
Most probable places of exit from a domain
Boris Nectoux (TU Wien)

Joint work with G. Di Gesù, T. Lelièvre, and D. Le Peutrec

Overdamped Langevin process:

dXt = −∇f (Xt)dt +
√
h dBt .

Let Ω ⊂ Rd be a bounded domain.
- What are the most probable places of exit from Ω for the
process (Xt)t≥0 ?
- What is the exact repartition of probabilities between
these places ?
Previous works of Day, Kamin, Perthame and
Freidlin-Wentzell when ∂nf > 0 on ∂Ω and f has only one
critical point in Ω (which then is its global minimum in Ω).
Purpose of this work: extend their result when f has several
critical points in Ω and when ∂nf can change sign on ∂Ω.
Saddle points of f in Ω with a higher energy that min∂Ω f can
lead to significant changes in the concentration of the exit
point distribution.



Efficient random walk for Wang-Landau algorithm
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Wang-Landau

. Wang-Landau, key features:
I Stochastic algorithm to compute density of states
I Asymptotic convergence well understood
I Mild practical performances on real / complex systesm

. Novel ingredients:
I Novel random walk using geometrical information (aka gradient)

I counters some effects of measure concentration

I Darting for multi-modal distributions

I Test system: toy protein dialanine, dim = 60

I One of the very first tests on biomolecules
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Consider an ergodic average of a diffusion

1
t

∫ t

0
f(Xs)ds −−−−−−−→

t→+∞

∫
R
d
f dµ.

Goal : compute the large deviations fluctuations

P

[
1
t

∫ t

0
f(Xs)ds = a

]
≈ e−tI(a).

Main strategies:

• importance splitting;

• optimal control.
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Poster: present an adaptive algorithm to learn the optimal bias and compute
rare fluctuations. This is a joint work with H. Touchette (Stellenbosch).
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A new implementation of the Generalized Parallel Replica dynamics 
for the long time simulation of metastable biochemical systems

F. Hédin & T. Lelièvre, CERMICS ENPC
https://arxiv.org/abs/1807.02431

https://arxiv.org/abs/1807.02431


Using rare event methods to study multistability in models and

simulations of wall flow transiting to turbulence

Joran Rolland, Laboratoire de Physique, ENS Lyon

Adaptive Multilevel Splitting
on forced 3D plane Couette flow

Time series of
Kinetic energy

+Numerics and Theory

on model systems
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⇒ Access scalings and mechanisms of transition to turbulence



Averaging and Conditional Expectations:
Some Aspects of a Comparison
L. Neureither, U. Sharma, C. Hartmann

Slow-fast (0 < ε� 1) dynamics: dXt = (−Xt + Yt) dt , X0 = x0 6= 0

dYt = −1
ε
Yt dt +

1√
ε

dBt , Y0 = y0.

Averaging X̄t = x0e−t 6= X ce
t ≡ x0 Conditional Expectation

Questions:
I When does “Averaging = Conditional Expectation” hold?
I Under which conditions do we get convergence of the Conditional

Expectation approach as ε→ 0?



Optimal importance sampling using stochastic control
Lorenz Richter, Carsten Hartmann

! Goal: compute γ(x , t) = − logEP
[
exp (−W (Xt:T ))

∣∣∣Xt = x
]

dXs = b(Xs , s)ds + σ(Xs)dWs , W (Xt:T ) =

∫ T

t
f (Xs , s)ds + g(XT ), f , g : Rd → R

! Importance sampling: EQu
[
exp (−W ) d P

d Qu

]

! Duality between sampling and control:

γ(x , t) = inf
Qu≪P

{EQu [W ] + KL(Qu∥P)}

! zero-variance estimator

! Try to numerically approximate the optimal
change of measure in path space

! stochastic gradient descent
! approximate dynamic programming



Constructing sampling schemes via coupling: Markov
semigroups and optimal transport

Goal: Compute
´
Rd f dπ, π ∝ e−V dx (via MCMC.)

dXt = −V ′(Xt) dt +
√

2 dW x
t ,

dYt = −V ′(Yt) dt +
√

2 dW y
t , F (x , y) =

1

2
(f (x) + f (y)) ,

where (W x
t )t≥0 and (W y

t )t≥0 are not necessarily independent.

(Xt ,Yt)t≥0 ergodic wrt. π̄ =⇒ π̄ is a coupling of πx and πy
=⇒ (nonstandard) optimal transport problem

L̄Γ = −V ′(x) + ∂2
x︸ ︷︷ ︸

Lx

−V ′(y) + ∂2
y︸ ︷︷ ︸

Ly

+Γ,

Coupling operator: Γ = 2α∂x∂y , α : R2 → [−1, 1]



