2
 - for sensitive systems bundling can cause severe structural distortions, loss of native contacts, protein unfolding...

Fuhrmans, Sanders, Marrink, de Vries; Theor. Chem. Acc. (2010) Gopal, Kuhn, Schäfer; PCCP (2015)

SWINGER algorithm

Zavadlav, Marrink, Praprotnik; JCTC (2018)

Free SPC/MARTINI water and DPD

Algorithm SWINGER:

• concurrently assembles, dissambles and reassembles water clusters

> DPD:

supramolecular coupling of atomistic water with DPD

Zavadlav, Marrink, Praprotnik; J. Chem. Theory Comput. (2016) Zavadlav, Praprotnik; J. Chem. Phys. (2017)

Free SPC/MARTINI water

Zavadlav, Marrink, Praprotnik; J. Chem. Theory Comput. (2016)

Free SPC/MARTINI water

SWINGER algorithm

Zavadlav, Marrink, Praprotnik; J. Chem. Theory Comput. (2016)

Free SPC/MARTINI water

tetrahedral order

Zavadlav, Marrink, Praprotnik; J. Chem. Theory Comput. (2016)

MD/DPD water

$$\mathbf{F}_{\alpha\beta}^{DPD,C}(\mathbf{R}_{\alpha\beta}) = a_{\alpha\beta}(1 - R_{\alpha\beta}/R_c)\hat{\mathbf{R}}_{\alpha\beta}$$
$$\mathbf{F}_{\alpha\beta}^{DPD,R}(\mathbf{R}_{\alpha\beta}) = \sqrt{2\gamma_{\alpha\beta}k_BT}(1 - R_{\alpha\beta}/R_c)\zeta_{ij}\hat{\mathbf{R}}_{\alpha\beta}$$
$$\mathbf{F}_{\alpha\beta}^{DPD,D}(\mathbf{R}_{\alpha\beta}) = -\gamma_{\alpha\beta}(1 - R_{ij}/R_c)^2(\hat{\mathbf{R}}_{\alpha\beta} \cdot \mathbf{V}_{\alpha\beta})\hat{\mathbf{R}}_{\alpha\beta}$$

Zavadlav, Praprotnik; J. Chem. Phys. (2017)

MD:

MD/DPD water

conservation of linear momentum

Zavadlav, Praprotnik; J. Chem. Phys. (2017)

Delgado-Buscalioni, Sablić, Praprotnik; *Eur. Phys. J. Special Topics* (2015) Sablić, Praprotnik, Delgado-Buscalioni; *Soft Matter* (2016) Delle Site, Praprotnik; Phys. Rep. (2017)

- system exchanges mass, momentum, and energy with its surroundings
 - **1.** Insertion of molecules: $\Delta N_B = \frac{\Delta t}{\tau_r} (\alpha \langle N_B \rangle N_B)$
 - 2. Multiscale buffers -> facilitates insertion

external boundary condition

1. Linear momentum conservation

2. Additional force in buffers: $F^{ext} = J \cdot n_B A + \frac{P_{out} - P_{in}}{\Delta t} + \sum_{\alpha} F^{TD}_{\alpha}$ \blacktriangleright DPD thermostat: $F^{thermo}_{\alpha} = \sum_{i \in \alpha, j \in \beta, \alpha \neq \beta} \sigma \omega^R(r_{ij}) \zeta_{ij} \hat{r}_{ij} - \gamma \omega^D(r_{ij}) (\hat{r}_{ij} \cdot \mathbf{v}_{ij}) \hat{r}_{ij}$ $\omega^D(r_{ij}) = [\omega^R(r_{ij})]^2$ $\sigma^2 = 2k_B T \gamma$

total force on each particle: $F_{\alpha} = F_{\alpha}^{AdResS} + F_{\alpha}^{ext} + F_{\alpha}^{thermo}$

Zavadlav, Sablić, Podgornik, Praprotnik; Biophys. J. (2018)

Zavadlav, Sablić, Podgornik, Praprotnik; Biophys. J. (2018)

Zavadlav, Sablić, Podgornik, Praprotnik; Biophys. J. (2018)

Conclusions

OBMD:

- Allows for simulation of open systems that can exchange mass, energy, and linear momentum with the environment.
- Enables us to perform effiecient molecular dynamics simulations of molecular liquids in the grand-canonical ensemble or under non-equilibrium flows.
- In the explicit domain, the water molecules and ions are both overtly present in the system, whereas in the implicit water domain, only the ions are explicitly present and the water is described as a continuous dielectric medium.
- Water molecules are inserted and deleted into/from the system in the intermediate buffer domain that acts as a water reservoir to the explicit domain, with both water molecules and ions free to enter or leave the explicit domain.
- Our approach is general and allows for efficient molecular simulations of biomolecules solvated in bathing salt solutions at any ionic strength condition.

Acknowledgements

- Staš Bevc; Gocan d.o.o., Slovenia
- Julija Zavadlav; ETH Zurich, Switzerland
- Jurij Sablić; National Institute of Chemistry, Slovenia
- Rudolf Podgornik; University of Ljubljana, Slovenia
- Siewert J. Marrink; University of Groningen, The Netherlands
- Rafael Delgado-Buscalioni; UAM, Madrid, Spain
- Luigi Delle Site; FU Berlin, Germany
- Kurt Kremer; MPIP, Mainz, Germany

Slovenian Research Agency for funding