# Couplings for non-linear perturbations of Markov processes via jump mechanisms

Pierre Monmarché

LJLL & LCT, Sorbonne Université

CIRM, september 20, 2018







1 The basic argument

2 Extensions

## The non-linear equation

#### Given

- E a Polish space
- L the generator of a Feller Markov process on E
- For all  $\nu \in \mathcal{P}(E)$ ,
  - $\lambda_{
    u}: E 
    ightarrow \mathbb{R}_{+}$  a jump rate
  - $Q_{
    u}: E 
    ightarrow \mathcal{P}(E)$  a Markov kernel,

and denoting A' the dual on measures of an operator A on functions,

$$(A'\nu)f := \nu(Af),$$

we are interested in  $t\mapsto m_t\in \mathcal{P}(E)$  that solves, in some sense,

$$\partial_t m_t = \mathcal{L}' m_t + Q'_{m_t} (\lambda_{m_t} m_t) - \lambda_{m_t} m_t.$$

Perturbative regime : small non-linearity, long-time behaviour.



### The non-linear process

Given  $t \mapsto \mu_t \in \mathcal{P}(E)$  measurable and  $m_0 \in \mathcal{P}(E)$ ,

- Draw  $X_0 \sim m_0$
- ullet Let  $( ilde{X}_t)_{t\geqslant 0}$  be a Markov process associated to L with  $ilde{X}_0=X_0.$
- For  $F \sim \mathcal{E}(1)$  independent from  $(\tilde{X}_t)_{t \geqslant 0}$ , let

$$T \ = \ \inf \left\{ t > 0, \ F > \int_0^t \lambda_{\mu_s}(\tilde{X}_s) \mathrm{d}s 
ight\}$$

- ullet Set  $X_t = ilde{X}_t$  for all  $t \in [0,T)$  and draw  $X_T \sim Q_{\mu_T}( ilde{X}_T)$
- Repeat

## The non-linear process

Given  $t \mapsto \mu_t \in \mathcal{P}(E)$  measurable and  $m_0 \in \mathcal{P}(E)$ ,

- Draw  $X_0 \sim m_0$
- ullet Let  $( ilde{X}_t)_{t\geqslant 0}$  be a Markov process associated to L with  $ilde{X}_0=X_0.$
- For  $F \sim \mathcal{E}(1)$  independent from  $(\tilde{X}_t)_{t\geqslant 0}$ , let

$$T \ = \ \inf \left\{ t > 0, \ F > \int_0^t \lambda_{\mu_s}(\tilde{X}_s) \mathrm{d}s 
ight\}$$

- ullet Set  $X_t = ilde{X}_t$  for all  $t \in [0,T)$  and draw  $X_T \sim Q_{\mu_T}( ilde{X}_T)$
- Repeat

Then  $m_t = \mathcal{L}\mathit{aw}(X_t) := \Psi(t, (\mu_s)_{s\geqslant 0}, m_0)$  formally solves

$$\partial_t m_t = L' m_t + Q'_{\mu_t} (\lambda_{\mu_t} m_t) - \lambda_{\mu_t} m_t.$$

#### Definition

We say  $t\mapsto m_t$  is a solution of the non linear equation if for all  $t\geqslant 0$   $m_t=\Psi(t,(m_s)_{s\geqslant 0},m_0)$ .

#### **Motivations**

- Biological modelling (neurons, chemotaxy)
- mean-field games
- stochastic algorithms with selection/mutation, adaptive biasing force, Flemming-Viot, etc.
- MC, PDMP or hybrid diffusion/jump sampler for mean-field equation

### Mirror coupling for the heat equation

Let  $(B_t)_{t\geqslant 0}$  be a 1-d Brownian motion,  $x,y\in \mathbb{R}/\mathbb{Z}$ .

$$\begin{array}{lll} X_t & = & x+B_t & \forall t \geqslant 0 \\ Y_t & = & \left\{ \begin{array}{ll} y-B_t & \text{for } t \leqslant \tau_{\textit{merge}} := \inf\{t>0, \ 2B_t = y-x\} \\ X_t & \text{for } t > \tau_{\textit{merge}} \,. \end{array} \right.$$



