Most probable places of exit from a domain

Boris Nectoux (TU Wien)
Joint work with G. Di Gesù, T. Lelièvre, and D. Le Peutrec

- Overdamped Langevin process:

$$
d X_{t}=-\nabla f\left(X_{t}\right) d t+\sqrt{h} d B_{t}
$$

- Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain.
- What are the most probable places of exit from Ω for the process $\left(X_{t}\right)_{t \geq 0}$?
- What is the exact repartition of probabilities between these places?
- Previous works of Day, Kamin, Perthame and Freidlin-Wentzell when $\partial_{n} f>0$ on $\partial \Omega$ and f has only one critical point in Ω (which then is its global minimum in $\bar{\Omega}$).
- Purpose of this work: extend their result when f has several critical points in Ω and when $\partial_{n} f$ can change sign on $\partial \Omega$.
- Saddle points of f in Ω with a higher energy that $\min _{\partial \Omega} f$ can lead to significant changes in the concentration of the exit point distribution.

Efficient random walk for Wang-Landau algorithm in high dimensional spaces

Augustin Chevallier

September 18, 2018

Wang-Landau

\triangleright Wang-Landau, key features:

- Stochastic algorithm to compute density of states
- Asymptotic convergence well understood
- Mild practical performances on real / complex systesm
\triangleright Novel ingredients:
- Novel random walk using geometrical information (aka gradient)
- counters some effects of measure concentration
- Darting for multi-modal distributions
- Test system: toy protein dialanine, $\operatorname{dim}=60$
- One of the very first tests on biomolecules

CIRM 2018

Grégoire Ferré - CERMICS, ENPC

Consider an ergodic average of a diffusion

$$
\frac{1}{t} \int_{0}^{t} f\left(X_{s}\right) d s \underset{t \rightarrow+\infty}{ } \int_{\mathbb{R}^{d}} f d \mu
$$

Goal : compute the large deviations fluctuations

$$
\mathbb{P}\left[\frac{1}{t} \int_{0}^{t} f\left(X_{s}\right) d s=a\right] \approx \mathrm{e}^{-t \mid(a)}
$$

Main strategies:

- importance splitting;

- optimal control.

Poster: present an adaptive algorithm to learn the optimal bias and compute rare fluctuations. This is a joint work with H. Touchette (Stellenbosch).

A new implementation of the Generalized Parallel Replica dynamics for the long time simulation of metastable biochemical systems
F. Hédin \& T. Lelièvre, CERMICS ENPC
 https://arxiv.org/abs/1807.02431

Accurate sampling of a protein-ligand complex dissociation time

Using rare event methods to study multistability in models and simulations of wall flow transiting to turbulence

Joran Rolland, Laboratoire de Physique, ENS Lyon

Adaptive Multilevel Splitting on forced 3D plane Couette flow

Time series of
Kinetic energy
L. Neureither, U. Sharma, C. Hartmann

Slow-fast $(0<\varepsilon \ll 1)$ dynamics: $\quad d X_{t}=\left(-X_{t}+Y_{t}\right) d t, \quad X_{0}=x_{0} \neq 0$

$$
d Y_{t}=-\frac{1}{\varepsilon} Y_{t} d t+\frac{1}{\sqrt{\varepsilon}} d B_{t}, \quad Y_{0}=y_{0}
$$

Averaging $\quad \bar{X}_{t}=x_{0} e^{-t} \quad \neq X_{t}^{c e} \equiv x_{0} \quad \underline{\text { Conditional Expectation }}$

Questions:

- When does "Averaging = Conditional Expectation" hold?
- Under which conditions do we get convergence of the Conditional Expectation approach as $\varepsilon \rightarrow 0$?

Optimal importance sampling using stochastic control

- Goal: compute $\gamma(x, t)=-\log \mathbb{E}_{\mathbb{P}}\left[\exp \left(-W\left(X_{t: T}\right)\right) \mid X_{t}=x\right]$

$$
d X_{s}=b\left(X_{s}, s\right) \mathrm{d} s+\sigma\left(X_{s}\right) \mathrm{d} W_{s}, \quad W\left(X_{t: T}\right)=\int_{t}^{T} f\left(X_{s}, s\right) \mathrm{d} s+g\left(X_{T}\right), \quad f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

- Importance sampling: $\mathbb{E}_{\mathbb{Q}^{u}}\left[\exp (-W) \frac{\mathrm{d} \mathbb{P}}{\mathrm{d} \mathbb{Q}^{u}}\right]$
- Duality between sampling and control:

$$
\gamma(x, t)=\inf _{\mathbb{Q}^{u} \ll \mathbb{P}^{P}}\left\{\mathbb{E}_{\mathbb{Q}^{u}}[W]+\operatorname{KL}\left(\mathbb{Q}^{u} \| \mathbb{P}\right)\right\}
$$

- zero-variance estimator
- Try to numerically approximate the optimal change of measure in path space
- stochastic gradient descent
- approximate dynamic programming

Constructing sampling schemes via coupling: Markov semigroups and optimal transport