Feliks Nüske Projected DynamicsCIRM Meeting 09/2018

Effective Dynamics for SDEs
Original Dynamics Reduced Dynamics

dZt = b⇠(Zt)dt+
p
2��1�⇠(Zt)dWt
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dXt = b(Xt)dt+
p
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number of crisp basis functions (cluster-centers) were used and
compared to the six basis function Gaussian model. The colors
indicate the number of basis functions used; the thinner lines
correspond to the Markov models, whereas the thick solid line
is obtained from the Gaussian model. In agreement with the
previous results, we find that 30 or more crisp basis functions
are needed to reproduce an approximation quality similar to
that of a six-Gaussian basis set.
4.3. Deca-alanine. As a third and last example, we study

deca-alanine, a small peptide that is about five times the size
of alanine dipeptide. A sketch of the peptide is displayed in
Figure 5A.
The slow structural processes of deca-alanine are less obvious

compared to alanine dipeptide. The Amber03 force field used
in our simulation produces a relatively fast transition between

the elongated and the helical state of the system, with an
associated time scale of 5−10 ns. As we can see in Figure 5B,
we are able to recover this slowest time scale with our method,
t2 converges to roughly 6.5 ns for both models. Comparing this
to the two Markov models constructed from the same
simulation data, we see that both yield slightly higher time
scales: The k-means based MSM returns a value of about 8 ns
and the finely discretized one ends up with 8.5 ns. Note that the
underestimate of the present Gaussian basis set is systematic,
likely due to the fact that all basis functions were constructed as
a function of single dihedral angles only, thereby neglecting the
coupling between multiple dihedrals.
Despite this approximation, we are able to determine the

correct structural transition. In order to analyze this, we
evaluate the second eigenfunction |r2⟩, obtained from the
smaller model, for all trajectory points, and plot a histogram of
these values as displayed in Figure 5C. We then select all frames
that are within close distance of the peaks of that histogram and
produce overlays of these frames as shown underneath. Clearly,
large negative values of the second eigenfunction indicate that
the peptide is elongated, whereas large positive values indicate
that the helical conformation is attained. This is in accord
with a similar analysis of the second right Markov model
eigenvector: In Figure 5D, we show overlays of structures taken
from states with the most negative and most positive values of
the second eigenvector, and we find that the same transition is
indicated, although the most negative values correspond to a
slightly more bent arrangement of the system.
In summary, it is possible to use a comparatively small basis

of 36 Gaussian functions to achieve results about the slowest
structural transition which are comparable to those of MSMs
constructed from about 1000 and 6500 discrete states,
respectively. However, the differences in the time scales point
to a weakness of the method: The fact that increasing the
number of basis functions does not alter the computed time
scale indicates that coordinate correlation cannot be appropri-
ately captured using sums of one-coordinate basis functions. In
order to use the method for larger systems, we will have to
study ways to overcome this problem.

5. CONCLUSIONS
We have presented a variational approach for computing the
slow kinetics of biomolecules. This approach is analogous to
the variational approach used for computing stationary states in
quantum mechanics, but it uses the molecular dynamics
propagator (or transfer operator) rather than the quantum-
mechanical Hamiltonian. A corresponding method of linear
variation is formulated. Since the MD propagator is not
analytically tractable for practically relevant cases, the matrix
elements cannot be directly computed. Fortunately, these
matrix elements can be shown to be correlation functions that
can be estimated from simple MD simulations. The method
proposed here is thus, to first define a basis set able to capture
the relevant conformational dynamics, then compute the
respective correlation matrices, and then to compute their
dominant eigenvalues and eigenvectors, thus obtaining the key
ingredients of the slow kinetics.
Markov state models (MSMs) are found to be a special case

of the variational principle formulated here, namely for the case
that indicator functions (also known as crisp sets or step
functions) on the MSM clusters are used as a basis set.
We have applied the variational approach using Gaussian

basis functions on a number of model examples, including

Figure 5. Illustration of the method using dihedral angle coordinates
of the deca alanine molecule. (A) Graphical representation of the
system. (B) Convergence of the estimated second implied time scale
(in nanoseconds) depending on the lag time. We show the results of
both Gaussian models and of both the k-means based MSM and the
adapted MSM. Thin vertical bars indicate the error estimated by a
bootstrapping procedure. (C) Assignment of representative structures
for the second slowest process: The histogram shows how the values
of the second estimated eigenfunction |r2⟩ of the smaller model are
distributed over all simulation trajectories. Underneath, we show an
overlay of structures taken at random from the vicinity of the peaks at
−2.7, −1.6, 0.7, and 1.3. (D) Overlays of structures corresponding to
the most negative (left) and most positive (right) values of the second
Markov model eigenvector, taken from the k-means MSM.
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Figure 6 Analysis of effective dynamics for deca alanine in the space of its two slowest eigenfunctions. A: Effective
free energy of the original dynamics (top) and free energy sampled by effective dynamics at s = 1ns (bottom). B:
First two implied timescales of the effective simulations as a function of the offset s, compared to the references
in black. The vertical dashed line indicates where the offset equals 1

⌧ , which is where the overdamped regime is
expected to be attained. C: Stationary probabilities of three metastable sets (obtained from the original data using
the PCCA method) as a function of s (dashed lines), compared to the reference values (solid lines). The vertical
dashed line indicates where the offset equals 1

⌧ , which is where the overdamped regime is expected to be attained.
Errorbars in panels B and C were obtained by bootstrapping on the effective simulations.