Denoting  $P_t = e^{t\Delta}$  the heat semigroup on  $\mathbb{R}/\mathbb{Z}$ , then

$$X_t \sim \delta_x P_t \,, \qquad Y_t \sim \delta_y P_t \,, \qquad \{X_t = Y_t\} = \{t \geqslant au_{merge}\}.$$

### Mirror coupling for the heat equation

Consider the total variation distance

$$\|\nu - \mu\|_{TV} = \sup_{\|f\|_{\infty} \leqslant 1} |\nu f - \mu f| = 2 \inf_{\Pi(\mu, \nu)} \mathbb{P}(X \neq Y).$$

with  $\Pi(\mu, \nu) := \{(X, Y), X \sim \mu, Y \sim \nu\}$  the set of couplings of  $\mu$  and  $\nu$ .

Let  $(X_t, Y_t)$  be the mirror coupling starting at an optimal coupling  $(X_0, Y_0)$  of  $\mu, \nu \in \mathcal{P}(\mathbb{R}/\mathbb{Z})$ .

$$\|\nu P_{t} - \mu P_{t}\|_{TV} \leq 2\mathbb{P}(X_{t} \neq Y_{t})$$

$$\leq 2\mathbb{P}(X_{0} \neq Y_{0})\mathbb{P}(\tau_{merge} > t \mid X_{0} \neq Y_{0})$$

$$\leq \|\nu - \mu\|_{TV} (1 - \alpha(t))$$

with

$$\alpha(t) = \mathbb{P}\left(\exists s \leqslant t \text{ s.t. } 2B_s \in \{-1,1\}\right) > 0$$

**→□▶→□▶→□▶→□ → ○ ○ ○** 

## Coupling for the non-linear process

Consider the non-linear process given by L and  $\mu \mapsto \lambda_{\mu}$ ,  $Q_{\mu}$ .

#### Assumption

There exists  $\lambda_* > 0$  such that for all  $\mu \in \mathcal{P}(E)$  and  $x \in E$ ,  $\lambda_{\mu}(x) \leqslant \lambda_*$ .

For  $(\tilde{X}_t, \tilde{Y}_t)_{t \geqslant 0}$  such that  $(\tilde{X}_0, \tilde{Y}_0)$  is an optimal coupling of  $m_0, h_0 \in \mathcal{P}(E)$  and each marginal is a Markov process with generator L, let

$$ilde{ au}_{merge} = \inf\{t>0, \; ilde{X}_t = ilde{Y}_t\}$$
 .

Let  $(X_t)_{t\geqslant 0}$  be a non-linear process with  $X_t=\ddot{X}_t$  up to time

$$T = \inf \left\{ t > 0, \ F > \int_0^t \lambda_{m_s}(\tilde{X}_s) \mathrm{d}s \right\} > \frac{1}{\lambda_*} F.$$

Then

$$\mathbb{P}\left(X_t = Y_t\right) \; \geqslant \; \mathbb{P}\left(\tilde{X}_t = \tilde{Y}_t \; \& \; F > \lambda_* t\right) \; > \; \tilde{\alpha}(t) e^{-\lambda_* t} \, .$$

# Coupling for the non-linear process

If  $t \mapsto m_t, h_t$  be two solutions of the non-linear equation,

$$||m_{t} - h_{t}||_{TV} \leq 2\mathbb{P}(X_{t} \neq Y_{t})$$

$$\leq 2\mathbb{P}(X_{0} \neq Y_{0})(1 - \tilde{\alpha}(t)e^{-\lambda_{*}t}) + 2\mathbb{P}(X_{t} \neq Y_{t} \& X_{0} = Y_{0})$$

$$\leq ||m_{0} - h_{0}||_{TV}(1 - \tilde{\alpha}(t)e^{-\lambda_{*}t}) + 2\mathbb{P}(X_{t} \neq Y_{t} | X_{0} = Y_{0})$$

Even if  $X_t = Y_t$  at some point, still,  $m_t \neq h_t$ , hence the dynamics of X and Y are different: they may split.

