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Motivation

I Non-ergodic theory???
I Multi-agent systems

∂t ft + v∂x ft + ∂v [(G(Mf (t , x))− v)ft ]− σ∂vv ft = 0

ft = ft (x , v) particle density,

M(t , x) =

∫
T dy

∫
R dw ft (y ,w)ϕ(x − y)w∫

T dy
∫
R dw ft (y ,w)ϕ(x − y)

[Butta, Flandoli, Ottobre, Zegarlinski, arxiv, 2018]
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Beyond the Hörmander Condition

Motivation

Motivation

I Non-ergodic theory???
I Multi-agent systems

∂t ft + v∂x ft + ∂v [(G(Mf (t , x))− v)ft ]− σ∂vv ft = 0

ft = ft (x , v) particle density,

M(t , x) =

∫
T dy

∫
R dw ft (y ,w)ϕ(x − y)w∫

T dy
∫
R dw ft (y ,w)ϕ(x − y)

[Butta, Flandoli, Ottobre, Zegarlinski, arxiv, 2018]



Beyond the Hörmander Condition

Setting

General Setting
I (Smooth) Vector field in RN , i.e. map V : RN → RN , with

V (x) = (V 1(x), . . . ,V j (x), . . . ,V N(x)) x ∈ RN

I Identified with first order differential operator

V (x) =
∑

j

V j (x)∂j

I For a collection of fields

V0(x),V1(x), . . . ,Vd (x)

I Example: in R3 consider

V := ∂x −
y
2
∂z ← differential operator

V = (1, 0,−y/2) ← vector field
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Beyond the Hörmander Condition

Setting

General Setting
I (Smooth) Vector field in RN , i.e. map V : RN → RN , with

V (x) = (V 1(x), . . . ,V j (x), . . . ,V N(x)) x ∈ RN

I Identified with first order differential operator

V (x) =
∑

j

V j (x)∂j

I For a collection of fields

V0(x),V1(x), . . . ,Vd (x)

I Example: in R3 consider

V := ∂x −
y
2
∂z ← differential operator

V = (1, 0,−y/2) ← vector field
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Setting

I SDE in RN

dXt = V0(Xt )dt + V1(Xt ) ◦ dWt , X0 = x

dXt = V0(Xt )dt +
d∑

i=1

Vi (Xt ) ◦ dW i
t , X0 = x

I Take Ef (Xt |X0 = x) =: u(t , x). Then

∂tu(t , x) = Lu(t , x),

u(0, x) = f (x)

I Operator L in Hörmander’s “Sum of squares” form

L = V0 +
1
2

d∑
i=1

V 2
i
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Beyond the Hörmander Condition

Setting

Warning

I will use the word distribution in geometric sense i.e. as a map

M 3 x D−→ vector space ⊆ Tx M

This can be produced by assigning a set of vector fields on M

M 3 x D−→ span{V0(x),V1(x), . . . ,Vd (x)}
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Hörmander Condition

Hörmander and Parabolic Hörmander Condition

I Let V0,V1, . . . ,Vd be d + 1 vector fields on RN

I Consider the following Lie Algebras

∆0(x) = spanLie{V0(x),V1(x), . . . ,Vd (x)}
∆(x) = spanLie{V1(x), . . . ,Vd (x), [V0,V1](x), . . . , [V0,Vd ](x)} ⊆ ∆0(x)

I If ∆0(x) = RN for every x ∈ RN then L is hypoelliptic (on RN ) – analytic
viewpoint

I If ∆(x) = RN for every x ∈ RN then ∂t − L is hypoelliptic (on R+ × RN )
and the process Xt has a density – probabilistic perspective
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V0(x) = V (∆)
0 (x) + V (⊥)

0 (x)
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Hörmander Condition

∆n+1(x) = spanLie{V0(x),V1(x), . . . ,Vd (x)}
∆n(x) = spanLie{V1(x), . . . ,Vd (x), [V0,V1](x), . . . , [V0,Vd ](x)} ⊆ ∆n+1(x)

V0(x) = V (∆n)
0 (x) + V (⊥)

0 (x)

∆n+1(x) = ∆n(x)“ + ”V (⊥)
0 (x)
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Hörmander Condition

The HC in PDE Theory

I Under the PHC one can make sense of the PDE

∂tu(t , x) = Lu(t , x)

u(0, x) = f (x)

as u(t , x) is smooth in both arguments (even when f is just continuous
and bounded)