5 Summary

We have discussed the approximation of high-dimensional diffusion processes by effective dynamics defined
on the lower-dimensional space of reduced variables. We have analyzed the approximation quality of low-
lying eigenvalues of the corresponding generator for reversible diffusions. A new relative error bound for
dominant eigenvalues in terms of the H

1
µ-approximation error of the corresponding eigenfunctions was

proved. Furthermore, we have discussed how the overdamped limit can be exploited to extend the validity
of these approximation results to Langevin dynamics. Numerical examples have shown that using a large
offset in the Kramers-Moyal estimators for effective drift and diffusion coefficients does not seem to impair
the approximation quality of dominant eigenvalues. Future work will focus on providing a theoretical
foundation for the observations stated in this paper.
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A perturbative approach to control variates
in molecular dynamics

Julien Roussel, Gabriel Stoltz, Cermics, ENPC and INRIA Paris

Dimer in a solvent under shearing
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ν F

d(q)

V (q) = Vdimer + Vsolvent

Vdimer(q) = vdimer(|q1 − q2|)

Vsolvent =
∑
i∈all

∑
j∈solvent

vsolvent(|qi − qj |)

L = L0 + (−∇Vsolvent(q)− νF (q))>∇

dqt = (−∇V (qt)+νF (qt)) dt+
√

2β−1 dWt

Goal

Compute
∫
T2N |q1 − q2|dµη(dq) (Nonequilibrium average).
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V (q) = Vdimer +���
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Vdimer(q) = vdimer(|q1 − q2|)

Vsolvent =

��
���

���
���

�∑
i∈all

∑
j∈solvent

vsolvent(|qi − qj |)

L = L0 +((((
((((−∇Vsolvent(q)−���νF (q))>∇

dqt = (−∇Vdimer(qt)+���νF (qt)) dt+
√

2β−1 dWt

Control variate method
1) Solve −L0u = |q1 − q2| − E0[|q1 − q2|] for u
2) Average ζ(q) = |q1 − q2|+ Lηu(q)
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An inequality connecting entropy distance, Fisher Information
and large deviations

Upanshu Sharma

L : generator of a Markov process on X

Law of this process evolves according to forward Kolmogorov equation

@t⇢ = L⇤⇢

For two solutions ⇢, µ : d

dt
H(µt|⇢t) = �R(µt|⇢t)

relative entropy Fisher Information

or in time-integrated form

( ⇤ )

What is the error you make when you do not solve the equation?

What happens when µ is not a solution of ( ⇤ )?

H(µT |⇢T )� H(µ0|⇢0) = �
Z T

0
R(µt|⇢t)dt



Tobias Wöhrer, TU Vienna:
Sharp decay estimates in defective evolution equations

• Let C ∈ Cn×n be positive stable with spectral gap
µ := min{Reλ | λ ∈ σ(C)} > 0.

ẋ(t) = −Cx(t), t ≥ 0.

• Matrix C is defective in λµ : ⇐⇒ algebraic multiplicity >
geometric multiplicity of λµ

• Construction of Lyapunov functional ‖ · ‖2P(t) for sharp
decay rate

‖x(t)‖22 ≤ c(1+ t2M)e−2µt, c = λ
P(0)
max

λ
P(0)
min

cMβ.

• Application to PDE: Sensitivity analysis for z ∈ R of
two-velocity BGK model (x ∈ T)

∂tf±(x, z) = ∓∂xf±(x, z)±
σ(z)
2

(f−(x, z)− f+(x, z))

leads to defective ODE system for Fourier modes.



Diffusion maps: local and global 
tool for sampling of metastable systems  
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Time error estimation for metastable Markov
processes
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Mean transition time from A to B for equilibrium
trajectories?

Discrete-time continuous space Markov chain (Yn)n�0

Reactive entrance distribution vs Quasi-Stationary Distribution

Main tools: Trace process, Poisson boundary value problem, convergence
to quasi-stationarity

Work in progress with Arnaud Guyader and Tony Lelièvre
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Estimation of the transition time

Estimation of the probability of transition 

Flux of reactive trajectories obtained with AMS

Estimation of the committor function 
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AMS framework

1 multinomial scheme: All the particles do a multinomial selection
before evolving to the next step. We only deal with the case where
we kill a proportion of particles as N →∞
• higher variance
• higher computational cost
• easy to analyse theoretically

2 keep-survived scheme: The survived particles stay at the same site
during the selection procedure.
• lower variance
• lower computational cost
• difficult to analyse

Our construction is based on the coalescent tree-typed occupation
measures in the genealogy of the associated Interacting Particle System.
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Three variance estimators

1 multinomial scheme: asymptotic variance
• term-by-term estimator:

• intuitive by construction
• complex to calculate
• consistent estimator
• intermidiate estimator for the following one

• disjoint ancestral line-based estimator:
• same estimator proposed by Lee & Whiteley for Particle Filters
• easy to calculate
• consistent estimtator

2 keep-survived scheme: non-asymptotic variance
• modified disjoint ancestral lines-based estimator:

• available for almost all kinds of GAMS framework
• easy to calculate
• unbiased estimator
• no consistency result (for now, heuristically, this would also be a

consistent estimator under some regularity assumptions)
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