# Parallel coupling for diffusions

For diffusions, consider

$$\begin{aligned} \mathsf{d} X_t &=& a(X_t,t) \mathsf{d} t + \mathsf{d} B_t \\ \mathsf{d} Y_t &=& b(Y_t,t) \mathsf{d} t + \mathsf{d} B_t \\ \Rightarrow \mathsf{d} (X_t - Y_t) &=& (a(X_t,t) - b(Y_t,t)) \, \mathsf{d} t \, . \end{aligned}$$

For instance, if  $X_t = (X_{i,t})_{i \in [\![ 1,N ]\!]}$  are N independent McKean-Vlasov processes and  $Y_t = (Y_{i,t})_{i \in [\![ 1,N ]\!]}$  an associated cloud of mean-field interacting particle, we get

$$\mathbb{E}\left(|X_{1,t}-Y_{1,t}|^2\right) \leqslant \frac{e^{bt}}{N}$$

## Synchronous coupling for jump processes

M' 2018, Durmus-Guillin-M' 2018, consider two Markov semi-groups

$$L_{i,t}f(x) = Lf(x) + \lambda_{i,t}(x)(Q_{i,t}f(x) - f(x)), \quad i = 1, 2.$$

Given an initial condition  $x \in E$ , define  $(X_t^1, X_2)_{t \geqslant 0}$  with  $X_0^1 = X_0^2 = x$  in such a way that

- $(X_t^i)_{t\geqslant 0}$  is a Markov process with generator  $L_{i,t}$ .
- As much as possible, the processes jump at the same time.
- If they jump at the same time, as much as possible, they jump to the same point.

Set 
$$au_{split}=\inf\{t\geqslant 0,\ X_t^1\neq X_t^2\}$$
 and 
$$\eta(t)\ :=\sup_{\|f\|_\infty\leqslant 1}\|L_{1,t}f-L_{2,t}f\|_\infty\,.$$

Then

$$\|\delta_{\scriptscriptstyle X} P^1_{0,t} - \delta_{\scriptscriptstyle X} P^2_{0,t}\|_{\it TV} \; \leqslant \; 2 \mathbb{P} \left( \tau_{\it split} < t \right) \; \leqslant \; 2 \left( 1 - e^{-\int_0^t \eta(s) \mathrm{d} s} \right) \, .$$

### Synchronous coupling for jump processes

For i = 1, 2, consider  $t \mapsto m_t^i$  two solutions of the non-linear equation.

#### Assumption

There exist  $\theta > 0$  such that for all  $\nu, \mu \in \mathcal{P}(E)$ ,

$$\sup_{\|f\|_{\infty} \leqslant 1} \|\lambda_{\nu}(Q_{\nu}f - f) - \lambda_{\mu}(Q_{\mu}f - f)\|_{\infty} \leqslant \theta \|\nu - \mu\|_{TV}$$

Ex:  $Q_{\nu}=Q$  for all  $\nu$  and  $\lambda_{\nu}=\int g\mathrm{d}\nu$  for some bounded positive g.

From the synchronous coupling of processes with generator

$$L_{i,t} = L + \lambda_{m_t^i} \left( Q_{m_t^i} - Id \right),$$

we get

$$||m_t^1 - m_t^2||_{TV} \leqslant ||m_0^1 - m_0^2||_{TV} + 2\left(1 - e^{-\theta \int_0^t ||m_s^1 - m_s^2||_{TV} ds}\right)$$
$$\leqslant ||m_0^1 - m_0^2||_{TV} + 2\theta \int_0^t ||m_s^1 - m_s^2||_{TV} ds$$