I In particular u(t , x) is differentiable in the direction ∂t , V0, in all the
directions {Vi}d

i=1 and in the directions belonging to the Lie algebra
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Hörmander Condition

The Control-Theoretical viewpoint

I In control theory the Hörmander condition is known as Chow’s Condition:

If span(Lie{V0(x),V1(x), . . . ,Vd (x)}) = RN for all x ∈ RN

then any two points of RN are connected by integral curves of the fields
V0(x),V1(x), . . . ,Vd (x) (reachability )
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Hörmander Condition

Excursus
I The HC implies reachability, it does not imply that the corresponding

stochastic dynamics goes everywhere (controllable)! E. g.:

dXt = −sin(Xt )dt + cos(Xt ) ◦ dWt , Xt ∈ R

I Solution of apparent contradiction

dXt = −sin(Xt )dt + cos(Xt )u(t)dt

versus

dXt = −sin(Xt )ũ(t)dt + cos(Xt )u(t)dt
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The UFG condition

UFG condition
The Lie algebra

∆(x) = Lie{V1(x), . . . ,Vd (x), [V0,V1], . . . , [V0,Vd ]} is finitely generated

That is,

Level 1 V0 = {V1, . . . ,Vd}
Level 2 V1 = {[Vi ,V ], 0 ≤ i ≤ d ,V ∈ V0}
Level 3 V2 = {[Vi ,V ], 0 ≤ i ≤ d ,V ∈ V1}

...
Level m . . .


Am

I No assumption on the rank of the Lie algebra! the rank does not even
need to be constant (and indeed, it is in general not constant)

I A bit more formally

V[α](x) =
∑

β∈Am

ϕβ
α(x)V[β](x) .
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Beyond the Hörmander Condition

The UFG condition

UFG condition
The Lie algebra

∆(x) = Lie{V1(x), . . . ,Vd (x), [V0,V1], . . . , [V0,Vd ]} is finitely generated

That is,

Level 1 V0 = {V1, . . . ,Vd}
Level 2 V1 = {[Vi ,V ], 0 ≤ i ≤ d ,V ∈ V0}
Level 3 V2 = {[Vi ,V ], 0 ≤ i ≤ d ,V ∈ V1}

...
Level m . . .


Am

I No assumption on the rank of the Lie algebra! the rank does not even
need to be constant (and indeed, it is in general not constant)

I A bit more formally

V[α](x) =
∑

β∈Am

ϕβ
α(x)V[β](x) .
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The UFG condition

PDE
I Ef (Xt |X0 = x) =: u(t , x)

∂tu(t , x) = V0u(t , x) +
1
2

d∑
i=1

V 2
i u(t , x)

I Rewrite the above as

(∂t − V0)u(t , x) =
1
2

d∑
i=1

V 2
i u(t , x)

Suppose we can prove differentiability in the direction V := ∂t −V0. Then
we can still make sense of the above (Strook, Kusuoka, Crisan, Delarue)

I Extreme example of UFG condition: 1D transport equation{
∂tu(t , x) = ∂x u(t , x)
u(0, x) = f (x)

⇒ u(t , x) = f (x + t)

Solution is smooth in direction ∂t − ∂x as (∂t − ∂x )u(t , x) ≡ 0.
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Beyond the Hörmander Condition

The UFG condition

PDE
I Ef (Xt |X0 = x) =: u(t , x)

∂tu(t , x) = V0u(t , x) +
1
2

d∑
i=1

V 2
i u(t , x)

I Rewrite the above as

(∂t − V0)u(t , x) =
1
2

d∑
i=1

V 2
i u(t , x)

Suppose we can prove differentiability in the direction V := ∂t −V0. Then
we can still make sense of the above (Strook, Kusuoka, Crisan, Delarue)

I Extreme example of UFG condition: 1D transport equation{
∂tu(t , x) = ∂x u(t , x)
u(0, x) = f (x)

⇒ u(t , x) = f (x + t)

Solution is smooth in direction ∂t − ∂x as (∂t − ∂x )u(t , x) ≡ 0.
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Geometric Brownian motion does not satisfy the HC!

dXt = Xtdt + 2XtdWt , ⇒ Xt = X0 e−t+2Wt Xt ∈ R

with generator
L = x∂x + 2x2∂2

x

I Let V1 = x∂x . Then
L = −V1 + 2V 2

1

... but it satisfies the UFG condition!