Goal: Compute $\int_{\mathbb{R}^{d}} f \mathrm{~d} \pi, \quad \pi \propto e^{-V} \mathrm{~d} x \quad$ (via MCMC.)

$$
\begin{aligned}
& \mathrm{d} X_{t}=-V^{\prime}\left(X_{t}\right) \mathrm{d} t+\sqrt{2} \mathrm{~d} W_{t}^{x}, \\
& \mathrm{~d} Y_{t}=-V^{\prime}\left(Y_{t}\right) \mathrm{d} t+\sqrt{2} \mathrm{~d} W_{t}^{y}, \quad F(x, y)=\frac{1}{2}(f(x)+f(y)),
\end{aligned}
$$

where $\left(W_{t}^{x}\right)_{t \geq 0}$ and $\left(W_{t}^{y}\right)_{t \geq 0}$ are not necessarily independent.
$\left(X_{t}, Y_{t}\right)_{t \geq 0}$ ergodic wrt. $\bar{\pi} \Longrightarrow \bar{\pi}$ is a coupling of π_{x} and π_{y} \Longrightarrow (nonstandard) optimal transport problem

$$
\overline{\mathcal{L}}_{\Gamma}=\underbrace{-V^{\prime}(x)+\partial_{x}^{2}}_{\mathcal{L}_{x}} \underbrace{-V^{\prime}(y)+\partial_{y}^{2}}_{\mathcal{L}_{y}}+\Gamma
$$

Coupling operator: $\quad \Gamma=2 \alpha \partial_{x} \partial_{y}, \quad \alpha: \mathbb{R}^{2} \rightarrow[-1,1]$

Effective Dynamics for SDEs

Original Dynamics $\xrightarrow{Z=\xi(X)} \quad$ Reduced Dynamics

* Approximation Result for Slow Timescales
* Methods for Parameter Estimation
* Numerical Examples

A perturbative approach to control variates in molecular dynamics

Julien Roussel, Gabriel Stoltz, Cermics, ENPC and INRIA Paris

Dimer in a solvent under shearing

$$
\begin{aligned}
& V(q)=V_{\text {dimer }}+V_{\text {solvent }} \\
& V_{\text {dimer }}(q)=v_{\text {dimer }}\left(\left|q_{1}-q_{2}\right|\right) \\
& V_{\text {solvent }}=\sum_{i \in \text { all }} \sum_{j \in \text { solvent }} v_{\text {solvent }}\left(\left|q_{i}-q_{j}\right|\right) \\
& \mathcal{L}=\mathcal{L}_{0}+\left(-\nabla V_{\text {solvent }}(q)-\nu F(q)\right)^{\top} \nabla \\
& \mathrm{d} q_{t}=\left(-\nabla V\left(q_{t}\right)+\nu F\left(q_{t}\right)\right) \mathrm{d} t+\sqrt{2 \beta^{-1}} \mathrm{~d} W_{t}
\end{aligned}
$$

Goal

Compute $\int_{\mathbb{T}^{2 N}}\left|q_{1}-q_{2}\right| \mathrm{d} \mu_{\eta}(\mathrm{d} q)$ (Nonequilibrium average).

A perturbative approach to control variates in molecular dynamics

Julien Roussel, Gabriel Stoltz, Cermics, ENPC and INRIA Paris

Dimer in a solvent under shearing

$$
\begin{aligned}
& V(q)=V_{\text {dimer }}+V_{\text {solvent }} \\
& V_{\text {dimer }}(q)=v_{\text {dimer }}\left(\left|q_{1}-q_{2}\right|\right) \\
& V_{\text {solvent }}=\sum_{i \in \text { all }} \sum_{\text {jesolvent }} v_{\text {solvent }}\left(\left(q_{i}-q_{j} \mid\right)\right. \\
& \mathcal{L}=\mathcal{L}_{0}+\left(-\nabla V_{\text {solvent }}(q)-\nu E(q)\right)^{\top} \nabla \\
& \mathrm{d} q_{t}=\left(-\nabla V_{\text {dimer }}\left(q_{t}\right)+\nu E(q t)\right) \mathrm{d} t+\sqrt{2 \beta^{-1}} \mathrm{~d} W_{t}
\end{aligned}
$$

Control variate method

1) Solve $-\mathcal{L}_{0} u=\left|q_{1}-q_{2}\right|-\mathbb{E}_{0}\left[\left|q_{1}-q_{2}\right|\right]$ for u
2) Average $\zeta(q)=\left|q_{1}-q_{2}\right|+\mathcal{L}_{\eta} u(q)$

An inequality connecting entropy distance, Fisher Information and large deviations

Upanshu Sharma

L : generator of a Markov process on \mathcal{X}
Law of this process evolves according to forward Kolmogorov equation

$$
\begin{array}{ll}
\partial_{t} \rho=L^{*} \rho & (*) \\
\frac{d}{d t} H\left(\mu_{t} \mid \rho_{t}\right) & =-R\left(\mu_{t} \mid \rho_{t}\right) \\
\text { relative entropy } & \text { Fisher Information }
\end{array}
$$

For two solutions ρ, μ :
or in time-integrated form $\quad H\left(\mu_{T} \mid \rho_{T}\right)-H\left(\mu_{0} \mid \rho_{0}\right)=-\int_{0}^{T} R\left(\mu_{t} \mid \rho_{t}\right) d t$
What happens when μ is not a solution of $(*)$?
What is the error you make when you do not solve the equation?