# Contraction of the TV for non-linear processes

$$\begin{split} \|m_t^1 - m_t^2\|_{TV} &\leqslant \|m_0^1 - m_0^2\|_{TV} (1 - \tilde{\alpha}(t)e^{-\lambda_* t}) + 2\mathbb{P}\left(\tau_{split} < t | X_0 = Y_0\right) \\ &\leqslant \|m_0^1 - m_0^2\|_{TV} (1 - \tilde{\alpha}(t)e^{-\lambda_* t}) + 2\theta \int_0^t \|m_s^1 - m_s^2\|_{TV} \mathrm{d}s \\ &\leqslant \|m_0^1 - m_0^2\|_{TV} (1 - \tilde{\alpha}(t)e^{-\lambda_* t}) + 2\theta \int_0^t e^{\theta s} \|m_0^1 - m_0^2\|_{TV} \\ &\leqslant \|m_0^1 - m_0^2\|_{TV} \left(1 - \tilde{\alpha}(t)e^{-\lambda_* t} + 2(e^{\theta t} - 1)\right) \end{split}$$

If there exist  $t_0$  such that  $\tilde{\alpha}(t_0) > 0$ , given  $\theta$  is small enough,

$$\|m_{t_0}^1 - m_{t_0}^2\|_{TV} \le \kappa \|m_0^1 - m_0^2\|_{TV}$$

for some  $\kappa \in (0,1)$  and then for all  $t \geqslant 0$ ,

$$\|m_t^1 - m_t^2\|_{TV} \leqslant e^{\theta t_0} \kappa^{\lfloor t/t_0 \rfloor} \|m_0^1 - m_0^2\|_{TV}.$$

(Similar result in Cañizo-Yoldaș 2018 for a neuron model)

#### Exemple

Let  $E = (\mathbb{R}/\mathbb{Z})^d$ ,  $U \in \mathcal{C}(E)$ ,  $W \in \mathcal{C}(E^2)$ ,  $\beta > 0$ , find V such that

$$V(x) = U(x) + \frac{\int_E W(x,z)e^{-\beta V(z)}dz}{\int_E e^{-\beta V(z)}dz}.$$
 (1)

#### Proposition

Suppose that  $\beta$  is small enough so that

$$\rho \ := \ e^{-\beta(osc(U)+osc(W))} - 4osc(W)\beta\left(e^{\beta(osc(U)+osc(W))} - 1\right) \ > \ 0 \ ,$$

with osc(f) = max f - min f. Then (1) admits a unique solution.

Proof: consider a (non-linear) Metropolis-Hasting chain with uniform proposal with target  $\propto \exp(-\beta(U + m_t(V)))$ . Then

$$\|m_t^1 - m_t^2\|_{TV} \leqslant e^{-\rho t} \|m_0^1 - m_0^2\|_{TV},$$

and V solves (1) iff  $\exp(-\beta V)$  is an equilibrium of the non-linear chain.

The basic argument

2 Extensions

## With a Lyapunov function

In the previous argument, we used that there exists  $t_0, \alpha > 0$  such that

$$\sup_{x,y\in E}\|\delta_x e^{t_0L} - \delta_y e^{t_0L}\|_{TV} \leqslant 2(1-\alpha).$$

Less restrictive assumption (Foster-Lyapunov + local Doeblin):

• There exists  $\mathcal{V}: E \to [1, \infty)$ ,  $M \geqslant 0$  and  $\gamma \in (0, 1)$  such that

$$e^{t_0L}\mathcal{V}(x) \leqslant \gamma \mathcal{V}(x) + (1-\gamma)M.$$

• For all  $x, y \in E$  with  $\mathcal{V}(x) + \mathcal{V}(y) \leqslant 4M$ 

$$\|\delta_{\mathsf{x}}\mathsf{e}^{t_0L}-\delta_{\mathsf{y}}\mathsf{e}^{t_0L}\|_{\mathit{TV}}\leqslant 2(1-\alpha).$$

Then,  $e^{t_0L}$  contracts (a norm equivalent to)

$$\|\mu - \nu\|_{\mathcal{V}} = \int \mathcal{V}(x)|\mu - \nu|(\mathsf{d}x) = \inf_{(X,Y) \in \Pi(\mu,\nu)} \mathbb{E}\left(\mathbb{1}_{X \neq Y}\left(\mathcal{V}(X) + \mathcal{V}(Y)\right)\right)$$