I (Notice that rank is not constant)
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Stochastic Geodesic Equation

dzt = V0(zt )dt + V1(zt ) ◦ dWt , z = (u, v) ∈ R6

V0 = (v ,−|v |2u), V1 = (0, u × v) .

zt ∈ TS2 := {(u, v) : |u| = 1, v ⊥ u}
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The UFG condition

Some results on UFG diffusions

Known facts from theory of finitely generated distributions
I Under the UFG condition the space RN is partitioned into manifoldsM.
I Each manifoldM is the integral manifold of the distribution

∆0(x) = spanLie{V0,V1, . . . ,Vd}

I The rank of ∆0(x) is constant onM.

I The orbits of the vector fields V0, . . . ,Vd coincide with the integral
manifolds of ∆

+ Strook and Varadhan control theorem
I If the process Xt starts on one manifoldM it will stay onM for every

positive t :

X0 ∈M ⇒ Xt ∈M for every t ≥ 0
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Beyond the Hörmander Condition

The UFG condition

Some results on UFG diffusions

Known facts from theory of finitely generated distributions
I Under the UFG condition the space RN is partitioned into manifoldsM.
I Each manifoldM is the integral manifold of the distribution

∆0(x) = spanLie{V0,V1, . . . ,Vd}

I The rank of ∆0(x) is constant onM.

I The orbits of the vector fields V0, . . . ,Vd coincide with the integral
manifolds of ∆

+ Strook and Varadhan control theorem
I If the process Xt starts on one manifoldM it will stay onM for every

positive t :

X0 ∈M ⇒ Xt ∈M for every t ≥ 0
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The UFG condition

Exponential Decay of derivatives

I exponential decay of derivatives (+ some control theory)⇒ uniqueness
of invariant measure (on the manifold)

I Obtuse Angle condition

[Vα,V0]f (x) · Vαf (x) ≤ −λ|Vαf (x)|2

I Obtuse angle condition implies

|VαPt f (x)| ≤ ce−λt

I Suppose you know (Pt f )(x)→ ν

(Pt f )(y) = (Pt f )(y)− (Pt f )(x) + (Pt f )(x)− ν

=

∫ T

0
Vα(Pt f )(γ(s))ds + (Pt f )(x)− ν .
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Beyond the Hörmander Condition

The UFG condition

I Under the UFG condition there is a change of coordinates such that
locally one can always express the SDE

dXt = V0(Xt )dt +
d∑

i=1

Vi (Xt ) ◦ dW i
t , X0 = x

in the form “ODE + SDE”: X̃t = (Zt , ζt )

dZt = U0(Zt , ζt ) dt +
d∑

j=1

Uj (Zt , ζt ) ◦ dW j
t

dζt = U(ζt ) dt one-dimensional ODE

I Moreover, Ṽ (⊥)
0 = (0, . . . , 0,U)
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Non-autonomous hypoelliptic systems

Xt = (Zt , ζt ) ∈ RN−1 × R dZt = U0(Zt , ζt ) dt +
∑d

j=1 Uj (Zt , ζt ) ◦ dW j
t

dζt = U(ζt ) dt one-dimensional ODE

I Either ζt → ±∞ or ζt → ζ̄

I Let ζ̄ be a stationary point of U and suppose ζt → ζ̄

I Reasonable guess: Xt = (Zt , ζt )→ (Z̄t , ζ̄) where

dZ̄t = U0(Z̄t , ζ̄) dt +
d∑

j=1

Uj (Z̄t , ζ̄) ◦ dW j
t

I Notice that in this case V (⊥)
0 (x) = (0, . . . , 0,U(z)) hence

the curve t → etV (⊥)
0 (x)“ = ”ζt is driving the dynamics
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Example 1

UFG- Heisenberg diffusion

dYt = −Ytdt +
√

2dW 2
t

dZt = −2Ztdt −
√

2Yt ◦ dW 1
t +
√

2ζt ◦ dW 2
t

dζt = −ζtdt
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Example 2 (less cheating)

I Random circles

dXt = −Ytdt +
√

2Xt ◦ dBt

dYt = Xtdt +
√

2Yt ◦ dBt .

V0 = (−y , x), V1 = (x , y)

I After the change of coordinates one obtains

dζt = dt

dZt =
√

2dWt
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