Tobias Wöhrer, TU Vienna:

Sharp decay estimates in defective evolution equations

- Let $\mathrm{C} \in \mathbb{C}^{n \times n}$ be positive stable with spectral gap

$$
\begin{aligned}
\mu:=\min \{\operatorname{Re} \lambda \mid \lambda & \in \sigma(\mathrm{C})\}>0 \\
& \dot{x}(t)=-\mathrm{C} x(t), \quad t \geq 0
\end{aligned}
$$

- Matrix C is defective in $\lambda_{\mu}: \Longleftrightarrow$ algebraic multiplicity > geometric multiplicity of λ_{μ}
- Construction of Lyapunov functional $\|\cdot\|_{P(t)}^{2}$ for sharp decay rate

$$
\|x(t)\|_{2}^{2} \leq c\left(1+t^{2 M}\right) e^{-2 \mu t}, \quad c=\frac{\lambda_{\max }^{\mathrm{P}(0)}}{\lambda_{\min }^{\mathrm{P}(0)}} c_{M} \beta
$$

- Application to PDE: Sensitivity analysis for $z \in \mathbb{R}$ of two-velocity BGK model $(x \in \mathbb{T})$

$$
\partial_{t} f_{ \pm}(x, z)=\mp \partial_{x} f_{ \pm}(x, z) \pm \frac{\sigma(z)}{2}\left(f_{-}(x, z)-f_{+}(x, z)\right)
$$

leads to defective ODE system for Fourier modes.

Diffusion maps: local and global tool for sampling of metastable systems

Z. Trstanova, B. Leimkuhler, T. Lelièvre

EPSRC

Diffusion maps
 Manifold Learning

$$
\left(L_{\varepsilon, \alpha}[f]\right)_{k} \rightarrow \mathcal{L} f\left(x_{k}\right), \quad \mathcal{L}=-\nabla V \cdot \nabla+\beta^{-1} \Delta
$$

Local

Enhanced sampling \& Automatically learned collective variables

Global

Approximating Committors

$$
\mathcal{L}_{\Omega}=\mathcal{L}_{\pi}+\nabla \ln (v) \cdot \nabla
$$

Quasi-stationary distribution

$$
\mathcal{L} q=0, \text { in } \Omega \backslash(A \cup B), q=0 \text {, in } A, q=1 \text {, in } B .
$$

$$
\forall x \in \Omega, \quad \nu(x)=\frac{v(x) \mathrm{e}^{-\beta v(x)}}{\int_{\Omega} v(x) \mathrm{e}^{-\beta v(x)} d x} .
$$

Time error estimation for metastable Markov processes
 Manon Baudel

Mean transition time from A to B for equilibrium trajectories?

- Discrete-time continuous space Markov chain $\left(Y_{n}\right)_{n \geqslant 0}$
- Reactive entrance distribution vs Quasi-Stationary Distribution

Main tools: Trace process, Poisson boundary value problem, convergence to quasi-stationarity

Work in progress with Arnaud Guyader and Tony Lelièvre

Simulating rare events in molecular dynamics with the Adaptive Multilevel Splitting

Laura Lopes, Jérôme Hénin and Tony Lelièvre

- laura.silva-lopes@enpc.fr

Estimation of the probability of transition
Estimation of the transition time
Flux of reactive trajectories obtained with AMS
Estimation of the committor function

Variance estimation for Adaptive Multilevel Splitting

Qiming $D u^{1}$
joint work with Arnaud Guyader ${ }^{2}$ and Tony Lelièvre ${ }^{3}$
${ }^{1}$ LPSM, Sorbonne Université
${ }^{2}$ LPSM, Cermics and ASPI
${ }^{3}$ CERMICS, Ecole des Ponts ParisTech
CIRM
19 September 2018, Marseille

AMS framework

(1) multinomial scheme: All the particles do a multinomial selection before evolving to the next step. We only deal with the case where we kill a proportion of particles as $N \rightarrow \infty$

- higher variance
- higher computational cost
- easy to analyse theoretically

2 keep-survived scheme: The survived particles stay at the same site during the selection procedure.

- lower variance
- lower computational cost
- difficult to analyse

Our construction is based on the coalescent tree-typed occupation measures in the genealogy of the associated Interacting Particle System.

Three variance estimators

(1) multinomial scheme: asymptotic variance

- term-by-term estimator:
- intuitive by construction
- complex to calculate
- consistent estimator
- intermidiate estimator for the following one
- disjoint ancestral line-based estimator:
- same estimator proposed by Lee \& Whiteley for Particle Filters
- easy to calculate
- consistent estimtator

2 keep-survived scheme: non-asymptotic variance

- modified disjoint ancestral lines-based estimator:
- available for almost all kinds of GAMS framework
- easy to calculate
- unbiased estimator
- no consistency result (for now, heuristically, this would also be a consistent estimator under some regularity assumptions)