(Meyn-Tweedie 1993, Hairer-Mattingly 2008)

4 D > 4 B > 4 B > 4 B > 9 Q (0

## Non-linear analoguous

#### Assumption

• Lyapunov-type condition : there exists  $\mathcal{V}: E \to [1, \infty)$ ,  $M, \rho, \rho_*, \gamma_* > 0$  such that for all  $t \geqslant 0$ ,  $x \in E$ ,  $\mu \in \mathcal{P}(E)$  and  $t \mapsto m_t$  solution of the non-linear equation,

$$egin{array}{lll} m_t(\mathcal{V}) &\leqslant& e^{-
ho t} m_0(\mathcal{V}) + (1-e^{-
ho t}) \, M \ e^{tL} \mathcal{V}(x) &\leqslant& e^{
ho_* t} \mathcal{V}(x) \ \mathcal{V}(Y) &\leqslant& \gamma_* V(x) & ext{almost surely if } Y \sim Q_\mu(x) \end{array}$$

• (Linear) local Doeblin condition :  $\forall C > 0$ ,  $\exists \alpha, t_0 > 0$  such that

$$\mathcal{V}(x) + \mathcal{V}(y) \leqslant C \qquad \Rightarrow \qquad \|\delta_x e^{t_0 L} - \delta_y e^{t_0 L}\|_{TV} \leqslant 2(1-\alpha).$$

ullet Control on the non-linearity : there exists heta>0 such that

$$\sup_{\|f\|_{\infty} \leqslant 1} \|\lambda_{\nu}(Q_{\nu}f - f) - \lambda_{\mu}(Q_{\mu}f - f)\|_{\infty} \leqslant \theta \|\nu - \mu\|_{\mathcal{V}}$$

## Non-linear analoguous

#### **Theorem**

Under the previous assumption, if  $m_0(\mathcal{V})<\infty$  then a unique solution  $t\mapsto m_t$  of the non-linear equaiont exists. Moreover, there exist  $C,r,\theta_*>0$  such that if  $\theta\leqslant\theta_*$  then there exists a unique equilibrium  $m_\infty$  and for all  $t\geqslant 0$  and  $m_0\in\mathcal{P}(E)$  then

$$\|m_t - m_\infty\|_{\mathcal{V}} \leqslant Ce^{-rt}m_0(\mathcal{V}).$$

#### Proof:

- 33% contraction of Hairer-Mattingly
- 33% synchronous coupling
- 33% elbow grease
- 1% faith

### Interacting particle system

Let  $N \in \mathbb{N}$  and for all  $i \in [1, N]$  consider  $L_i$  the generator of a Feller process on E,  $\lambda_i : E^N \to \mathbb{R}_+$  and  $Q_i : E^N \to \mathcal{P}(E)$ . Define a Markov process  $(X_{i,t})_{i \in [1,N],t \geqslant 0}$  by:

- Let  $(\tilde{X}_{i,t})_{t\geqslant 0}$  be a Markov process associated to a generator  $L_i$
- For  $F_i \sim \mathcal{E}(1)$ , let  $T = \inf\{T_i, i \in [[1, N]]\}$  with

$$T_i = \inf \left\{ t > 0, \ F_i > \int_0^t \lambda_i(\tilde{X}_s) ds \right\}$$

- Set  $X_{i,t} = \tilde{X}_{i,t}$  for all  $t \in [0, T)$ .
- If  $T = T_i$ , draw  $X_{i,T} \sim Q_i(X_T)$ . Else, set  $X_{i,T} = \tilde{X}_{i,T}$ .
- Repeat

Exemple: if non-linear  $\mu\mapsto Q_\mu, \lambda_\mu$ , then  $\lambda_i(x)=\lambda_{\mu_N(x)}(x_i)$  with

$$\mu_N(x) := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}.$$



# Interacting particle system (total variation)

#### Assumption

There exists  $\lambda_*, \theta, t_0, \alpha \geqslant 0$  such that, for all  $i \in [1, N]$ ,

- $\lambda_i(x) \leqslant \lambda_*$  for all  $x \in E^N$  and  $i \in [1, N]$ .
- for all  $x, y \in E$  with  $y_i = x_i$ ,

$$\|\lambda_i(x)\left(Q_i(x)-\delta_{x_i}\right)-\lambda_i(y)\left(Q_i(y)-\delta_{y_i}\right)\|_{\infty} \leqslant \frac{\theta}{N}\sum_{j=1}^N \mathbb{1}_{x_j\neq y_j}.$$

• for all  $x, y \in E$ ,

$$\|\delta_{\mathsf{X}}\mathsf{e}^{\mathsf{t}_0\mathsf{L}_i}-\delta_{\mathsf{Y}}\mathsf{e}^{\mathsf{t}_0\mathsf{L}_i}\|_{\mathsf{TV}} \leqslant 2(1-\alpha).$$

#### Remark:

 $\mathbb{P}$  (the N particles all merge at time  $t_0$ )  $\geqslant (\alpha e^{-\lambda_* t_0})^N$ .



# Interacting particle system (total variation)

#### **Theorem**

Under the previous assumption, denote  $(P_t^{(N)})_{t\geqslant 0}$  the semi-group associated to  $(X_{i,t})_{i\in [1,N],t\geqslant 0}$ , then

$$\|m_0 P_t^{(N)} - h_0 P_t^{(N)}\|_{TV} \leqslant N e^{\theta t_0} \left( e^{\theta t_0} - \alpha e^{-\lambda_* t_0} \right)^{\lfloor t/t_0 \rfloor} \|m_0 - h_0\|_{TV}.$$

Moreover, denoting  $m_t'$  and  $h_t'$  the respective laws of  $X_{I,t}$  and  $Y_{I,t}$  where  $X_t \sim m_0 P_t^{(N)}$ ,  $Y_t \sim h_0 P_t^{(N)}$  and I is uniformly distributed over  $[\![1,N]\!]$  and independent from  $X_t$  and  $Y_t$ , then

$$\|m'_t - h'_t\|_{TV} \le e^{\theta t_0} \left( e^{\theta t_0} - \alpha e^{-\lambda_* t_0} \right)^{\lfloor t/t_0 \rfloor} \|m'_0 - h'_0\|_{TV}.$$

Proof : couple particle independently. Try to keep together those who have already merged with synchronous coupling.

4 D > 4 B > 4 B > 4 B > 9 Q C

# Interacting particle system (V-norm)

#### **Theorem**

#### Again,

- $\lambda_i(x) \leqslant \lambda_*$ .
- Lyapunov-type condition (similar as the non-linear case)
- Local Doeblin condition (same)
- for all  $x, y \in E$  with  $y_i = x_i$ ,

$$\|\lambda_i(x)\left(Q_i(x)-\delta_{x_i}\right)-\lambda_i(y)\left(Q_i(y)-\delta_{y_i}\right)\|_{\infty} \leqslant \frac{\theta}{N}\sum_{j=1}^N \mathbb{1}_{x_j\neq y_j}.$$

Then, nice decay in the V-norm.

The analoguous of the non-linear theorem would be

$$lhs \leqslant \frac{\theta}{N} \sum_{i=1}^{N} \mathbb{1}_{x_j \neq y_j} \left( \mathcal{V}_j(x_j) + \mathcal{V}_j(y_j) \right) .$$

#### To go further

- Self-interaction processes (memory, delay)
- Interactions more general than mean-field
- Link with the sticky coupling for diffusions (via Euler discretization)
- ullet Solve the problem of the  $\mathcal{V}_i(X_{i,t})$  in the interacting particle case
- Propagation of chaos (coupling between interacting particle and independent non-linear processes)

#### To go further

- Self-interaction processes (memory, delay)
- Interactions more general than mean-field
- Link with the sticky coupling for diffusions (via Euler discretization)
- Solve the problem of the  $V_i(X_{i,t})$  in the interacting particle case
- Propagation of chaos (coupling between interacting particle and independent non-linear processes)

Thank you for your attention!